
Journées Françaises d’Informatique Graphique et de Réalité Virtuelle, Marseille, 12-15 novembre 2019

Line rendering of 3D meshes for data-driven
sketch-based modeling

Bastien Wailly and Adrien Bousseau

Université Côte d’Azur, Inria

Figure 1: SynDraw is a tool to generate synthetic vector drawings from triangular meshes.

Abstract
Deep learning recently achieved impressive successes on various computer vision tasks for which large
amounts of training data is available, such as image classification. These successes have motivated the
use of computer graphics to generate synthetic data for tasks where real data is difficult to collect. We
present SynDraw, a non-photorealistic rendering system designed to ease the generation of synthetic
drawings to train data-driven sketch-based modeling systems. SynDraw processes triangular meshes
and extracts various types of synthetic lines, including occluding contours, suggestive contours, creases,
and demarcating curves. SynDraw exports these lines as vector graphics to allow subsequent stylization.
Finally, SynDraw can also export attributes of the lines, such as their 3D coordinates and their types,
which can serve as ground truth for depth prediction or line labeling tasks. We provide both a command-
line interface for batch processing, as well as an interactive viewer to explore and save line extraction
parameters. We will release SynDraw as an open source library to support research in non-photorealistic
rendering and sketch-based modeling.

Keywords : sketch-based modeling, non-
photorealistic rendering, geometry processing,
deep learning, vector graphics

1. Introduction and Related Work

A number of recent sketch-based modeling systems
rely on deep learning to recover 3D information from
2D line drawings. Examples include the voxel-based
approach of Delanoy et al. [DAI∗18], the multi-view
reconstruction technique by Lun et al. [LGK∗17],
the parametric modeling approach by Nishida et al.
[NGDA∗16], the normal map prediction by Su et al.
[SDY∗18], and the method by Li et al. that com-

bines depth, normal and curvature-field information
[LPL∗18]. All these data-driven approaches require
thousands of drawings aligned with ground-truth 3D
shapes for training, which would be cumbersome to
collect by hand. The common solution to this chal-
lenge is to resort to synthetic training data, obtained
by rendering 3D shapes in a line-drawing style. Exist-
ing systems either rely on custom non-photorealistic
renderers, or on the publicly available rtsc software
[DFRS03]. However, these renderers only support a
subset of popular synthetic lines, and export them as
bitmaps, which limits the range of stylization effects
that can be applied on the resulting drawings. We pro-
pose an open source library for line rendering, which

c© journées JFIGRV 2019



Bastien Wailly and Adrien Bousseau / Line rendering of 3D meshes for data-driven sketch-based modeling

Figure 2: Overview of our system. Each successive step
edits the view graph (3D lines and vertices). The out-
put SVG file is generated based on the state of the
graph after all these steps.

we designed to fulfill the needs of modern data-driven
sketch-based modeling systems.

Our library – called SynDraw – provides the follow-
ing features:

• It takes as input triangle meshes, which is the most
common form of geometry.

• It extracts popular line types described in the
non-photorealistic rendering litterature – occlud-
ing contours [HZ00], suggestive contours [DFRS03],
ridges and valleys [OBS04], and demarcating curves
[KST08].

• It outputs lines as vector polylines for easy styliza-
tion.

• It also outputs the 3D coordinates, visibility, and
types of the lines, which can serve as guiding chan-
nels for stylization or as targets for prediction tasks.

• It can be called via a command line interface,
which facilitates the generation of large datasets
with scripting. It also offers an interactive 3D viewer
for parameter tuning.

• It runs on CPU only, and as such is simple to deploy
on computing clusters.

SynDraw thus represents a valuable alternative to
the Blender plug-in FreeStyle [GTDS04], which offers
more advanced stylization features but was not de-
signed for lightweight generation of large datasets. The
main algorithmic components of SynDraw follow the
recommendations made by Benard and Hertzmann in
their tutorial on line rendering [BH18]. We implemen-
ted SynDraw on top of the libIGL geometry library
[JP∗18], using C++11.

