
Lifting Freehand Concept Sketches into 3D

YULIA GRYADITSKAYA, Université Côte d’Azur, Inria, University of Surrey, CVSSP
FELIX HÄHNLEIN, Université Côte d’Azur, Inria
CHENXI LIU, University of British Columbia
ALLA SHEFFER, University of British Columbia
ADRIEN BOUSSEAU, Université Côte d’Azur, Inria

Input

Novel viewpoints

Input

Novel viewpoints

Input

Novel viewpoints

3D

3D

3D

Fig. 1. Given a raw vector 2D design drawing containing both scaffold and surface curves, our algorithm lifts the drawing into 3D by distinguishing 3D
intersections from occlusions. The recovered depth enables rendering the drawing from novel viewpoints.

We present the first algorithm capable of automatically lifting real-world,
vector-format, industrial design sketches into 3D. Targeting real-world
sketches raises numerous challenges due to inaccuracies, use of overdrawn
strokes, and construction lines. In particular, while construction lines convey
important 3D information, they add significant clutter and introduce multi-
ple accidental 2D intersections. Our algorithm exploits the geometric cues
provided by the construction lines and lifts them to 3D by computing their
intended 3D intersections and depths. Once lifted to 3D, these lines provide
valuable geometric constraints that we leverage to infer the 3D shape of
other artist drawn strokes. The core challenge we address is inferring the
3D connectivity of construction and other lines from their 2D projections by
separating 2D intersections into 3D intersections and accidental occlusions.
We efficiently address this complex combinatorial problem using a dedicated
search algorithm that leverages observations about designer drawing pref-
erences, and uses those to explore only the most likely solutions of the 3D
intersection detection problem. We demonstrate that our separator outputs
are of comparable quality to human annotations, and that the 3D structures
we recover enable a range of design editing and visualization applications,
including novel view synthesis and 3D-aware scaling of the depicted shape.

Authors’ addresses: Yulia Gryaditskaya, Université Côte d’Azur, Inria, University of
Surrey, CVSSP, yulia.gryaditskaya@gmail.com; Felix Hähnlein, Université Côte d’Azur,
Inria; Chenxi Liu, University of British Columbia; Alla Sheffer, University of British
Columbia; Adrien Bousseau, Université Côte d’Azur, Inria.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3414685.3417851.

CCS Concepts: • Computing methodologies → Modeling methodolo-
gies; Shapemodeling;Non-photorealistic rendering; •Applied computing
→ Computer-aided design.

Additional Key Words and Phrases: product design, sketching, line drawing,
sketch-based modeling, 3D reconstruction

ACM Reference Format:
Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Sheffer, and Adrien
Bousseau. 2020. Lifting Freehand Concept Sketches into 3D. ACM Trans.
Graph. 39, 6, Article 167 (December 2020), 15 pages. https://doi.org/10.1145/
3414685.3417851

1 INTRODUCTION
The ubiquity of sketches in design stems from their ability to com-
municate complex 3D shapes using scattered, swiftly drawn strokes.
However, the speed and roughness that makes sketching a conve-
nient medium for designers also makes the computational interpre-
tation of sketches a challenging task, as global 3D understanding
needs to emerge from a collection of rough, approximate strokes.
Sketch-based modeling research typically sidesteps this challenge by
requiring artists to create clean drawings, whose strokes correspond
to meaningful surface curves, with clearly annotated connectivity
[Lipson and Shpitalni 1996; Liu et al. 2008; Xu et al. 2014] or to
use dedicated user interfaces to position strokes in 3D [Bae et al.
2008; Igarashi et al. 1999; Schmidt et al. 2009b]. Unfortunately, both
families of methods require extra effort from designers seeking to

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3414685.3417851

167:2 • Y. Gryaditskaya, et al.

lift their sketches to 3D, either by requiring them to learn an entirely
new sketching interface, or by asking them to clean-up and annotate
their sketches to form what these methods consider as valid inputs.
Using general filtering [Simo-Serra et al. 2016] or consolidation
[Liu et al. 2018] methods on raw design sketches may reduce the
complexity of such clean-up tasks, but does not produce drawings
aligned with the expectations of either of the methods above. We
thus believe that the additional requirements imposed by these sys-
tems prevent their widespread adoption by professional designers.
Instead, we argue for automatic lifting of raw vector drawings into
3D that would integrate seamlessly into current design practice. Our
work is the first attempt to tackle this ambitious goal. Our choice
of vector drawings as input is motivated by the ease of use and
ubiquity of pen tablets, and by the additional information these
tablets record, that enables us to better capture artist intent.

Processing raw real-world product design sketches raises a num-
ber of challenges for 3D estimation. In contrast to clean drawings,
raw sketches are composed of many overdrawn strokes that do not
intersect at precise junctions, and often extend beyond intended end-
junctions. They also do not contain stroke connectivity information
that would determine which 2D stroke intersections correspond
to artist intended 3D curve intersections, and which correspond to
accidental occlusions (see inset). As shown by prior work [Lipson
and Shpitalni 1996; Xu et al. 2014], accurate stroke connectivity is

Occlusion

3D Intersection
crucial for correct depth estimation since
mistakenly treating occlusions as 3D in-
tersections connects distant parts of the
shape, with dramatic consequences on
the attempted 3D reconstruction. Au-
tomatically discriminating between in-
tended 3D intersections and accidental
occlusions is thus critical to our ability
to lift the input drawings into 3D space.
We achieve this goal by leveraging the construction lines that

designers ubiquitously employ when creating even sketchy product
drawings (Figure 1a). While these lines often complicate human
understanding of drawings by introducing significant visual clutter,
they also provide critical geometric cues about the depicted shapes.
Correctly classifying intersections across both construction lines
and surface strokes is critical to our final goal. Yet, a perceptual study
we conducted shows that correctly classifying intersections is ex-
tremely challenging even for humans, who only reach an agreement
of 89.1% even on simple drawings.
Our framework associates a binary variable with each 2D inter-

section to indicate if the intersection should be preserved in 3D,
and to use these assigned variables to recover a likely 3D interpre-
tation. Our algorithm searches for the assignment of binary values
that yields the best 3D shape, as measured via a combination of
design-driven metrics. Since the combinatorial nature of this binary
assignment problem prevents an exhaustive search of all possible
configurations, one of our core technical contributions is an effi-
cient search algorithm that leverages observations about the design
sketching process to prioritize more likely assignments.
We make the computation tractable using the following core

components. We observe that while designers ubiquitously employ
so-called straight scaffold lines to support the construction of smooth

curves, curves are practically never drawn as a support for straight-
line scaffolds. Following this observation, we first process straight
lines present in the artist drawings, detecting 3D intersections be-
tween them and imbuing them with depth. We exploit the fact that
these scaffolds are dominated by axis-aligned strokes; detecting and
enforcing axis-alignment dramatically reduces the solution space
we operate on for these strokes. We then leverage these scaffolds
to lift the remaining curves into 3D, by identifying scaffold-curve
and curve-curve intersections and by employing both positional
and tangential alignment cues at these intersections. We further
constrain the reconstruction by assuming planar curves, which is
true for a large majority of the man-made objects we considered.

Our second, most important, observation is that human observers
can easily lift into 3D not only the final completed drawings but also
the intermediate ones, created incrementally as the artist proceeds;
moreover, these interpretations remain consistent throughout. We
speculate that a core reason for the expressivity of the intermediate
drawings, is that artists, by design, employ an incremental construc-
tion strategy, and use existing strokes as anchors when introducing
new drawing strokes. Existing strokes thus form an informative
context that suggests the 3D configuration of the new strokes. This
observation implies that rather than considering the entire drawing
at once during 3D intersection detection, we can instead follow the
drawing order and build the 3D curve network progressively by
solving local rather than global assignment problems.

Using such a progressive approach, we process strokes using the
drawing order. We solve a local binary assignment problem for each
stroke when the local context is sufficient to allow an unambiguous
depth interpretation. We robustly address ambiguous intermedi-
ate states by delaying assignment until a dominant interpretation
emerges. We support this delayed decision strategy by exploring sev-
eral concurrent interpretations in parallel as the method progresses
along the drawing sequence. We prevent combinatorial explosion by
stopping this exploration as early as possible, i.e, as soon as the cor-
responding ambiguous strokes can be assigned with confidence. In
our experiments we were able to assign labels to stroke intersections
right away 57% of the time, and were able to generate unambiguous
interpretations for the remaining strokes after processing just a few
additional strokes (median of 7 strokes).

We demonstrate the effectiveness of our approach by lifting into
3D a diverse collection of freehand industrial design sketches drawn
on a pen tablet by several professional designers. We showcase the
applicability of our method by demonstrating a range of applica-
tions that benefit from the provided 3D estimates, including novel
view synthesis and 3D-aware shape editing. We also performed a
perceptual study that reveals that our algorithm takes similar deci-
sions as human observers in distinguishing 3D intersections from
occlusions, and that it makes more errors in situations that are also
ambiguous to humans.

