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Fig. 1. We propose a new solution for rendering captured cars, and in particular their reflective, semi-
transparent windows. A textured mesh from multi-view stereo reconstruction (a) is missing the window
geometry. Recent free-viewpoint Image-Based Rendering algorithms (b, c) are not designed to handle the
rendering of both the reflection of blue sky, green leaves and the transmissive content (car interior). Our
method (d) handles this by computing real-time reflection flows on an ellipsoid approximation of the curved
window surface, based on our estimate of a smooth hull of the car that exploit semantic labels in the input
images. The effect of reflection rendering is best seen in the supplemental videos.

Image-Based Rendering (IBR) has made impressive progress towards highly realistic, interactive 3D naviga-
tion for many scenes, including cityscapes. However, cars are ubiquitous in such scenes; multi-view stereo
reconstruction provides proxy geometry for IBR, but has difficulty with shiny car bodies, and leaves holes in
place of reflective, semi-transparent windows on cars. We present a new approach allowing free-viewpoint
IBR of cars based on an approximate analytic reflection flow computation on curved windows. Our method has
three components: a refinement step of reconstructed car geometry guided by semantic labels, that provides an
initial approximation for missing window surfaces and a smooth completed car hull; an efficient reflection flow
computation using an ellipsoid approximation of the curved car windows that runs in real-time in a shader and
a reflection/background layer synthesis solution. These components allow plausible rendering of reflective,
semi-transparent windows in free viewpoint navigation. We show results on several scenes casually captured
with a single consumer-level camera, demonstrating plausible car renderings with significant improvement in
visual quality over previous methods.
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Fig. 2. Overview of our method. Top: (a) We isolate cars and refine the car mesh using a spherical projection,
exploiting semantic labels to impose smoothing priors in window regions. Mesh smoothing is iteratively
interleaved with semantic mask refinement, and approximate surfaces for windows are produced (Sec. 3).
The second step (b) automatically fits an ellipsoid to the approximate window surface, which is used by our
reflection flow computation (Sec. 4). The flow is also used in our final preprocessing step (c), together with
the refined mesh to synthesize reflection and background layers (Sec. 5). Bottom: the layers and mesh are
used during interactive navigation to synthesize novel viewpoints with plausible reflections, by computing
reflection flow on the fly using the estimated parameters.

1 INTRODUCTION
Recent Image-Based Rendering (IBR) solutions only require simple capture using consumer cameras,
and provide realistic free-viewpoint navigation at interactive rates in scenes such as cityscapes
[Chaurasia et al. 2013; Hedman et al. 2018]. Car and car window rendering are arguably two of the
main obstacles for using IBR for free-viewpoint street navigation. Existing solutions have difficulty
with the poor reconstruction of shiny car bodies and the depth estimation ambiguity of reflections
moving across curved semi-transparent windows. In this work, we provide a first plausible solution,
by improving the overall rendered appearance of car bodies thanks to our estimation of smooth
and filled car geometry, the believable motion of reflections on car windows and our synthesized
reflection layers. We target a lightweight capture process with a single commodity camera (e.g., a
GoPro), typically in a “street-side” fashion. In this context, recent IBR methods build on efficient
Multi-View Stereo (MVS) algorithms [Reality 2018; Schönberger et al. 2016], that produce acceptable
quality geometry for non-reflective/transmissive surfaces. The reconstructed geometry is used
to reproject input images [Buehler et al. 2001; Hedman et al. 2018] in the novel view, allowing
interactive, high-quality free viewpoint navigation in these cases.
However, for reflective car bodies these MVS algorithms produce inaccurate geometry due to

strongly view-dependent and textureless appearance, and window surfaces are most often missing.
Most IBR algorithms (e.g., [Chaurasia et al. 2013; Hedman et al. 2018]) are not designed to handle
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the flow of reflections on a window which is different from that of the interior or background
visible through that window. Previous specific solutions for IBR with reflections [Kopf et al. 2013;
Sinha et al. 2012] have difficulty with curved surfaces of car windows, and with the novel views we
target that are quite far from the input views, but quite common for street-level navigation.

IBR for reflections on cars raises three challenges outlined in Fig 2(a)-(c). We first need to provide
car geometry that is as complete and smooth as possible, including a window surface. We then
need to efficiently compute flow for reflections on windows taking their curved nature into account.
Finally, we need to separate layers for reflections and background so we can flow them separately
during free-viewpoint navigation. We successively address each of these challenges in our method;
each step produces the input necessary to provide a solution for the next challenge.

For the first challenge we use semantic labels to identify cars and car windows in input images,
using powerful modern machine learning-based segmentation. Unfortunately, these semantic labels
are inaccurate and not multi-view consistent. Our key ideas are to use a spherical projection of
the car and perform interleaved mesh smoothing and multi-view consistent label refinement in
this spherical space. This space fits well with multi-view consistency operations, and facilitates the
use of powerful image-processing methods. This step produces a smoothed and complete car body,
including a first estimation of the window surface, see Fig. 2(a) and Sec. 3.