2. Overview

Figure 2 lists the main steps of the line extraction al-
gorithm implemented in SynDraw. The system takes
as input a 3D mesh and a set of parameters, and out-
puts an SVG file that encodes the lines and associated
attributes as vector polylines. The first processing step
consists in parsing the mesh to extract line segments

that will populate the view graph – a data structure
that represents all lines and vertices (see the tutorial
by Benard and Hertzmann for details [BH18]). The
second step applies various filters to remove spurious
lines. The third step determines which lines are visible
from the current viewpoint. Finally, the extracted line
segments are chained to form long polylines, before
being exported. We offer user control on each of these
steps through the input parameters.

3. Implementation

3.1. Line extraction

We extract different types of surface lines using pop-
ular non-photorealistic rendering algorithms, namely
smooth occluding contours [HZ00], suggestive con-
tours [DFRS03], sharp and smooth creases [OBS04],
demarcating curves [KST08], some of which are illus-
trated in Figure 3. Many of these lines require access to
differential quantities on the surface, such as the prin-
cipal directions of curvature and the radial curvature.
We compute these quantities using the method by
Panozzo et al. [PPR10]. We use a Lazy Loading design
pattern to avoid computing anything not needed given
the input line parameters.

3.2. Filtering

The algorithmic lines we have implemented can
quickly yield cluttered drawings if extracted with de-
fault parameters. We allow users to filter out some of
the lines based on several geometric criteria (Fig 4).
First, users can remove lines that are facing the cam-
era based on the angle between view direction and
surface normal. This filtering was originally proposed
by DeCarlo et al. to improve view coherency of sug-
gestive contours [DFRS03], we extend it to all line
types. Second, users can remove lines based on view-
dependent curvature using the hysteresis threshold-
ing technique proposed by Panozzo et al. for creases
[PPR10], which we again extend to all line types.

3.3. Visibility

As suggested by Benard and Hertzmann [BH18], we
construct the view graph embedding all 3D line seg-
ments and identify singularity nodes (vertices) where
visibility might change. The singularities split the
graph into multiple regions sharing the same visib-
ility. As a consequence, we can use one raycast per
such region to determine if it is occluded or not. A
particular singularity type that is difficult to compute
is the image-space intersection, which requires com-
puting every intersection between any line and an oc-
cluding contour, which has a complexity of roughly
O(n2) in the number of lines. We lower the complexity
to O(n log(n)) by using a Binary Space Partitionning
(BSP) algorithm. Other methods exist with the same
complexity, such as the sweep line algorithm described
by Bentley [BO79].

c© JFIGRV 2019.



Bastien Wailly and Adrien Bousseau / Line rendering of 3D meshes for data-driven sketch-based modeling

Figure 3: Camel head model with different line types,
with filtering step disabled. From top to bottom :
suggestive contours, ridges and valleys, demarcating
curves. Occluding contours are in black.

3.4. Chaining

The last processing step consists in chaining the ex-
tracted line segments to form long polylines that re-
semble human-drawn pen strokes. We assign consecut-
ive segments to the same chain if they share the same
line type and visibility, and if their angle is below a
threshold. We also used those chains to make the vis-
ibility more robust by casting multiple rays per chain
and voting for the dominant visibility [BH18], which is
especially beneficial at grazing angle where numerical
imprecision often occurs (Fig 5).

Figure 4: Example of filtering based on facets normals,
on cheburashka model (top: before, bottom: after).

4. Interactive viewer

We provide an interactive OpenGL viewer to help
users find suitable extraction parameters for the 3D
shapes they are interested in (Figure 6). While the
visibility computation can take a few seconds, other
parameters can be adjusted in real time. Users can
then save their parameter settings to apply them to
other shapes via scripting.