In summary, we make the following contributions:

• The formulation of depth estimation from raw industrial
design drawings as the problem of assigning binary activation
values to intersections.

• An efficient search algorithm that exploits stroke drawing
order to identify 3D intersections.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:3

• Taken together, these ingredients allow the first algorithm to
automatically estimate stroke depth in raw industrial design
sketches that contain scaffold lines.

As pointed out by prior work [Xu et al. 2014], artist sketches
are inherently inexact; artists often fail to accurately account for
perspective distortion and to depict symmetric, or parallel features
[Schmidt et al. 2009a]. Our framework is not designed for correcting
such artifacts and does not rely on high-level perceptual cues such
as symmetries, frequently leveraged by human observers. Conse-
quently, while our outputs are accurate enough to facilitate a range
of high-level image processing tasks, additional work is needed for
tasks such as modeling, which require generating outputs whose
2D projection deviates from the drawn input.

2 RELATED WORK
A vast body of work aims to recover 3D depth information from
2D sketches [Bonnici et al. 2019]. Artists employ different domain-
specific strategies when depicting different types of shapes and
targeting different audiences. Our work targets concept sketches that
designers draw to best explain a shape they have inmind [Eissen and
Steur 2008, 2011]. These sketches ubiquitously employ construction
lines that help designers draw 3D surfaces in perspective and help
observers interpret the drawn shapes.

Sketch consolidation. Sketch vectorization and consolidation al-
gorithms aim to automatically extract clean vector curves from raw
free-hand sketches [Bessmeltsev and Solomon 2018; Favreau et al.
2016; Liu et al. 2018, 2015]. Unfortunately, state-of-the-art methods
still struggle with the complex drawings we are targeting. In partic-
ular, existing methods were not designed to handle scaffold lines
and often group them together with adjacent curves, leading to loss
of important context for 3D estimation, as shown in the inset. More
importantly, these methods focus on clustering strokes into long
curves rather than on recovering the 3D curve network connectivity.

Input StrokeAggregator
[Liu et al. 2018]

When forming the clean output
curves, they frequently fail to pre-
serve user intended 2D connectiv-
ity making the results ill-suited for
subsequent 3D estimation [Liu et al.
2018]. Our initial sketch analysis step
utilizes cues highlighted by these ap-
proaches to reduce the complexity of
our subsequent 3D estimation pro-
cess (Section 4).

Augmenting Sketches with 3D Effects. We follow a line of work
that aims to imbue drawings with depth or normals to facilitate
3D effects such as shading [Shao et al. 2011; Sýkora et al. 2014]
and view changes [Liu et al. 2013]. Like these methods we keep
the 2D coordinates of all input strokes in place and compute the
best 3D estimates given these fixed 2D positions. This approach
contrasts with recent 3D reconstruction methods which change the
2D stroke geometry to overcome artist inaccuracies [Xu et al. 2014].
This corrective approach is not suitable for sketch augmentation
applications where users expect the 2D strokes to remain in place.

We use the computed depth to support design exploration and com-
munication by allowing designers to visualize their sketches from
novel viewpoints, and to modify the depicted shape while main-
taining consistent perspective. These applications were inspired by
related work in computational photography, where approximate
depth is commonly used to synthesize nearby viewpoints that bring
life to still photographs [Hoiem et al. 2005; Niklaus et al. 2019].

Sketch-Based Modeling. A number of sketch-based modeling sys-
tems propose interactiveworkflowswhere users create 3D shapes us-
ing dedicated interfaces [Bae et al. 2008; Dorsey et al. 2007; Igarashi
et al. 1999; Nealen et al. 2007; Olivier et al. 2019; Orbay and Kara 2012;
Paczkowski et al. 2011; Zeleznik et al. 1996]. Users of these systems
typically alternate between 2D sketching and 3D camera rotation to
incrementally create the desired shape. Alternatively, single-view
systems leverage user annotations to align parametric shapes with
image contours [Chen et al. 2013; Shao et al. 2013; Shtof et al. 2013]
or to obtain constraints on the length, orientation or depth ordering
of object parts [Gingold et al. 2009; Sýkora et al. 2014]. In contrast
to this body of work, we propose a method capable of lifting real-
world product design sketches to 3D automatically. Users of our
approach do not need to learn a new interface or specific sketch-
ing gestures and annotations. Instead, we leverage geometric cues
provided by scaffolds, a drawing element that product designers
already ubiquitously use to construct their drawings.

Interactive Scaffolding. Our approach is inspired by the work of
Schmidt et al. [2009b], who proposed an interactive scaffold-based
sketch-based modeling interface. Their method targets clean draw-
ings where each stroke conveys a complete, meaningful geometric
curve. It recovers the 3D shape of each line or curve as soon as it
is drawn by the user by inferring a set of positional and alignment
constraints between the new curve and already-created scaffold
lines. Since this inference occurs within an interactive system, users
are expected to correct erroneous solutions by re-drawing the curve,
by providing additional guidelines, or by disabling conflicting con-
straints. As a result, Schmidt et al. report that users needed extended
training to learn how to construct complex drawings with their ded-
icated interface, and that users spent more time orbiting around the
3D sketch to verify the inferred geometry than drawing it, spending
between 45 to 140 minutes to complete a single sketch. In contrast,
we aim for an automatic method capable of reconstructing complete
real-world sketches composed of dozens or even hundreds of raw,
overdrawn strokes, a much harder problem that requires delaying
decision until enough context is available. Our automatic approach
allows designers to follow their usual drawing practice, with each
sketch on average being drawn in around 15 minutes [Gryaditskaya
et al. 2019].

Single View Drawing Interpretation. Our work is closer in spirit to
automatic single-view drawing interpretation methods. Early work
focused on drawings of polyhedral shapes that are dominated by
planar, mutually orthogonal faces [Lipson and Shpitalni 1996; Liu
et al. 2008]. Recent methods reconstruct drawings of curved surfaces
by exploiting symmetry [Chen et al. 2008; Cordier et al. 2013] or
orthogonality of designer-drawn curvature lines [Li et al. 2017;
Shao et al. 2011; Xu et al. 2014], or by first approximating curved

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:4 • Y. Gryaditskaya, et al.

patches with polygons [Wang et al. 2009]. These methods target
clean drawings and expect users to annotate all 2D intersections that
depict accidental occlusions rather than intersections. Processing
raw drawings using these systems requires users to manually retrace
and annotate them (see [Xu et al. 2014], Fig. 16). Our inputs are
distinctly different – they contain hundreds of raw strokes and
have zero connectivity annotation. By automatically discriminating
stroke intersections from occlusions based on 3D inference, our
method is the first to reconstruct 3D strokes from raw product
design sketches.
Deep learning has recently shown success in inferring 3D infor-

mation from bitmap line drawings [Delanoy et al. 2018; Li et al.
2018; Lun et al. 2017], alleviating the need for clean vector curves
as input. However, such systems require large amounts of paired
sketches and 3D models for training. While non-photorealistic ren-
dering algorithms can be used to generate drawings for this purpose,
there is a significant domain gap between such synthetic data and
real-world product design sketches. We refer the interested reader
to the recent study by Gryaditskaya et al. [2019], who showed that
a state-of-the-art deep network trained on synthetic drawings get
confused by the many hidden and construction lines present in the
sketches we target. The problem of parsing and reconstructing 3D
wireframes has also been considered in computer vision, taking as
input one or multiple photographs [Huang et al. 2018; Usumezbas
et al. 2016; Zhou et al. 2019], but these methods do not face the chal-
lenge of dealing with occlusion between lines since photographs
only capture visible surfaces.

3 PROBLEM FORMULATION
Our method takes as input a single vector-format line drawing of an
object captured on a pen tablet. This drawing is composed of a series
of time-stamped strokes, represented as polylines. Our ultimate goal
is to estimate the artist intended 3D coordinates of all input strokes.
We achieve this goal by leveraging the presence of straight-line
scaffolds, that designers draw as a support to construct complex 3D
shapes, as illustrated in Figure 2.

Fig. 2. Three steps of a typical sketching sequence, showing how designers
progressively construct 3D shapes using straight-line scaffolds.

3.1 Principles of scaffold-based design sketching
By studying the industrial design sketching literature [Eissen and
Steur 2008; Robertson and Bertling 2013] as well as real-world
sketching sequences [Gryaditskaya et al. 2019], we identified sev-
eral strongly repeated patterns in the way designers construct and
utilize scaffold strokes.

Ordering. Designers draw strokes using a meaningful construc-
tion order, starting with major scaffold lines before adding more
fine scaffold details, and curves.

Axis-alignment. To simplify perspective drawing, scaffolds are
typically dominated by straight axis-aligned strokes that converge
towards two or three vanishing points.

Dense 3D connectivity. Designers exploit existing 3D intersections
as anchor points to draw new lines. Consequently, observers do not
require the drawing to be complete to perceive its 3D structure.