For the second challenge we introduce an efficient reflection flow computation based on analytic
approximation of curved windows. We fit ellipsoids to each window by exploiting the previously
estimated window geometry and provide efficient flow computation by gradient descent in the
shader; Fig. 2(b) and Sec. 4.
For the third challenge, traditional layer separation algorithms (e.g., [Szeliski et al. 2000; Xue

et al. 2015]) are not designed for the curved window surfaces and the low quality of the lightweight
capture data we acquire. Instead, we introduce a plausible reflection layer synthesis algorithm. We
use our approximate reflection flows as an initialization, and then use image stitching to complete
the synthesis; Fig. 2(c) and Sec. 5.
In summary, we present three main contributions, providing a fully automatic solution for IBR

of cars:
• A new algorithm to provide a complete and smooth car body reconstruction suitable for
rendering in a casual capture context, as well as initial window surfaces.
• A reflection flow approximation for plausible interactive reflection rendering and an automatic
ellipsoid fitting algorithm that uses the initial window surfaces.
• A reflection and background layer synthesis method building on our reflection flow.

Our solution allows interactive rendering of plausible motion of reflections in car windows, and
diminishes visual artifacts due to missing and incorrect car geometry. This plausible motion greatly
improves perceived visual quality compared to previous methods (Fig. 1, 10, 11 and supplemental
videos) especially when moving around the scene.

2 RELATEDWORK
Our approach focuses on Image-Based Rendering, layering and reconstruction of semi-transparent
objects and the use of semantic information for 3D reconstruction. We review the most closely
related work.

2.1 Image-based rendering
Image-based rendering generates novel views of a scene acquired as a series of photographs. Initial
methods directly resampled light rays [Gortler et al. 1996; Levoy and Hanrahan 1996]; for sparser
acquisition, a 3D mesh [Buehler et al. 2001; Debevec et al. 1998], can be used to allow smooth
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blending of input views. Modern implementations of these techniques rely on Multi-View Stereo
(MVS) reconstruction [Goesele et al. 2007], but suffer from their limitations. Despite recent progress
[Reality 2018; Schönberger et al. 2016], these methods still have difficulty with scene coverage and
are not designed to handle highly reflective surface nor the depth ambiguity of transparency.

Recent unstructured methods alleviate reliance on global geometry, using view-dependent seg-
mentation [Chaurasia et al. 2013] or meshes [Hedman et al. 2016], recently using learning to improve
blending on refined meshes [Hedman et al. 2018]. We build on such ideas, and introduce a solution
for semi-transparent, reflective surfaces (e.g., car windows) that were previously problematic.
Specific techniques exist for scenes with reflective and transparent surfaces. Sinha et al. [2012]

estimate up to two depths per pixel, producing two geometry proxies for separate image-based
rendering of background and reflections. Kopf et al. [2013] perform image warping and blending in
the space of color gradients, and integrate to get the final result. These approaches are restricted to
planar reflectors and limited motion, and are unsuitable in our context of curved windows.
Penner and Zhang [2017] proposed the volumetric Soft3D approach to IBR. Reconstructed

volumetric depth and color are interpolated and accumulated to generate the novel view, allowing
multiple surfaces to be present at a given pixel; however, artifacts can appear in non-transparent
regions, especially far from the input cameras poses. In contrast, we provide a larger space for
free-viewpoint navigation, thanks to our approximate reflection rendering and layer synthesis.
Recent work on IBR [Mildenhall et al. 2019; Thies et al. 2019, 2020] exploits neural networks

to improve rendering quality. Thies et al. [2020] address the problem of moving highlights, and
focus on rendering of isolated objects rather than the full scenes we consider [Thies et al. 2019] but
do not handle semi-transparent, reflective objects; Mildenhall et al [2019] focus on much smaller
camera baselines than ours. Nonetheless, these methods present many exciting ideas on using the
power of deep learning to improve IBR, and we consider these very promising avenues for future
work.

2.2 Layering, Reconstruction, Rendering of Semi-Transparent and Reflective Objects
Layering. Separating reflective layers from the background is widely studied in computer vision

and graphics. Single-image solutions can require user assistance [Levin and Weiss 2007], or specific
acquisition hardware such as polarization [Wieschollek et al. 2018]. Multi-view methods [Szeliski
et al. 2000; Xue et al. 2015] often jointly estimate the flow between the layers, as well as the layer
decomposition itself. These methods require a sufficiently accurate initial flow estimate to be
successful; in our context of uncertain input data, we opt to synthesize plausible reflection layers
instead. Nonetheless, our synthesis method is inspired by the work of [Szeliski et al. 2000], and
their idea of min-composite.

Reconstruction. Several methods address the challenge of reconstructing transparent and reflective
objects, but typically require the use of custom acquisition devices [Whelan et al. 2018; Wu et al.
2018]. Godard et al. [2015] focus on specular objects and reconstruct them by refining the normals
of an initial guess, guided by regenerated reflections. Numerous volumetric approaches can be
found in the literature [Ihrke et al. 2010] to handle the multiple depths per pixel present in images of
non-opaque objects. These often focus on specific object categories, or involve complex acquisition
hardware setups [Ihrke et al. 2008].We focus on a casual capture setup, using a single consumer-level
camera.

Reflection Rendering. Reflections are often rendered with ray-tracing [Whitted 1980], but approx-
imate approaches for rasterization pipelines (e.g., [Estalella et al. 2005; Ofek and Rappoport 1998])
search for the objects reflected from a curved surface so they can be rendered. Our IBR context is
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different, since we do not have access to the full geometry, but our analytical surface approximation
to curved windows allows us to build on such approaches to compute reflection flow.

2.3 Semantic labelling
Semantic labeling has been used to detect class-specific properties, allowing specific reconstruction
processing. One common approach is the use of 3D models of a given object class (e.g., cars) to
train priors for reconstruction, often resulting in good quality voxel reconstructions [Hane et al.
2014] or meshes [Yingze Bao et al. 2013]. While our object-class-specific smoothing priors have
similarities in spirit with e.g., the class-based normal distributions of Häne et al. [2014], we focus
on the use of a standard Structure-from-Motion (SfM)/MVS reconstruction pipeline, without the
need for training based on 3D models.

3 CAR GEOMETRY EXTRACTION AND REFINEMENT
To perform high quality rendering for cars including window reflections, we need to isolate the
cars in the scene, refine their geometry, and estimate supporting geometry for the windows.

3.1 Isolating Cars with Semantic Labels
We will use semantic labels to identify and isolate cars in the scene; the labels will also be used to
refine car geometry. We obtain 2D label maps for each input image, using DeepLab-v2 [Chen et al.
2017], trained on a subset of the ADE20K dataset [Zhou et al. 2017, 2019], to recognize car objects,
but also parts, namely car body, car wheel and car window. Details of the training procedure are
given in supplemental. An example training image and result obtained on one of our input images
are shown in Fig. 3 (c,d).

We project the segmentation labels onto the geometry; vertices
where at least 40% of the input semantic maps agree on the car
label are considered as belonging to a car. We group these vertices
in connected components using mesh and mask connectivity infor-
mation. This extraction is robust due to the overlap between input
images and the fact that the cars are the focus. For each remaining
component we estimate a bounding box aligned with the main axes
of the car using PCA, and initialize the bounding sphere used for
the spherical projection (see figure on the right).

3.2 Smooth
Car Hull Extraction and Semantic Mesh Refinement
We want to estimate a smooth version of the car body with filled holes, obtain an initial approxima-
tion of the car window surfaces and improve overall car reconstruction. Unfortunately, car bodies
are badly reconstructed by state-of-the-art MVS reconstruction algorithms, and car windows are
often completely missing.

Semantic labels provide an indication of the location of the windows, and could serve as a guide
to refine geometry. The segmentations sometimes contain errors, possibly because our viewpoints
are very different from the training set images, e.g., close-ups where only a small region of the
car is visible. Another case concerns objects lacking features, e.g. a black car in shadow, or with
contradictory features caused by reflections, lead to missing regions in some predicted maps. In
addition, labels are not always multi-view consistent, see Fig. 3(e), (f).
A precise model of the car and windows could help improve multi-view consistency, but this

model is precisely what we are trying to obtain. To solve this dependency problem, we iteratively
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(a) Training image (b) Training labels (c) Test image (d) Test labels

(e) Mask from first view (closeup) (f) Mask from second view (closeup)

Fig. 3. We train a deep-learning based segmentation classifier. Example of a training image (a) and associated
hand-labeled segmentation map (b). Segmentation (d) obtained for one of our input images (c). The masks of
two neighboring views (e) and (f) are not consistent.

estimate geometry, interleaving mesh smoothing with updates of semantic mask probabilities, i.e.,
the probability that a pixel has a given label.

Smoothing the mesh in object space is difficult, since semantic labels from input views reproject
incorrectly on the mesh through the window holes. However, we know that cars have a spherical
topology, and it is natural to use a spherical projection of each car for multi-view consistent window
segmentation. We choose to enforce spherical topology as a prior in “spherical” image space, which
allows the use of efficient image-processing algorithms and facilitates multi-view coherence.
We start by projecting the geometry assigned to the car onto the bounding sphere using a

spherical projection and create a depth map (Fig. 4(a)). We reproject the semantic “car window”
labels into the same space, estimating a semantic label probability map using the reconstructed
geometry (Fig. 4(b)). We next use the semantic labels to estimate a smooth car hull, fill the window
holes and repair inaccurately reconstructed regions as much as possible. The semantic map is then
refined by reprojecting the input view maps using the updated geometry. Akin to an Expectation-
Minimization approach, we iterate in an interleaved fashion those two steps. Finally, we refine the
semantic masks in a multi-view coherent manner.