Embedding of lines and curves. Scaffolds are ultimately drawn to
support space curves, and uniquely define their geometry. They
are designed so that curves pass through scaffold intersections, are
typically tangential to scaffold lines, and lie in planes spanned by
scaffold lines. Complex non-planar curves are often broken into
planar segments to best benefit from scaffold support.

Bounding volume. Scaffolds are expected to contain, or bound the
depicted shapes. Designers commonly draw both the target shape
and the scaffold from outside in, starting with a bounding object
and then refining it.

Ellipses. Cylinders are frequently used to depict both real cylin-
drical object features and as a scaffold for more complex geometries.
In perspective drawings they are depicted as ellipses.

Minimal foreshortening. Designers favor informative viewpoints
that show all sides of the shape with small and evenly-distributed
foreshortening, as already noticed by Xu et al. [2014].

Clarity. While scaffolds serve the construction of complex draw-
ings, they should not obscure its content. Designers manage visual
clutter by avoiding extending strokes beyond their intended end-
point intersections.

We conjecture that, by providing multiple geometric constraints
for designers to construct their drawings, scaffold lines also provide
multiple constraints for our algorithm to infer the 3D shape repre-
sented by these drawings. However, while most lines in a scaffold
satisfy the above characteristics, many do not, due to the approxi-
mate nature of freehand sketching. A key challenge we face is to
balance the various geometric cues available and select a plausible
solution even in the presence of ambiguity. In particular, we need to
disambiguate between the intended connectivity of the 3D stroke
network and the accidental occlusions due to projection on the
drawing canvas.

3.2 Depth prediction given known 3D connectivity
The problem of recovering the depth of a network of 2D strokes
when its 3D connectivity is known has been well investigated [Kang
et al. 2004; Lipson and Shpitalni 1996; Tian et al. 2009]. In the fol-
lowing we briefly describe the general approach for doing so. Let
us denote by S the input strokes.
Let us also assume that straight axis-aligned strokes S𝑎 have

been identified as such, along with straight non axis-aligned strokes
S𝑛 , and planar curved strokes S𝑐 , such that S = {S𝑎,S𝑛,S𝑐 }. The
mutual orthogonality of the axis-aligned strokes can be exploited

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:5

(a) Input sketch

(b) Axis aligned strokes (c) Stroke-by-stroke reconstruction
(seen from alternative viewpoint)

(e) Delayed decision when ambiguity

Stroke s

Stroke s+1

? ?

(f) Reconstructed depth
and 3D intersections

Near Far

(d) Ambiguous candidates
(seen from an alternative viewpoint)

Fig. 3. Overview of our method. Given an input sketch (a), we first identify all straight strokes that are parallel to one of the major axes in the drawing
(corresponding to its vanishing points) (b). We next reconstruct the 3D scaffold, processing one stroke at a time by identifying its 3D intersections with already
reconstructed strokes. Once reconstructed, the scaffold provides geometric context to reconstruct curved strokes (c). For each stroke, our algorithm considers
multiple candidate reconstructions and selects the one that best satisfies a set of geometric regularities. If no clear best choice exists (d), we delay decision
until additional context resolves the ambiguity (e). The final output of our method is a 3D sketch with its connectivity (f).

to calibrate a perspective matrix that maps the word coordinate
system to the image one, as detailed in the supplemental materials.
We encode the 3D interpretation of each straight stroke as an

explicit line equation, and the 3D interpretation of planar curved
strokes using an explicit plane equation. We constrain axis-aligned
strokes to be co-linear to the corresponding world axis, and use
the perspective matrix to convert between their world and image
coordinates. We incorporate per-intersection constraints that force
all strokes that intersect at this intersection to have similar depth.
Finally, we constrain the depth of one stroke end point to be zero
to anchor the reconstruction. The resulting constrained optimiza-
tion problem can then be solved using different approaches. For
example, Kang et al. [2004] grow a maximum spanning tree of
axis-aligned strokes starting at the origin, and then reconstruct the
non-axis aligned strokes based on their intersections with already-
reconstructed strokes.
While these existing methods assume that the 3D connectivity

of the stroke network is readily available, we do not have this con-
nectivity at the start of our depth estimation process. Our method
computes the stroke depth incrementally, using the drawing order
and the inter-stroke connectivity we gradually compute.

3.3 Recovering 3D connectivity
We denote byI the set of 2D intersections between the input strokes.
Our goal is to label each intersection as a true 3D intersection or as
an occlusion, resulting in a configuration space L = {0, 1}card(I)

where a 0 value represent an occlusion and 1 represents an inter-
section. For any label configuration 𝑙 = (𝑙𝑖)𝑖∈I ∈ L, we can lift the
strokes to 3D as described above, assuming that there are enough
3D intersections and axis-aligned strokes to make this problem well
posed. Our challenge is to select the label configuration that pro-
duces the best reconstruction among all of these candidates. We
formulate this problem as the maximization of a score function that
measures how well the output 3D stroke network satisfies common
geometric properties of scaffolds, such as axis-alignment, orthog-
onality and planarity. Denoting this score function Score(X), and
Lift(S, 𝑙) the 3D reconstruction operator, we obtain the optimization
problem

argmax
𝑙

Score
(
Lift

(
S, 𝑙

))
. (1)

Solving the above binary labeling problem in its general form is
extremely challenging, for several reasons. First, the solution space
is very large, with a number of configurations that is exponential
in the number of intersections – which varies between ≈ 200 and
≈ 20000 for the sketches we considered. Second, evaluating the
quality of a single binary assignment requires solving a complex
constrained optimization to recover the 3D geometry of all strokes,
making any general binary solver too expensive. We tackle these
challenges by leveraging a number of observations about the choices
designers make when constructing their drawings.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:6 • Y. Gryaditskaya, et al.

3.4 Algorithm overview
Following our observation about the scaffold drawing order, we
process strokes in their drawing order and rely on past strokes to
infer the 3D interpretation of new strokes, whenever possible. We
automatically delay the decision and reassess it after additional
strokes are drawn when past strokes are insufficient to identify a
dominant interpretation.
Our method consists of three key steps, illustrated in Figure 3.

We perform preliminary 2D analysis of the raw input sketches to
extract robust geometric information necessary to perform our op-
timization, including stroke classification into curves, axis-aligned,
and other straight lines, and rough grouping of overdrawn strokes
(Section 4). We then proceed to reconstruct the polyhedral scaf-
folds one stroke at a time (Section 5). For each stroke, our algorithm
considers all possible binary label configurations for the 2D intersec-
tions of this stroke with previously reconstructed ones, it discards
all inconsistent configurations, and generates candidate 3D lines for
the remaining ones. It then selects the candidate that maximizes a
score function that measures the degree to which the stroke aligns
with the priors listed in Section 3.1. We mark the intersections lying
along this line as 3D intersections, and others as occlusions. We
extend our algorithm to handle the common case where several
interpretations yield a similar high score (Section 5.4), for which
we propose a dedicated search algorithm that progresses over the
drawing sequence until one of these concurrent interpretations
emerges as demonstrably better than the others. Once the scaffold
is recovered, we reconstruct planar curved strokes following the
same logic (Section 6); we generate candidate planar 3D curves for
each stroke based on its intersections with the scaffold and already
reconstructed curves, and select the candidate that yields the shape
most aligned with our priors.

4 2D ANALYSIS
We perform basic 2D analysis on our input data to facilitate subse-
quent 3D estimation. We first separate straight strokes from curved
strokes since we reconstruct the former as a preliminary step for
reconstructing the latter. We further classify the straight strokes into
axis-aligned and non axis-aligned by detecting the three bundles of
strokes converging towards vanishing points [Hedau et al. 2009].
These vanishing points allow us to calibrate a perspective camera
[Guillou et al. 2000; Orghidan et al. 2012], which gives us the 3D
direction of the associated orthogonal axes. Finally, we also identify
ellipses among curved strokes, which we assume to correspond to
3D circles.
The sketches we target contain many overdrawn strokes. We

consolidate this raw data to reduce the complexity of the subse-
quent 3D reconstruction and generate longer strokes more likely
to correspond to intended geometric curves. Specifically, we define
for each stroke a neighborhood size proportional to its velocity,
based on the observation that fast strokes are less precise. We merge
strokes if one is within the other’s neighborhood by more than 75%
of its length and if they form an angle of less than 5◦. We restrict
straight-stroke merging to strokes that are drawn in sequence, i.e.,
less than five strokes apart, to prevent merging accidentally partly-
overlapping strokes that correspond to different parts of the scaffold.