Mesh Refinement Step. To refine depth, regions of the depth map where reprojected labels agree
as “car window” are considered with low confidence, while regions that are seen by a high number
of cameras without this label have a strong weight. Evidently, the missing window surfaces
result in incorrect label reprojection; we prefer and smooth regions that are more likely to be
correctly reconstructed car body, and fill the other regions with smooth propagation of the depth.
A smoothness prior is thus applied to the entire hull of the car, and a data term is added on the
Laplacian of the depth to encourage planar regions and counteract the tendency of the solver to
pull the surface towards the sphere. We use a conjugate gradient method to solve this constrained
optimization; details are provided in Appendix A. At the end of this step, we obtain a depth map
with smoothed reflective surfaces and progressively filled-in window surfaces, Fig. 4(c).

Semantic Mask Probability Update Step. We can now use this smooth car hull geometry to reproject
the label maps with updated visibility. This new label probability map (Fig. 4(d)) is of much better
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(a) Input depth map (b) Reprojected window
label map (initial)

(c) Smoothed depth
map

(d) Reprojected window
map (refined)

Fig. 4. From the input disparity map (a), we refine a smoothed and filled disparity map (c), using the
reprojected semantic information as a constraint (b). Semantic labels are then reprojected again (d).

quality than the reprojection using the original reconstructed geometry (Fig. 4(b)). The updated
map is then used for the next mesh refinement step.

Final semantic mask refinement. After three interleaved iterations, we refine the label probability
map in spherical space, using a Markov Random Field (MRF) guided by color similarity of input
views reprojected onto the mesh and confidence, based on label probabilities and visibility.We also
discourage well-reconstructed pixels to be labeled as windows. Details of the MRF are provided in
Appendix B.

Smooth Mesh Extraction & Symmetrization. The final smooth depth map is used to regenerate
a car mesh with filled windows and smoothed surfaces, Fig. 5(b). Regions that were previously
holes and deformations caused by reflections and transparent surfaces (see Fig. 5 (a)) now have
much smoother supporting geometry. In all the examples presented, we have used “street side”

(a) Input geometry (b) Refined geometry (c) Symmetrized

Fig. 5. Left to right. (a) Original input geometry from the MVS reconstruction. (b) Refined geometry after
the iterative mesh smoothing step. (c) Result of symmetrization. The far side of the car not seen by input
cameras in our “street-side” casual capture is reconstructed by symmetry.

capture, with no photographs on the side of the car facing away from the street. We complete the
missing information by generating a symmetrized version of the refined geometry. A copy of the
car geometry is reflected along its principal vertical plane, and automatically re-aligned with the
initial car mesh using an Iterative Closest Point approach. Both geometries are merged based on
visibility, i.e., in regions where the initial car is visible in less than 20% of the cameras, we instead
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use the mirrored version. The resulting refined and symmetrically completed mesh is shown in
Fig. 5(c).

The final label map (Fig. 6 (a)) is then used to cut windows out of the smoothed mesh. Specifically,
the parts of the mesh that are labeled as windows are extracted separately (Fig. 6 (b)), and the
remaining hull of the car is merged back with the initial scene geometry (Fig. 6 (c)). Vertices of the
initial geometry too close to the smoothed mesh are discarded, to avoid double surfaces. We refer
to this windowless smoothed mesh (Fig. 6 (c)) as the refined mesh or geometry from now on.

(a) Final refined map (b) Extracted windows (c) Merged background and car hull

Fig. 6. At the end of the MRF step we obtain the final window mask (a, in red, drawn over the reprojected
texture). This map is used to separate the window meshes (b) from the merged background/interior and car
hull meshes (c).

4 ELLIPSOID APPROXIMATION FOR REFLECTION FLOW COMPUTATION
At a given pixel 𝑝 in the novel view (Fig. 7(a)), we see a point 𝑃𝑟 that is reflected from the background
onto the reflecting window at 𝑃 . We need to find the pixel in a reference input view that contains
the reflection of 𝑃𝑟 . We propose an efficient algorithm to explicitly compute reflection flow between
views. This technique will be used both during preprocess and during rendering. We achieve
this using two simplifying assumptions: that scene geometry is distant and that windows can be
approximated by ellipsoid geometry.

4.1 Reflection flow computation
We assume that the scene geometry reflected in the windows can be approximated by the bounding
sphere of the scene. Far-away geometry creates very small parallax when the camera moves, and
convex reflectors further decrease the parallax. High quality geometry of the reflected objects is
thus not required. Furthermore, each window is approximated by an ellipsoid. This representation
will be key to making the problem tractable and achieving real-time performance. At pixel 𝑝 , we
see a point 𝑃 on the surface of a window. We know the position, surface normal and window
parameters at 𝑃 . Knowing the novel view position, we can compute the reflected ray under a perfect
mirror assumption, r. The intersection of this ray with the background at 𝑃𝑟 (see Fig. 7(a)), can also
be derived analytically using our spherical world assumption.
We then search for the point 𝑃 ′ on the ellipsoid reflector surface such that 𝑃𝑟 falls inside the

input view after being reflected at this point. This point has the property that the normal at the
surface and the half vector between the incoming and outgoing reflected rays coincide [Estalella
et al. 2005] (see Fig. 7(b)). We find this point using an approximate gradient descent. At a given
candidate point 𝑃𝑐 , we compute the half-vector between 𝑃𝑐𝑃𝑟 and 𝑃𝑐𝑃𝑖 (where 𝑃𝑖 is the location of
the input view). If 𝑃𝑐 = 𝑃 ′ this vector is equal to the normal to the ellipsoid at 𝑃𝑐 . Else we update
the normal by shifting it toward the half-vector. Thanks to the bijection between ellipsoid positions
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Fig. 7. (a) The initial configuration for the reflection flow computation. (b) Two steps of the gradient descent.
When the half-vector (green) is aligned with the normal (red), we have found the point corresponding to the
reflection in the input view. The value of pixel 𝑝 ′ can be used to flow the reflection to the novel view.

and their normals, we can easily convert this updated normal to the corresponding new 𝑃𝑐 . We can
iterate this process until we find 𝑃 ′ ; following this update procedure guarantees that we reach the
correct solution [Estalella et al. 2005]. In practice, the algorithm requires fewer than 30 steps to
convergence, and can be performed very efficiently in a shader (Algo. 1).

Algorithm 1 Iteratively compute 𝑃 ′, assuming an axis-aligned ellipsoid for brevity
Input: 𝑃𝑖 , 𝑃 , 𝑃𝑟 , ellipsoid center 𝐶 and radii 𝑅𝑒
Output: 𝑃 ′
𝑃𝑐 ← 𝑃

𝑛 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ((𝑃𝑐 −𝐶)/𝑅𝑒 )
for 𝑖 = 1 to 30 do
ℎ ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑃𝑟 − 𝑃𝑐 ) + 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑃𝑖 − 𝑃𝑐 ))
𝑛 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑛 + 0.2(ℎ − 𝑛))
𝑃𝑐 ← 𝐶 + 𝑅𝑒 ∗ 𝑛

end for
𝑃 ′← 𝑃𝑐

Once the point 𝑃 ′ is found, it can be reprojected in the input view. If it falls inside the window
label mask, the corresponding pixel 𝑝 ′ can be used as a source for reflection (Fig. 7). By doing this
computation for all pixels of the novel view covering a window, we can compute the reflection
flow to the input view.

This reflection flow computation will be used during the window ellipsoid parameter estimation
as described in the next subsection. At runtime we estimate the flow of reflections of each window
for a set of input views using the same algorithm.

4.2 Ellipsoid Fitting for Car Windows
Each window is approximated by an ellipsoid with longitudinal and vertical radii. Due to shape
and physical constraints, the range of admissible curvatures for car windows is quite limited. We
start from the “cut-out” window surface (Fig. 8 (a)), use the average normal of the window as the
third ellipsoid axis, and the projection of the scene up vector onto the window surface as a vertical
axis. The longitudinal axis is the cross product of the two previous directions.

Our method is based on feature matching and estimates the radii from the motion of reflections
between close-by views of the same window. We fall back to dense image matching when such
features are missing – reflections such as the sky or a uniform wall cause only a few moving
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lines to appear across the window. In both cases, a range of parameters is swept and the set of
radii that best explain the reflection motion is extracted. We use the same range of radii for all
windows ([1𝑚, 40𝑚]) and sweep it using quadratic steps to sample small values more densely, as
small changes to the radii only create noticeably different reflection motion if the radii are small
(see supplemental for an illustration).

Every reflection is mixed with transmitted colors from the car interior or the scene background,
making matching more complicated – yet we only need to estimate two parameters per window.
The motion only has to be correctly estimated for a few pixels ; this low dimensionality combined
with the range prior make the problem tractable. A detailed description of the method is provided
in Appendix C.
While the ellipsoid fit is an approximation – since car windows can have small imperfections

and normal variations [Jacquet et al. 2013] – the resulting flow is sufficiently plausible in our test
scenes, and allows real-time performance. See Fig. 8 (b,c) for an example of fitted ellipsoid. We
experimented with a planar reflector, but the field-of-view for the reflector is incorrect and results
were significantly worse (see supplemental).

Fig. 8. (a) The extracted window surface (in green); (b) and (c) The result of the fitting process (in green).

5 SYNTHESIZING REFLECTION LAYERS
To render car windows, we need to combine a reflection layer, and the background or transmitted
layer which corresponds to the car interior and the rest of the scene visible through the window.
This layer is reprojected using the reconstructed geometry in the scene. The geometry is generally
of good quality for the background, and very approximate for the car interior. We use the term
background flow to refer to the reprojection of pixels using the refined geometry without windows.
The reflection layer corresponds to the reflections on the windows, that move according to the flow
we compute using our ellipsoid approximation.