For curved strokes, we perform a more aggressive clustering using
the conservative version of the StrokeAggregator [Liu et al. 2018]
method. During processing we use the time-stamp of the first drawn
stroke in a cluster as the time-stamp of that cluster. Note however
that while we use consolidated strokes for internal computation, we
re-project the recovered depth on the original strokes for rendering
to preserve the input sketch style. See Section 7.4 for a study of the
impact of stroke consolidation on our results.
We compute a consolidated set of 2D intersections, overcoming

noise in the drawings. We classify almost-intersecting strokes as
intersecting if the end point of one stroke is within the neighborhood
of another or vice versa. Due to the inaccuracy of sketching, multiple
coincident lines often do not intersect exactly at the same point,
but rather result in a multitude of nearby intersections. We recover
the local 2D connectivity of the stroke network by associating with
each intersection all strokes incident to nearby intersections. We
consider that two intersections are close enough if they lie along the
same stroke and if each intersection is within the neighborhood of
the other, where we define the neighborhood size of an intersection
as the neighborhood size of the last-drawn stroke incident to that
intersection.
Finally, we perform trivial intersection filtering, classifying 2D

intersections that are highly unlikely to correspond to real 3D in-
tersections as occlusions. This step reduces our set of unknowns,
speeding up computation and improving performance (Figure 8).
We observe that, due to the dense 3D connectivity of scaffolds, acci-
dental occlusions most often occur between two isolated strokes,
while true 3D intersections are formed by three or more strokes.
The notable exceptions are intersections near stroke end-points,
and tangential intersections between curves or between curves and
straight lines. Following this observation, we mark intersections
formed by three or more differently-oriented strokes, or tangen-
tial intersections that include curved strokes as unclassified, and
mark the rest as occlusions. We extend the set of unclassified inter-
sections to include pairwise intersections near stroke end points
if the nearest potential intersection along the stroke is more than
1/4 of the stroke’s length away. This extension ensures that our
set of unclassified intersections includes at least two intersections
along every stroke that has at least two intersections in image space.
These heuristics allow us to reduce the problem dimensionality from
several thousands to a few hundred unknowns, on average. Please
refer to supplemental materials for implementation details of these
steps.

5 RECONSTRUCTING STRAIGHT STROKES
Our reconstruction processes one stroke at a time using the draw-
ing order. For every new stroke, we first generate all of its possible
interpretations and then select the best one using a score function
motivated by the observations in Section 3.1. When multiple inter-
pretations garner similarly high scores, we retain all such interpreta-
tions and move on to the next stroke, until one of the interpretations
becomes clearly better than the others, keeping track of multiple po-
tential solutions as we go. We now detail each of these components.
Figure 4 provides a schematic illustration of our algorithm.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:7

Stroke s

(a) Unambiguous stroke

Stroke s+1 Stroke s+2

(b) Ambiguous stroke (c) Joint assignement

Candidate interpretations,
seen from alternative viewpoint

Candidate interpretations,
seen from alternative viewpoint

Candidate interpretations,
seen from alternative viewpoint

Fig. 4. Intuition behind our approach. (a) The new stroke 𝑠 , shown in blue, intersects several already-reconstructed strokes, shown in black. Each pair of
intersection gives a candidate reconstruction of the stroke, shown from an alternative viewpoint. One interpretation lies in the ground plane and extends way
beyond its second intersection. The second interpretation lies in a vertical plane and is well bounded by its intersections. We select the second interpretation
since as we observed, designers rarely draw strokes much longer than their intended length. The middle intersection is thus identified as being an occlusion.
(b) The next stroke 𝑠 + 1, shown in purple, has two good candidates. One has a high score because it is aligned with a vertical axis, while the other one has a
high score because it is well bounded by two intersections. Given this ambiguity, we leave both options open. (c) Stroke 𝑠 + 2, shown in orange, has a single
candidate aligned with an horizontal axis. This new stroke helps disambiguate the previous one by providing an additional intersection that makes the vertical
interpretation well bounded.

5.1 Candidate Lines
Let us first consider the general case where we have successfully
reconstructed all strokes until the current one. Let the new stroke
have 𝑁 unclassified 2D intersections with the reconstructed strokes.
Note that the geometry of an axis-aligned line is determined by
one intersection and the geometry of other lines by two. We first
generate for all lines 𝑁 (𝑁−1)

2 candidate 3D lines passing through
all possible pairs of intersections. For each axis-aligned line we
augment the set of candidates by creating 𝑁 additional lines, each
going through one of the intersections and parallel to the associated
coordinate axis. We augment rather than replace the candidate set
so that it also contains non-axis aligned candidates, which provides
robustness to inexact axis classification and perspective inaccuracy.
For each candidate line we detect all other 2D intersections along it
where the 3D position of the intersection is within 𝜖-distance from
a reconstructed intersecting stroke, and include these intersections
in the candidate’s 3D intersection set. We fix 𝜖 to 10% of the length
of the line. In practice, the above procedure produces many similar
candidates when multiple pairs of intersections align in 3D. We
merge such redundant lines whose 3D intersection sets coincide,
averaging their end points.
Before proceeding with candidate selection, we perform prelim-

inary clipping based on foreshortening, rejecting candidates for
which the 3D length ℎ3𝐷 is too large compared to the length of the
2D stroke ℎ2𝐷 , except if no other candidates exist. Since different
sketches might exhibit different amounts of foreshortening, we use
the already reconstructed strokes as a prior on the depth distribution
of the scene, as also proposed by Schmidt et al. [2009b]. Specifically,
we compute the median 2D and 3D length of the reconstructed
strokes, ℎ2𝐷 and ℎ3𝐷 , and reject candidates for which the devia-
tion from median in 3D is much higher than in 2D, as measured by
ℎ3𝐷
ℎ3𝐷

> 5ℎ2𝐷
ℎ2𝐷

.

5.2 Candidate Evaluation
We evaluate each candidate 3D line using a combination of criteria
motivated by our observations of how designers draw scaffolds
(Section 3.1).

Coverage. Following the observation that designers avoid over-
shooting lines past their intended end points, we prioritize candidate
lines whose intersection sets contain intersections that are as far
away as possible from one another. Our coverage score consequently
measures the portion of the processed stroke covered by the segment
delimited by the most distant 3D intersections along the candidate
line:

𝑄𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑑𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑑𝑖𝑛𝑝𝑢𝑡
, (2)

where 𝑑𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is the distance between the projection of the two
most distant 3D intersections, and 𝑑𝑖𝑛𝑝𝑢𝑡 the distance between the
twomost distant intersections along the input stroke. This definition
of 𝑑𝑖𝑛𝑝𝑢𝑡 trims dangling segments past the first and last 2D inter-
sections because we consider those segments not to be intentional.

Axis alignment. For strokes classified as axis-aligned, the key
criterion for assessing the candidate 3D line is the degree to which
it coincides with the intended axis. Denoting l the direction of the
3D line and a the direction of the axis, we define the score function
as

𝑄𝑎𝑥𝑖𝑠 (l, a) = 𝐺 (1 − |l · a|, 𝜎1), (3)

where 𝐺 (·, ·) denotes the Gaussian function and 𝜎 controls the
tolerance to misalignment. As we seek for this score to drop to
0 when the angle between the axis and the stroke exceeds 𝛼 = 15◦,
we set 𝜎1 = (1 − 𝑐𝑜𝑠 (𝛼))/3 using the three sigma rule.

Non-axis-aligned strokes. For strokes not expected to be aligned
with major axes, we prioritize candidate 3D interpretations that
satisfy one of the following three common regularities provided by
scaffold embedding.

Orthogonality. For each 3D intersection 𝑖 along a candidate line,
we favor orthogonality with any adjacent line using the following
score function:

𝑄𝑜𝑟𝑡ℎ𝑜 (l, 𝑖) = max
𝑘∈N(𝑖)

𝐺 (|l · l𝑘 |, 𝜎2), (4)

where N(𝑖) denotes the set of 3D lines incident to intersection 𝑖 .
We want this score to drop close to 0 when the angle between the

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:8 • Y. Gryaditskaya, et al.

directions deviates from being orthogonal by more than 𝛼 , thus we
set 𝜎2 = 𝑐𝑜𝑠 (90 − 𝛼)/3 following the three sigma rule.
We compute the total orthogonality score of a line as the maxi-

mum over all of its 3D intersections:

𝑄𝑜𝑟𝑡ℎ𝑜 (l) = max
𝑖

𝑄𝑜𝑟𝑡ℎ𝑜 (l, 𝑖). (5)

Planarity. We favor local planarity of the polyhedral scaffold by
encouraging the candidate line to lie in one of the planes defined
by pairs of adjacent lines. We measure this regularity criterion at
each 3D intersection along the line using the score function

𝑄𝑝𝑙𝑎𝑛𝑎𝑟 (l, 𝑖) = max
(𝑚,𝑛) ∈N(𝑖)

𝐺 (|l · (l𝑚 × l𝑛) |, 𝜎2), (6)

where (𝑚, 𝑛) is any pair of incident lines to intersection 𝑖 . We com-
pute the total planarity score as a maximum over all intersections
along the line.