Our data is insufficient to achieve accurate reflection layer decomposition; we thus choose to
synthesize a plausible reflection layer that will be used at runtime. Inspired by min/max compositing
[Szeliski et al. 2000], we use the min-composite of the reflection flows as a first estimate of the
reflection layer, and synthesize a plausible layer by using a variant of image stitching techniques.
Consider 𝑙 = 1..𝐿 layers over images 𝐼𝑖 with 𝑖 = 1...𝑁 . For a given image 𝐼𝑘 , the min-composite𝑀𝑙,𝑘

for layer 𝑙 is given as:minW𝑙
𝑖→𝑘
(𝐼𝑖 ), ∀𝑖 , whereW𝑙

𝑖→𝑘
is the warp or flow of layer 𝑙 from image 𝑖 to

𝑘 . Since light is additive,𝑀𝑙,𝑘 is an upper bound on the value of layer 𝑙 in image 𝐼𝑘 .
For the background layer, we use the min-composite of the background flow directly, since this

tends to reduce artifacts by preferring darker pixels, Fig. 9(a). Reliably reconstructing car interiors
would significantly complicate the capture process: many images near the car are needed, and the
far side must most often be captured, breaking the “street-side” capture context we target.
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5.1 Reflection Layer Synthesis
For a given input view, we use the ellipsoid approximation for each window to compute reflection
flow, reprojecting pixels from 25 neighboring views into it, to create the min-composite of the
reflection layer, Fig. 9(b). This min composite has many visible artifacts: misalignment errors due
to inaccurate reflection flow, the presence of moving objects (e.g., the photographer), artifacts
due to errors in the mask reprojection and color harmonization discontinuities. The flow of the
background layer can be even more approximate, since car interiors have very little reconstructed
geometry. We thus see that the standard layer separation approach [Szeliski et al. 2000] cannot
directly be applied in our context.
Instead, we synthesize a plausible reflection layer by applying standard image stitching tech-

niques [Agarwala et al. 2004] on the min-composite, using a MRF formulation [Kwatra et al. 2003].
We use the seam-hiding pairwise term described by Kwatra et al. and a custom per-pixel data cost
for each source image 𝑠:

𝑤𝑠 (𝑝) = 𝐿𝑠 (𝑝) +𝑚𝑖𝑛𝑠′≠𝑠 |𝐶𝑠 (𝑝) −𝐶𝑠′ (𝑝) | + 2 ∗min(𝑇, 𝐷 (𝑝)). (1)
where 𝐿𝑠 (𝑝) is the luminance of pixel 𝑝 in image 𝑠 , 𝐶𝑠 (𝑝) its color, 𝐷 (𝑝) its distance to the border
and𝑇 is set to 1% of the image diagonal. The first term encourages the solver to prefer the minimum
value and to remove outliers, the second measures photoconsistency as the smallest 𝐿1 distance to
colors fetched from other images (𝑠 ′), and the third discourages using pixels close to image edges.
The resulting stitch is shown in Fig. 9(c). Sky reflections often have color differences between the
various input views, resulting in remaining color harmonization boundaries that we remove with a
final automatic Poisson editing step (Fig. 9(d)). The stitched image is used as a data term for both
colors and gradients (𝑤gradient = 1,𝑤data = 0.01). However, seams are discouraged by choosing the
gradient closer to zero from the source images at both sides of the boundary. The final harmonized
reflection layers are then saved to be used for rendering.

Fig. 9. (a) The min-composite for the background. (b) The min-composite of initial reflection flows from the
25 neighboring images to a given input view. Notice artifacts due to (1) presence of the photographer, (2)
errors due to incorrect masks, (3) imprecise flows, and (4) color harmonization edges. (c) Our MRF stitching
reduces alignment, motion and mask artifacts. (d) An additional Poisson image editing step reduces remaining
composite and harmonization artifacts.

6 RENDERING, RESULTS & COMPARISONS
6.1 Rendering and Implementation
Rendering of a novel view proceeds in two steps. First we render the background of the scene, then
we composite in the reflections computed using the reflection flow computation described above.

To render the background of the surrounding scene, we use Deep Blending [Hedman et al. 2018],
and a per-pixel implementation of the ULR with a standard weighting scheme [Buehler et al. 2001],
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Fig. 10. Our scenes, top to bottom: Vine, Carpenter, Narrow-Street and Corner-Street. Left to right: input
images and semantic masks, scene geometry with the input viewpoints (in blue) and output viewpoints (pink
and green), two renderings of each scene using our method. Note the distance from each novel view to the
closest input viewpoint (displayed in overlay)).

Fig. 11. Comparison with recent approaches. Note how our method maintains sharp and complete reflections.
Please refer to supplemental materials and the accompanying video to see these results in motion.

reprojecting input images on the refined mesh. Since our scenes are large, we restrict the per-view
mesh voxel grid for Deep Blending to encompass the cars, and use the per-pixel ULR for the rest of
the scene.

We then render the interiors and background visible through the window regions, using per-pixel
ULR to project the transmission layers onto the interior geometry, overwriting any previously
rendered pixels
Finally, we render reflections by warping colors from the reflection layers using reflection flow.

We only warp a subset of the input views, selecting the 50% views closest to the novel view, as

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: May 2020.



Image-Based Rendering of Cars using Semantic Labels and Approximate Reflection Flow 13

reflection layers further away won’t contribute significantly to the final reflection. For each selected
view, reflection flow is computed on the fly during rendering in a shader for each novel view pixel
where the window supporting surface is visible. The background intersection and gradient descent
on the ellipsoid are used to find the corresponding pixel in the input view. We additionally check
that the warped pixel falls inside the same window region in the input view (using the supporting
surface again). The warped reflection information of the selected views is blended, and the result is
composited with the background using an alpha value of 0.75, which we found experimentally to
work well with all scenes. We apply a small blending falloff at boundaries between the two regions.