Tangentiality. To account for the case when one continuous line
was drawn as several strokes that were not merged together during
the 2D analysis step, we evaluate tangentiality of two strokes:

𝑄𝑡𝑎𝑛𝑔𝑒𝑛𝑡 (l, 𝑖) = max
𝑘∈N(𝑖)

𝐺 (1 − |l · l𝑘 |, 𝜎2) . (7)

We aggregate axis alignment, orthogonality, planarity and tan-
gentiality scores into a single geometric score

𝑄𝑔𝑒𝑜𝑚 (l) =
{
𝑄𝑎𝑥𝑖𝑠 (l, a) when ∃ a

max(𝑄𝑜𝑟𝑡ℎ𝑜 (l), 𝑄𝑝𝑙𝑎𝑛𝑎𝑟 (l), 𝑄𝑡𝑎𝑛𝑔𝑒𝑛𝑡 (l)) otherwise.
(8)

Total score. We define the total score of a candidate line as:

𝑄 = 0.4𝑄𝑔𝑒𝑜𝑚 + 0.4𝑄𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 0.2𝑄𝑔𝑒𝑜𝑚𝑄𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , (9)

where the last term favors lines that simultaneously satisfy both
coverage and geometric scores over the lines that maximize only
one of the two score functions.

Acceptance criteria. We define the best candidate line as the one
that maximizes the total score. However, not all strokes can be
reliably lifted into 3D using previously drawn strokes alone. We
determine whether we should accept the best candidate or delay
decision by accounting for two complementary criteria: we want the
accepted candidate line to have a high score, i.e., to be well aligned
with our geometric and topological priors; and we also want this
candidate line to stand out compared to alternatives. We balance
these two considerations by accepting the best candidate lines with
exceptionally high scores, and accepting others if their scores are
both sufficiently high and are significantly higher than those of all
other candidates. Specifically, we accept the best candidate recon-
struction if its score is above an acceptance threshold 𝜏𝑠𝑐𝑜𝑟𝑒 = 0.75,
and if the ratio between the score of the second best candidate and
the best score is below an ambiguity threshold 𝜏𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 = 0.8. In
addition, we also accept all best candidates if their score exceeds
𝜏𝑠𝑐𝑜𝑟𝑒𝐻𝑖𝑔ℎ = 0.98. In summary, our acceptance criterion is

𝐴𝑐𝑐𝑒𝑝𝑡 (𝑄𝑏𝑒𝑠𝑡 , 𝑄2𝑛𝑑𝑏𝑒𝑠𝑡) :=
(
𝑄𝑏𝑒𝑠𝑡 > 𝜏𝑠𝑐𝑜𝑟𝑒𝐻𝑖𝑔ℎ

)
∨((

𝑄𝑏𝑒𝑠𝑡 > 𝜏𝑠𝑐𝑜𝑟𝑒
)
∧
(𝑄2𝑛𝑑𝑏𝑒𝑠𝑡

𝑄𝑏𝑒𝑠𝑡
< 𝜏𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

))
. (10)

Section 5.4 discusses the handling of strokes whose best candidate
line does not satisfy the acceptance criteria.

5.3 Initialization
We can always fix the depth of one intersection in our drawing
arbitrarily. However, while an axis-aligned line requires one depth
value to anchor it in space, a non-axis aligned one requires two. To
obtain the first stroke that we can reliably reconstruct, we search
for the first intersection between strokes aligned with different axes
in the drawing sequence and use it to anchor the drawing in space.
We assume this intersection to lie on the ground plane, which fixes
its depth relative to the camera and defines the positions of the
participating orthogonal strokes. We then process the preceding
strokes in the order in which they were drawn, treating them as if
they had been drawn after the anchoring strokes.

5.4 Processing Ambiguous Strokes
If a stroke’s best candidate line does not satisfy the acceptance crite-
ria, we delay the assignment decision. Our algorithm then explores
several solutions in parallel, each depending on a different candidate
interpretation of the ambiguous stroke.

Stroke dependency graph. Each candidate line of an ambiguous
stroke results in different candidate interpretations for the next
strokes. We keep track of these different solutions by constructing
the dependency graph of ambiguous strokes, where two strokes are
considered to depend on each other if they share a 2D intersection,
as illustrated in Figure 5. Each solution corresponds to a different
combination of candidates, and as such to a different joint score of the
ambiguous set,𝑄 , defined as the average score of the corresponding
3D lines. Note in particular that the candidates of each new stroke
impact the scores of the candidates on which they depend, since
they add new intersections along them. Given the combinatorial
nature of our problem, we devised several strategies to contract this
dependency graph and maintain the scalability of our method.

Rejection of inconsistent combinations. While the space of combi-
nations of candidate lines is vast, many are not consistent. In the
example shown in Figure 5(c), while the 6𝑡ℎ stroke depends on the
2𝑛𝑑 and 4𝑡ℎ strokes, these two strokes both depend on the 1𝑠𝑡 stroke.
To be consistent, the candidates of the 6𝑡ℎ stroke need to form com-
binations with candidates of the 2𝑛𝑑 and 4𝑡ℎ strokes that themselves
are derived from the same candidate of the 1𝑠𝑡 stroke (depicted as
dashed or solid lines). We only generate such candidates.

Grouping of redundant candidates. A stroke can have multiple
candidates that form a similar line in 3D, yet intersect different
candidates of other ambiguous strokes. Due to their similar geome-
try, these candidates share the same 3D intersections with already-
assigned strokes. Since our orthogonality, planarity and tangential-
ity scores (Eq. 4, 6, 7) are computed at each 3D intersection along
a candidate line, we only compute these scores once for shared
intersections. We consider that two candidates form similar lines in
3D if their endpoints are at 10% of the shortest-length distance of
each other. Similarly, when updating the joint score𝑄 for every new
candidate, we only re-compute the scores on intersections impacted
by that candidate.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:9

1

2
3

4

5

6

7

7

6

1

5

4

3

2

(a) Input sketch (b) Dependency graph (c) 3D candidate lines

6

2 4

1

Fig. 5. Schematic illustration of the stroke dependency graph. Each
stroke points to the strokes on which it depends (a,b). For illustration pur-
poses, we assume that each new stroke generates two 3D candidate lines
for each version of the preceding strokes on which it depends (c). We depict
the multiple candidates of each stroke with a disk, and represent the depen-
dency of a candidate to preceding ambiguous strokes by color-coding the
disk according to its ancestors (c). Each such candidate results in a different
joint score𝑄 of all the strokes on which it depends. When an unambiguous
configuration emerges, we assign all strokes that contribute to it.

Early acceptance. We attempt to assign ambiguous strokes every
time a new stroke is added to the sketch, by testing if a subset of
strokes containing this stroke can be classified as no longer ambigu-
ous. We consider that a set of strokes is unambiguous if both the
score of the best candidate of the last added stroke and the joint
score of its dependencies satisfy the acceptance criteria(

𝑄𝑏𝑒𝑠𝑡 > 𝜏𝑠𝑐𝑜𝑟𝑒𝐻𝑖𝑔ℎ

)
∨𝐴𝑐𝑐𝑒𝑝𝑡 (𝑄𝑏𝑒𝑠𝑡

, 𝑄
2𝑛𝑑𝑏𝑒𝑠𝑡) . (11)

If these criteria are satisfied, we assign to each stroke the candidate
line that corresponds to the best score and prune the dependency
graph accordingly. If this is not the case, we proceed with the next
stroke and insert it in the dependency graph.

Candidate set trimming. As an additional precaution against com-
putational explosion, we attempt to assign ambiguous strokes using
a more permissive criteria if the expected number of candidate inter-
pretations of the new stroke exceeds a threshold, fixed to 400. When
this situation occurs, we revisit all ambiguous strokes on which
the new stroke depends and greedily assign the strokes that have
high-score candidates until the number of candidates of the new
stroke falls below the threshold.

Finalization. We resort to greedy assignment for strokes that
remain ambiguous at the end of the straight stroke sequence.

6 RECONSTRUCTING CURVED STROKES
The last part of our method reconstructs the curved strokes based on
their intersections with the scaffold lines and already-reconstructed
curves. Similar to straight strokes, we process the curved strokes
one by one in their order of appearance. However, as with straight
strokes, we again face the challenge of identifying which intersec-
tions truly occur in 3D, and which are only due to occlusions. We
identify the true 3D intersections by applying the same solution
strategy as for straight lines, i.e., we compute multiple per-stroke
candidate 3D reconstructions and select the one which yields the 3D
curve most consistent with our observations about scaffold drawing
practices. In the text below we only address the differences between
the straight and curved stroke handling. All other computations are
identical.

6.1 Candidate Planes
We leverage the observation that design sketches mostly feature
planar curves embedded into scaffold planes, which allows us to
shift the problem of generating general 3D candidate curves to the
easier task of generating candidate planes, onto which we project
the input strokes.
As a pre-process, we compute all scaffold planes formed by any

pair of straight strokes incident to a scaffold 3D intersection, and we
associate each stroke with all the planes it lies in. We also compute
the bounding box of all scaffold 3D intersections, which provides a
bounding structure for the reconstructed curves.
For each curved stroke, we then consider all 2D intersections

with straight strokes and retrieve their associated scaffold planes.
We generate additional candidates by projecting each curve to the
three axis-aligned planes passing through each intersection. Finally,
we merge nearby planes to avoid redundant candidate curves. We
consider that two planes can be merged if they contain the same
3D intersections and have orientations that differ by less than 20◦,
where we consider that a plane contains an intersection if this
intersection is at a distance of less than 2% of the bounding box
diagonal. After evaluating the candidate curves with respect to
our score function, we select the highest scoring one and mark
all intersections between the curve and previously reconstructed
strokes which lie in the corresponding plane as 3D intersections.
Similarly to straight strokes, we reject obvious bad candidates

before proceeding with candidate selection. We exploit the fact that
scaffolds often act as bounding volumes to reject candidates that lie
outside of the bounding box of scaffold intersections, dilated by 10%
for safety. Yet, some sketches do contain curves outside the scaffold.
We detect these cases by 2D analysis, comparing the convex hull
H𝑠 of the projected scaffold intersections with the convex hull of
the curved strokesH𝑐 . When the ratio H𝑐

H𝑠∪H𝑐
is greater than 1, we

consider a bounding volume twice the size of the bounding box to
allow for curves outside the scaffold.

6.2 Score function and acceptance criteria
Since curves are typically drawn after straight lines, they often suffer
from higher clutter. In addition, since curves are geometrically more
complex than lines, designers often utilize multiple scaffold-curve
intersections to ease accurate curve drawing and enable viewers to
accurately perceive them. Thus, curved strokes often have multiple
3D intersections with the scaffold, each providing complementary
regularity cues about the intended shape. At the same time, due to
stroke clutter buildup, curved strokes have more accidental inter-
sections. We adapt our score function to these characteristics.

Orthogonality and tangentiality. Our geometric term accounts
for the higher number of intersections along curved strokes. While
for straight strokes we seek to have at least one intersection with
high orthogonality, tangentiality or planarity along a candidate
line (Equation 8), for curved strokes we seek to maximize the total
number of tangential or orthogonal intersections, as measured by

𝑄curve geom =
1
𝑁

∑
𝑖

𝛿𝑖 , (12)

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:10 • Y. Gryaditskaya, et al.

with 𝛿𝑖 = 1 if the 𝑖𝑡ℎ intersection is tangential or orthogonal, 𝛿𝑖 = 0
otherwise. We consider that an intersection is tangential or orthog-
onal if the angle formed by the two tangents is below 30◦ or above
80◦, respectively.

Foreshortening. We complement the geometric term with a term
that encourages interpretations that face the camera, motivated by
the minimal foreshortening principle of design sketching:

𝑄foreshortening = |p · v|, (13)

where p denotes the normal of the candidate plane and v the camera
direction.

Coverage. The coverage term computes the ratio between the
length of the 2D stroke segment bounded by the most far apart 3D
intersections, and the length of the input 2D stroke.

In contrast to straight lines, for which we seek to satisfy coverage
and geometry equally, we give a higher weight to coverage for
curved strokes because it is a more reliable cue in the presence of
multiple intersections. We define the total score as,

𝑄 =0.6𝑄𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 0.2𝑄curve geom

+ 0.2𝑄 𝑓 𝑜𝑟𝑒𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑖𝑛𝑔 .
(14)

Ellipses. We employ a slightly different score function for ellipses,
which are frequently used to represent cylindrical parts. We favor
the most circular ellipse by encouraging the radii of all the points
along the ellipse to be close to the maximum radius of that ellipse:

𝑄𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
1
𝑃

∑
𝑖

𝑟𝑖

𝑟𝑚𝑎𝑥

where 𝑃 is the total number of points and 𝑟𝑖 is the radius of the 𝑖-th
point. We use this term in place of the coverage term, which is not
well defined for closed curves, yielding

𝑄 = 0.8𝑄𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 0.2𝑄curve geom . (15)

Non-planar curves. Non-planar curves over man-made objects
can often be broken into planar segments. We have implemented a
simple step to detect potential non-planar curves in our aggregated
strokes, which we break into individual strokes. To do so, we first
collect all tangential intersections along the first and last quarter
of the curve, which represent candidate intersections for the curve
extremities. We then test the planarity of all pairs of such extremi-
ties. If no candidate pair of tangents form a plane, we classify the
aggregated curved stroke as planar and break it.

7 EVALUATION AND RESULTS
Wefirst compare the performance of our intersection labeling against
human annotations, as a mean to evaluate the perceptual relevance
of our algorithm. We also evaluate accuracy by annotating erro-
neous strokes in all of our results. We then evaluate the impact
of different components of our method, before presenting results
on a variety of real-world industrial design sketches, and potential
applications for design exploration.

7.1 Comparison to human labels
While the sketches we used to test our method were drawn accord-
ing to reference 3D models [Gryaditskaya et al. 2019], they do not

Fig. 6. We asked participants to label a subset of intersections in three
sketches of varying complexity. Green disks correspond to intersections
on which our algorithm agrees with the majority vote, red disks are inter-
sections on which our algorithm disagrees. The disks are rendered with
transparency to depict overlay between nearby intersections (best seen in
digital version).

come with ground truth depth. Not only are the sketches not per-
fectly aligned with the reference due to drawing inaccuracy, the
scaffold lines we are interested in simply do not lie over the refer-
ence surface. As an alternative, we quantify the plausibility of our
solutions via a perceptual study, where we asked 13 participants to
classify intersections in sketches as occlusions or 3D intersections.
All participants annotated 3 sketches of varying complexity, shown
in Figure 6. Each sketch was displayed one stroke at a time in their
original order, and participants were asked for each newly added
stroke to label its intersections before moving to the next stroke.
We also allowed participants to see the complete sketch at any time
to give them global context. To reduce fatigue, we only had partici-
pants label a subset of intersections per sketch (150 for the house,
110 for the shampoo bottle, and 50 for the bump surface).

We first compute the majority labeling by taking for each inter-
section the decision on which more than 50% of participants agree.
On average, participants show an agreement of 89.1% with the ma-
jority labeling, showing that the task is difficult even for humans.
On average, our algorithm agrees by 78.1% with human annota-
tions. Moreover, our algorithm is more consistent with the majority
labeling for intersections on which participants reached a higher
agreement. For intersections with human agreement between 50%
and 75%, our method is consistent with human annotations just by
48.4%, while for intersections with human agreement above 75%,
our method reaches an agreement of 86.2%with human annotations.
In other words, the cases that are most difficult for our algorithm
are also difficult for humans.
While our participants were not professionals, we also asked a

designer to perform the task. The agreement between the designer
labels and ours is 78.7%, and the agreement between the designer la-
bels and the majority label of other participants is 89.5%, marginally
higher than the agreements obtained by non-professionals. This
small difference is consistent with similar studies [Shao et al. 2011]
that reported that non-experts perform on par with designers when
interpreting drawings (they found a 2 degree difference in accuracy
between lay people and designers in interpreting surface orienta-
tion).

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:11

Input view Alternative views

Input view Alternative view

Fig. 7. We asked 3 participants to annotate spurious erroneous strokes
across all our results (Section 7.2), shown in red. Line width has been ad-
justed for improved visibility.

7.2 Accuracy
To further quantify the accuracy of our method, we asked 3 partici-
pants to annotate spurious erroneous strokes across all of our results
using a 3D interface and using the input drawings as reference. Fig-
ure 7 illustrates typical errors identified by the participants. The
median percentage of such erroneous strokes was only 7.95%. We
observed that 31% of erroneous scaffold strokes were among those
whose processing was delayed until the end due to low score and/or
confidence (median percentage), against 19% for good strokes. This
means that these spurious errors had limited impact on other strokes.
We discuss the potential sources of such errors in Section 7.5.

7.3 Computation time.
Our research prototype is implemented in Matlab and Python, and
has room for optimization. The computation time for scaffold recon-
struction varies between half a minute to 1.5 hours for the sketches
we considered, with a median time of≈ 3minutes. Timings correlate
strongly with both the number of intersections and the number of
strokes processed. The Spearman correlation coefficient between
computation time and number of strokes is 0.87, and between com-
putation time and number of intersections is 0.89, with 𝑝-value
less than 1𝑒 − 26 in both cases. The runtime for the curved strokes
reconstruction varies between ≈ 2 and ≈ 85minutes, with a median
time of 12 minutes. The total number of strokes varies between a
few dozens to a few hundreds after consolidation, while the number
of intersections varies between ≈ 40 and ≈ 4000 after filtering.
Given this median reconstruction time of a dozen of minutes, a

variant of our method could potentially run as a background task
during sketching, where camera parameters could be estimated
a soon as a sufficient number of mutually orthogonal lines are

present, and where offline stroke consolidation could be replaced
by an interactive stroke clustering algorithm.

7.4 Ablation studies
We compare our method to several variants by disabling some of
its components. For simplicity, we only processed straight strokes
when performing these experiments.