We show results of our method with our unoptimized C++ and OpenGL implementation 1 All
tests reported here were run on an Intel Xeon 5118 (48 logical cores) with 96GB of RAM and a
NVIDIA GeForce RTX 2080 Ti.

6.2 Results
We present results on four scenes Vine, Carpenter, Narrow-Street, and the Corner-Street (Fig. 10), with
the latter two containing two processed cars. The number of photos for each scene is respectively
177, 200, 360, and 330, captured using a GoPro (Hero 6) in burst more, giving 2 photos per second,
while the user walks around the car 4 times at different heights. Capturing a car takes about 5
minutes. The input resolution (after camera calibration) is respectively 2720x1607, 2768x1639,
2864x1695 and 2200x1305. Car geometry extraction and ellipsoid estimation are performed using
images resized to 1920px width.
Results are shown in Fig. 10, 11, in the supplemental material and the supplemental video. The

effect of reflections is best perceived when moving the viewpoint; we strongly encourage the reader
to view the videos. In the paths shown in the supplemental videos, our novel camera is on average
at 0.75m from the closest input camera, with a maximum at around 1.65m.
Our interactive renderer shown in the video reaches 8Hz (120.0ms) at 1280x720 resolution.

Rendering time is distributed as follows on average: background rendering using DeepBlending
and ULR: 108.0ms, car interior rendering using ULR on the interior min-images: 3.0ms, reflection
rendering and compositing: 8.5ms. Preprocessing for our method on a scene with 200 images takes
10min formesh and segmentation refinement, 20min for the ellipsoid parameter estimation, 1h10min
for reflection layer stitching and 10min for Poisson editing, in addition to standard off-the-shelf
SfM/MVS (Colmap) and preprocessing for DeepBlending.

6.3 Comparisons
We performed comparisons with the following alternative methods (see Fig. 1 and Fig. 11): A
textured mesh, generated by COLMAP [Schönberger and Frahm 2016; Schönberger et al. 2016] and
textured with RealityCapture [Reality 2018], a per-pixel ULR method using the same mesh, Soft3D
[Penner and Zhang 2017] and the DeepBlending [Hedman et al. 2018] method. For fairness, we
retrained DeepBlending with our scenes to achieve the best possible results. We have included
Soft3D for the scenes Carpenter, Corner-Street and Vine, while the other methods are provided
for all scenes. We provide a comprehensive supplemental material page, containing paths from
each scene with the different algorithms for easy comparisons. We also provide semantic maps,
foreground/background layers and other intermediate data.

For the vast majority of cases, our method provides a much cleaner and plausible result compared
to previous methods. The fact that windows are filled and that reflections move in a plausible
manner are key elements of realism for navigation in these scenes. Soft3D performs well when we
are close to the input cameras (see sequences in videos), but degrades rapidly as we move away

1Code for the main steps of the algorithm will be released, see https://repo-sam.inria.fr/fungraph/ibr-cars-semantic/.
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from the input views. DeepBlending improves the overall result compared to ULR, but still cannot
completely recover from the lack of window geometry, and cannot infer reflection flow.

7 LIMITATIONS AND CONCLUSIONS
Our method only produces plausible renderings of reflections and transmission for car windows,
especially for the car interior.

7.1 Limitations
The inaccuracy of the interior geometry is a limiting factor for the quality of rendering we can
achieve (please refer to supplemental for an example). The feature-based and dense ellipsoid
estimations both require at least some reflection information; windows in scenes under very strong
sunlight might not contain enough reflections for this step. In the specific configuration where
there is a strong discontinuity in a highly transmissive area (typically dark car interior over a bright
background with some reflections over the dark areas) our reflective stitching method is not very
successful, resulting in rendering artifacts. This is due to the ambiguity of the min composite in
this configuration. These limitations are shown in our supplemental material and video.

The robustness of some steps (geometry refinement, ellipsoid fitting) could be improved through
learning-based approaches that could extract automatic features more resilient to variability in
the input data. Our method also inherits limitations from the rendering algorithms used for the
background and car bodies. Those parts could benefit from future work on geometric and material
priors to render broader specular effects with high fidelity. Despite these shortcomings, compared
to all previous methods our plausible rendering, and the reduction of the most visible artifacts is a
major step forward to allowing useable IBR in a cityscape navigation context.

7.2 Summary and Conclusion
We have presented a new method that allows plausible rendering of cars, in a casual capture context
using a single consumer camera. Our method is based on the introduction of an efficient reflection
flow computation that can be computed in real time in a shader, using an analytical approximation
of curved car window surfaces. We create a smooth car hull, filling the windows that are missing in
the MVS reconstruction, efficiently enforcing spherical topology using image processing operations.
The first approximation of the window surfaces is used to support the ellipsoid fit for the car
windows, enabling the efficient reflection flow computation. The final component is the use of the
reflection flow for a reflection layer synthesis algorithm, based on image stitching operations.