Impact of intersection filtering. As mentioned in Section 4, we per-
form trivial intersection classification to reject obvious occlusions
prior to applying our optimization. This filtering reduces the aver-
age computation time of our method from 13minutes to 8.5minutes
per sketch compared to solving for all intersections. On average,
the solutions obtained with this filtering agree by 90% with the so-
lutions obtained without, showing the robustness of our method to
accidental occlusions. Nevertheless, we observed that intersection
filtering improves our results overall, as illustrated in Figure 8.

Sca�olds

With intersections
�ltering

All intersections

Input sketch

Fig. 8. Rejecting intersections between less than 3 strokes prior to optimiza-
tion not only accelerates the algorithm, it also improves its performance,
since most such intersections correspond to occlusions.

Impact of delaying decision. An important contribution of our
work is the careful treatment of ambiguity by delaying decision
as we progress along the sketching sequence. In Figure 9 we plot
the distribution of delayed decisions on the full dataset – most
ambiguous strokes are resolved after just a few extra strokes, with
a median delay of 7 strokes. Nevertheless, 23.5% of strokes remain
ambiguous at the end of the sequence, and are assigned greedily.
Figure 10 compares our approach to a greedy algorithm that selects
the best candidate of each stroke as soon as it is drawn, akin to the
algorithm by Schmidt et al. [2009b]. The greedy algorithm interprets
many of the hidden lines has being part of the front of the object.
The intersection labels found by the greedy algorithm agree by 71.6%
with the ones obtained by our method, while the two algorithms
only differ by a few seconds in terms of running time, on average.

Impact of candidate set trimming. To prevent computational ex-
plosion, our algorithm switches to greedy assignment of ambiguous
strokes when the number of candidates of the new stroke to process
exceeds a threshold. Disabling this safeguard increases computa-
tion time by a factor of 2.6 on average, although the effect is more
dramatic on sketches that exhibit more ambiguity, some of which
can take up to several hours to process. The solutions obtained with
and without trimming agree by 85%, on average.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:12 • Y. Gryaditskaya, et al.

0 20 40 60 80 100 120 140 160
Number of strokes visited before taking a decision

0

5

10

15

Pe
rc

en
ta

ge
 o

f s
tro

ke
s

Median = 7

Fig. 9. Histogram of delayed decisions. 57% of the strokes get assigned as
soon as they are drawn. Among the remaining ambiguous strokes, around
14% are assigned after considering one additional stroke. The median delay
of ambiguous strokes is 7 strokes.

Sca�olds
Greedy Ours

Input sketch

Present hidden
lines

Fig. 10. Comparison between our algorithm that delays decision in the
presence of ambiguity, and a greedy algorithm that immediately selects the
best candidate for each stroke. The greedy algorithm often misinterprets
occlusions as intersections, bringing hidden lines to the front of the shape.

Impact of stroke consolidation. While conservative, the stroke
consolidation we perform prior to optimization accelerates the re-
construction of straight strokes by a factor of 3, on average, yet has
little impact on quality. Aggregation is more critical for curve re-
construction as it allows multiple strokes to share a common planar
interpretation, as illustrated in Figure 11.

(a) Input sketch (b) Without consolidation (c) With consolidation

Fig. 11. Our algorithm benefits from preliminary stroke consolidation, as
multiple strokes form longer curves that share geometric constraints.

7.5 Results and limitations
Figure 15 presents a gallery of sketches processed by our method,
which form a subset of the 47 sketches that we provide as supple-
mental materials. A large number of these sketches are from the
OpenSketch dataset [Gryaditskaya et al. 2019], which contains 12
shapes, each drawn by several professional designers. In addition,
we collected 12 sketches of complex man-made objects.

We visualize the reconstructed 3D information in the form of a
depth map, as well as via alternative viewpoints. We also provide
turntable animations of all our results as supplemental materials.
While these animations showcase the rich 3D structure recovered by
our method, spurious erroneous strokes become visible when mov-
ing far away from the original viewpoint. Figure 7 and 12 illustrate
typical errors.

We identified several sources of incorrect or distorted interpreta-
tions. One source of error is ambiguity between multiple solutions,
such as on the side of the car (Figure 12, bottom). Another source of
error is when a stroke lacks intersections with other strokes to be
well-positioned in 3D, such as the bowl of the mixer (Figure 12, top)
or the front of the car (Figure 12, bottom). Finally, a third source
of error is stroke consolidation, which sometimes merges strokes
that should not. A possible direction for future work would be to
exploit symmetries, for both scaffold and curves. However, design-
ers often do not draw symmetric objects accurately [Schmidt et al.
2009a], and we have observed that they tend to draw more details
on the front-facing half of the object, which makes the detection of
symmetric correspondences a challenge.
Our method imbues strokes with depth while keeping their 2D

locations fixed. While this is necessary for the image-processing
applications we target, this choice bakes-in any and all artist errors
and inaccuracies. Ignoring such inaccuracies allowed us to focus
on the under-explored problem of automatically inferring the 3D
connectivity of the drawing, without considering the separate prob-
lem of 2D correction. Prior work [Xu et al. 2014] has shown that
quality 3D reconstruction requires modifying the 2D locations of
the reconstructed strokes to correct for sketching inaccuracy; we
believe that their selective regularization could be applied to our
results in future work.

7.6 Applications
The sparse 3D information we extract from raw sketches opens the
door for a number of novel 3D-aware sketch editing functionalities.
Inspired by popular single-image photo pop-up applications [Hoiem
et al. 2005; Niklaus et al. 2019], we provide as supplemental materials
animations of all our results under small camera changes, which
provide a vivid sense of the 3D shapes in the sketches while reducing
visual artifacts.

Figure 13 demonstrates a shape editing application, where we
scaled the 3D sketch along one of its major axis. Note how our results
preserve coherent perspective, occlusions and parallax. In contrast,
Photoshop perspective-aware warp [Adobe 2020] fails to produce a
convincing edit. See supplemental materials for animations of scale
editing on all our results.

Figure 14 demonstrates the potential of our method to support the
industrial design workflow. Thanks to our 3D reconstruction, the

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D • 167:13

(a) Input sketch (b) Alternative viewpoint

Fig. 12. Limitations.When the sketch only contains very few scaffold lines,
our method misplaces curves, as for the bowl of this mixer (top). Even when
the scaffold is dense, some curve may lack support, as for the front part of
the car (bottom, blue). Some curves may also be misplaced because they
intersect several scaffold planes, as for the side curve of the car that has
multiple 2D intersections with the ground plane of the scaffold (bottom,
red).

Scaling along one of the
principal axes (Ours)

Input sketch
Perspective Warp

Photoshop

Fig. 13. Our method allows to scale the drawn shape along its principal
3D axes, while preserving perspective, occlusion and parallax. Compared to
out method, the Perspective Warp from Adobe Photoshop unrealistically
distorts the shape.

designer only needs to sketch a concept once to visualize it under
novel viewpoints and to experiment with different proportions. The
new sketches generated by our method can form the basis of novel
design iterations, or can be used as underlays to create shaded

presentation drawings for communication with team members and
clients.

8 CONCLUSION
We have presented the first algorithm capable of lifting real-world
industrial design sketches to 3D automatically. We achieved this
goal by leveraging a number of observations on how designers con-
struct their drawings – in particular using straight construction
lines called scaffold – and by accounting for ambiguity at multiple
stages of our method, from initial 2D stroke processing to core 3D in-
ference. We have applied our method on a large number of sketches
captured under an uncontrolled setting, and have demonstrated
potential usage of the recovered 3D information for several applica-
tions in design exploration and communication. We hope that this
research will stimulate the emergence of other 3D-aware sketching
tools, just as automatic computer vision has revolutionized modern
photography.

ACKNOWLEDGMENTS
This work was supported by the ERC Starting Grant D3 (ERC-2016-
STG 714221), NSERC and by software and research donations from
Adobe. The authors are grateful to Inria Sophia Antipolis - Méditer-
ranée “Nef" computation cluster for providing resources and support
(https://wiki.inria.fr/ClustersSophia). We thank Bastien Wailly for
his help on intermediate data visualizations and Valentin Deschain-
tre for the final video compilation; Enrique Rosales, Yuan Yao and
Jerry Yin for data annotation, as well as all the anonymous partici-
pants of the perceptual study and the designers who created concept
sketches for our work.

REFERENCES
Adobe. 2020. Photoshop PerspectiveWarp. https://helpx.adobe.com/photoshop/using/perspective-

warp.html.
Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-

as-possible sketching system for creating 3d curve models. In Proc. UIST. ACM,
151–160.

Mikhail Bessmeltsev and Justin Solomon. 2018. Vectorization of Line Drawings via
PolyVector Fields. arXiv preprint arXiv:1801.01922 (2018).

Alexandra Bonnici, Alican Akman, Gabriel Calleja, Kenneth P Camilleri, Patrick Fehling,
Alfredo Ferreira, Florian Hermuth, Johann Habakuk Israel, Tom Landwehr, Juncheng
Liu, et al. 2019. Sketch-based interaction andmodeling: where do we stand? Artificial
intelligence for engineering design analysis and manufacturing (2019), 1–19.

Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 2013. 3-Sweep:
Extracting Editable Objects from a Single Photo. ACM Transactions on Graphics
(Proc. SIGGRAPH) 32, 6 (2013).

Xuejin Chen, Sing Bing Kang, Ying-Qing Xu, Julie Dorsey, and Heung-Yeung Shum.
2008. Sketching reality: Realistic interpretation of architectural designs. Trans. on
Graphics 27 (2008). Issue 2.

Frederic Cordier, Hyewon Seo, Mahmoud Melkemi, and Nickolas S. Sapidis. 2013.
Inferring Mirror Symmetric 3D Shapes from Sketches. Computer Aided Design 45, 2
(Feb. 2013), 301–311.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei Efros, and Adrien Bousseau.
2018. 3D Sketching using Multi-View Deep Volumetric Prediction. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 1, 21 (2018).

Julie Dorsey, Songhua Xu, Gabe Smedresman, Holly Rushmeier, and Leonard McMillan.
2007. The Mental Canvas: A Tool for Conceptual Architectural Design and Analysis.
In Proc. IEEE Pacific Conference on Computer Graphics and Applications. 201–210.

Koos Eissen and Roselien Steur. 2008. Sketching: Drawing Techniques for Product
Designers. Bis Publishers.

Koos Eissen and Roselien Steur. 2011. Sketching: The Basics. Bis Publishers.
Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.

simplicity: a global approach to line drawing vectorization. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 120.

Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured annotations for
2D-to-3D modeling. In ACM Trans. Graph. (Proc. SIGGRAPH Asia), Vol. 28.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

https://wiki.inria.fr/ClustersSophia

167:14 • Y. Gryaditskaya, et al.

Input sketch 3D rotation Input sketch 3D rotation and scaling

Fig. 14. Application scenarios. Designers can use our reconstruction algorithm to adjust the 3D pose and proportions of the drawn shape, and use the
result as an underlay to create a polished presentation drawing. Here a view from the top is adopted to better show the opening of the vacuum cleaner (left),
while 3D-aware scaling is employed to turn the chair into a bench (right). The presentation drawings were created by ©Robert Smit (www.flatland.agency).

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Fredo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) (2019).

Erwan Guillou, Daniel Meneveaux, Eric Maisel, and Kadi Bouatouch. 2000. Using
vanishing points for camera calibration and coarse 3D reconstruction from a single
image. The Visual Computer 16, 7 (2000).

Varsha Hedau, Derek Hoiem, and David Forsyth. 2009. Recovering the spatial layout of
cluttered rooms. In Proc. ICCV. IEEE.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. 2005. Automatic Photo Pop-Up. In
ACM Transactions on Graphics (Proc. SIGGRAPH). 577–584.

Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding, Shenghua Gao, and Yi Ma. 2018.
Learning to Parse Wireframes in Images of Man-Made Environments. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. SIGGRAPH (1999).

Dong Kang, Mark Masry, and Hod Lipson. 2004. Reconstruction of a 3D object from a
main axis system. AAAI Fall Symposium - Making Pen-Based Interaction Intelligent
and Natural (2004).

Changjian Li, Hao Pan, Yang Liu, Alla Sheffer, and Wenping Wang. 2017. BendSketch:
Modeling Freeform Surfaces Through 2D Sketching. ACM Trans. Graph. (Proc.
SIGGRAPH) 36, 4 (2017).

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2018.
Robust flow-guided neural prediction for sketch-based freeform surface modeling.
In ACM Trans. Graph. (Proc. SIGGRAPH Asia). ACM, 238.

H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object
from a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651 – 663.
https://doi.org/10.1016/0010-4485(95)00081-X

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: consolidating
raw sketches into artist-intended curve drawings. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 97.

Jianzhuang Liu, Liangliang Cao, Zhenguo Li, and Xiaoou Tang. 2008. Plane-based
optimization for 3D object reconstruction from single line drawings. IEEE Trans.
Pattern Anal. Mach. Intell. 30, 2 (2008), 315–327.

Xueting Liu, Xiangyu Mao, Xuan Yang, Linling Zhang, and Tien-Tsin Wong. 2013.
Stereoscopizing Cel Animations. ACM Transactions on Graphics (Proc. SIGGRAPH
Asia) 32, 6 (November 2013), 223:1–223:10.

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-aware Sketch
Simplification. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (November 2015).

Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui
Wang. 2017. 3D shape reconstruction from sketches via multi-view convolutional

networks. In IEEE International Conference on 3D Vision (3DV). 67–77.
Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:

designing freeform surfaces with 3D curves. ACM transactions on graphics (TOG)
26, 3 (2007), 41.

Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 2019. 3D Ken Burns Effect from a
Single Image. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 38, 6, Article
184 (Nov. 2019), 15 pages.

Pauline Olivier, Renaud Chabrier, Damien Rohmer, Eric De Thoisy, and Marie-Paule
Cani. 2019. Nested Explorative Maps: A new 3D canvas for conceptual design in
architecture. Computers and Graphics (Proc. SMI) 82 (2019).

GüNayOrbay and Levent Burak Kara. 2012. Sketch-based surface design usingmalleable
curve networks. Comput. Graph. Forum 36, 8 (2012).

Radu Orghidan, Joaquim Salvi, Mihaela Gordan, and Bogdan Orza. 2012. Camera
calibration using two or three vanishing points. In FedCSIS.

Patrick Paczkowski, Min H. Kim, Yann Morvan, Julie Dorsey, Holly Rushmeier, and
Carol O’Sullivan. 2011. Insitu: Sketching Architectural Designs in Context. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 30, 6 (2011).

Scott Robertson and Thomas Bertling. 2013. How to Draw: drawing and sketching objects
and environments from your imagination. Design Studio Press.

Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan Singh. 2009a. On Expert
Performance in 3D Curve-Drawing Tasks. In Proc. Sketch-Based Interfaces and Mod-
eling.

Ryan Schmidt, AzamKhan, Karan Singh, and Gord Kurtenbach. 2009b. Analytic drawing
of 3D scaffolds. In ACM transactions on graphics (TOG), Vol. 28. ACM, 149.

Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2011. CrossShade: shading
concept sketches using cross-section curves. ACM Transactions on Graphics 31, 4
(2011).

Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013.
Interpreting Concept Sketches. ACM Transactions on Graphics (Proc. SIGGRAPH) 32,
4 (2013), 10.

Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or.
2013. Geosemantic Snapping for Sketch-Based Modeling. Computer Graphics Forum
32, 2 (2013), 245–253.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learning
to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup. ACM Trans.
Graph. (Proc. SIGGRAPH) 35, 4 (2016).

Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian
Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-Ray: Bas-
Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters.

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

www.flatland.agency
https://doi.org/10.1016/0010-4485(95)00081-X

Lifting Freehand Concept Sketches into 3D • 167:15

ACM Transaction on Graphics 33, 2 (2014), 16.
Chao Tian, Mark A. Masry, and Hod Lipson. 2009. Physical sketching: Reconstruction

and analysis of 3D objects from freehand sketches. Computer Aided Dessign 41
(2009), 147–158.

Anil Usumezbas, Ricardo Fabbri, and Benjamin B. Kimia. 2016. From multiview image
curves to 3D drawings. In Proc. European Conference on Computer Vision (ECCV).

Yingze Wang, Yu Chen, Jianzhuang Liu, and Xiaoou Tang. 2009. 3D reconstruction of
curved objects from single 2D line drawings. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective regular-
ization. ACM Transactions on Graphics 33, 4 (2014).

Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 1996. SKETCH: An
Interface for Sketching 3D Scenes. SIGGRAPH (1996).

Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen, Li-Yi Wei, and Yi Ma. 2019.
Learning to Reconstruct 3D Manhattan Wireframes From a Single Image. In Proc.
IEEE International Conference on Computer Vision (ICCV).

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

167:16 • Y. Gryaditskaya, et al.

Near Far

Fig. 15. Our 3D reconstructions on a variety of industrial design sketches. For each result, we provide the input sketch (left), a visualization of the
recovered depth and 3D intersections (middle), and an alternative viewpoint (right).

ACM Trans. Graph., Vol. 39, No. 6, Article 167. Publication date: December 2020.

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	3.1 Principles of scaffold-based design sketching
	3.2 Depth prediction given known 3D connectivity
	3.3 Recovering 3D connectivity
	3.4 Algorithm overview

	4 2D Analysis
	5 Reconstructing Straight Strokes
	5.1 Candidate Lines
	5.2 Candidate Evaluation
	5.3 Initialization
	5.4 Processing Ambiguous Strokes

	6 Reconstructing curved strokes
	6.1 Candidate Planes
	6.2 Score function and acceptance criteria

	7 Evaluation and results
	7.1 Comparison to human labels
	7.2 Accuracy
	7.3 Computation time.
	7.4 Ablation studies
	7.5 Results and limitations
	7.6 Applications

	8 Conclusion
	References