In conclusion, we have presented a first solution allowing plausible IBR of cars and in particular
car window reflections. Our method makes a significant step forward in allowing applications
requiring realistic free-viewpoint navigation in cityscapes to use IBR.
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A MESH REFINEMENT MINIMIZATION
For mesh refinement (Sec. 3.2), we use a conjugate gradient solver to minimize the following penalty
function:

𝐸 (d) =
∑
𝑝

(
𝑤𝑢 (𝑝)

(
d(𝑝) − d′(𝑝)

)2
+𝑤𝑏

∑
𝑞∈𝑁 (𝑝)

(
d(𝑝) − d(𝑞)

)2
+𝑤𝑙

(
L𝑑 (𝑝) − 𝛼𝑙

)2)
(2)

where d(𝑝) is the estimated depth at pixel 𝑝 , d′(𝑝) the initial depth at 𝑝 (both expressed in [0, 1]),
𝑁 (𝑝) is the set of pixels around 𝑝 , L𝑑 is the discrete Laplace operator on the depth. We set
the Laplacian prior 𝛼𝑙 = 𝑐𝑜𝑠 (3◦), and 𝑤𝑏 = 𝑤𝑙 = 0.33. We initialize the unary weight with
𝑤𝑢 (𝑝) = 𝑚𝑎𝑥 (0,P𝑐𝑎𝑟 (𝑝) − P𝑤𝑖𝑛 (𝑝)), where the probabilities P for car and window respectively
are extracted from the segmentation map. In subsequent iterations we set𝑤𝑢 = 0 for outlier pixels,
defined as pixels that have moved from their initial 3D position more than 2% of the sphere radius
(i.e. a few centimeters).

B SEMANTIC LABELING MRF
For the final semantic mask refinement, (end of Sec. 3.2), we solve a labeling problem with graph
cut, using the constant data cost 0.5 for “car”, and an adaptive data cost for “window”. Pixels inside
the window regions and outliers get cost 0.0 (i.e., likely windows), while pixels outside dilated
windows or pixels with high photoconsistency are given cost 1.0. All remaining pixels are given
cost 0.52 to encourage smaller window regions. The smoothness term is a color-gradient weighted
Potts term, for neighboring pixels with different labels.

C ELLIPSOID FITTING ALGORITHM
In this appendix, we present the details of the ellipsoid fitting algorithm for windows (Sec. 4.2). For
each window, we choose 10 reference images where the window is visible and as fronto-parallel
as possible. We also ensure that each reference image has neighboring images on all 4 sides. We
compare each reference image to its 10 closest neighbors. We compute ORB features [Rublee et al.
2011] for those images ; we use best buddy matching [Vaish et al. 2006] and Lowe thresholding
[Lowe 2004] (𝑡ℎ = 0.95) to establish correspondences. We also discard correspondences whose
motion can be explained by the reconstructed window geometry, such as feature points on stickers
or scratches on the windows. If a feature point in the reference image is reprojected in a neighbor
view such that the distance to the matched point is smaller than 1.5 % of the image dimensions
(10px for our typical 4Mpixel images), the correspondence is discarded. We fall back to dense image
matching when the average number of successful matches is smaller than 0.1% of the window area
(in pixels).

Feature point matching. We use a RANSAC inspired algorithm which computes the total number
of inlier feature point correspondences as our score. That is, for each pair of radii (𝑟𝑥 , 𝑟𝑦), we
count how many matches can be explained by the predicted reflection flow. A match between the
reference and a neighbor image is an inlier if the flow predicts the location of the feature point
in the neighbor view with no more than a 10px error for our typical 4Mpixel input images. We
observed that most side windows are very anisotropic, with a much smaller curvature – nearly
planar shape – around the vertical axis. We encode this with a prior on the ratio between 𝑟𝑦 and 𝑟𝑥 :

𝑝 (𝑟𝑥 , 𝑟𝑦) = N𝜇=8,𝜎=3.5 (
𝑟𝑦

𝑟𝑥
) (3)

For windshields and rear windows, there is less anisotropic behavior and we use the constant prior
𝑝 (𝑟𝑥 , 𝑟𝑦) = 1. We pick the pair of radii which maximises 𝑠 (𝑟𝑥 , 𝑟𝑦) = 𝑝 (𝑟𝑥 , 𝑟𝑦)#inliers(𝑟𝑥 , 𝑟𝑦).
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Dense image matching. We only use the top ranked reference image to compute our score as this
matching is slower. Images are also downscaled at 720p for speed and robustness to outliers. For
each (𝑟𝑥 , 𝑟𝑦), we compute the reflection flows and warp 25 neighboring images into the reference
view. The number of neighbors is increased as median consistency is sensitive to noise. We use the
median-based photoconsistency from [Vaish et al. 2006] to compute an error map for each warped
image. A per-pixel median error is extracted, and its mean value is computed over all pixels in the
window mask. The parameter pair with the lowest error is selected.
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