5. Stylization tools

We developed a set of simple tools to further pro-
cess the drawing, such as simulating sketchy drawings
by perturbing the vector polylines with random 1D
and/or 2D noise (Figure 7). Such stylization effects
greatly improve the realism of the line drawings, which
in turn makes the trained deep learning algorithms
more robust to real-world sketches. Other effects in-
clude varying the line width and opacity according to
line type or depth. We also provide a simple rasterizer
based on the CairoSVG library [Koz15] to convert the
stylized drawings into bitmaps ready to be fed to deep
networks.

c© JFIGRV 2019.



Bastien Wailly and Adrien Bousseau / Line rendering of 3D meshes for data-driven sketch-based modeling

Figure 5: Impact of chaining. Top: chaining not ap-
plied, visibility may be incorrect in regions of low graz-
ing angle. Bottom: each unique color is a chain. Visib-
ility is corrected thanks to multiple raycasts per chain.

Figure 6: The interactive viewer lets the user adjust
extraction parameters and see their impact on the
view graph.

Figure 7: Three levels of random noise illustrated on
the teapot model.

6. Applications

SynDraw has already been used internally in several
research projects. We demonstrated a procedural ap-
proach for sketch-based modeling [WB19], where all
deep networks have been trained with data produced
by our system (Fig 8). We generated 100k synthetic
drawings from simple meshes in around two days,
which was enough to train our architecture for 20k
iterations. Gryaditskaya et al. [GSH∗19] also used our
tool to showcase the importance of prior knowledge on
how designers draw when generating synthetic draw-
ings, on the task of predicting normal maps from raster
drawings.

7. Performance

Our system has been successfully tested on Unix and
MacOS environments. On an Intel Xeon E5-2650 @
2.2GHz (8 cores), a mesh with 50k facets is processed
within one second to one minute, depending on the
line types that are selected, with demarcating curves
being the most costly type because of second order de-
rivative computations. Larger meshes can take a signi-
ficant amount of time to compute, while small meshes
(<5k facets) are generally processed in a fraction of a
second. We compute the parsing of a mesh in a parallel
fashion and we believe other parts of the system could

c© JFIGRV 2019.



Bastien Wailly and Adrien Bousseau / Line rendering of 3D meshes for data-driven sketch-based modeling

Figure 8: We used SynDraw to generate training data
for sketch-based modeling of parametric shapes.

also be optimized with parallel computing. One way to
alleviate the potential overhead of the system is to gen-
erate multiple drawings per mesh to reuse redundant
computation such as non view-dependent curvature.
We enable this optimization via a simple script-like
C++ file that users can adapt to their needs.

8. Conclusion

We presented an open source library to generate syn-
thetic drawings from 3D meshes. We designed and
used this library to generate large training datasets
for deep learning. The library is modular and can eas-
ily be extended to include other line types, filtering
methods, and stylization algorithms. The library also
exports attributes of the lines, such as visibility and
depth, and could be extended to support other attrib-
utes such as semantic part labels. We hope that this
library will foster research on data-driven sketch pro-
cessing.

9. Acknowledgements

This work was supported by the ERC starting grant
D3 (ERC-2016-STG 714221) and research and soft-
ware donations from Adobe. We express special grate-
fulness to Pierre Bénard for his help. We thank Adele
Saint-Denis for her work in preparing the ground for
the development of this tool.

Bibliography

[BH18] Bénard P., Hertzmann A.: Line draw-
ings from 3d models. CoRR. Vol. abs/1810.01175
(2018).

[BO79] Bentley, Ottmann: Algorithms for re-
porting and counting geometric intersections. IEEE
Transactions on Computers. Vol. C-28, Num. 9
(Sep. 1979), 643–647.

[DAI∗18] Delanoy J., Aubry M., Isola P.,
Efros A. A., Bousseau A.: 3d sketching using
multi-view deep volumetric prediction. Proceedings

of the ACM on Computer Graphics and Interactive
Techniques. Vol. 1, Num. 1 (Jul 2018), 1–22.

[DFRS03] DeCarlo D., Finkelstein A., Ru-
sinkiewicz S., Santella A.: Suggestive contours
for conveying shape. ACM Transactions on Graph-
ics (Proc. SIGGRAPH). Vol. 22, Num. 3 (juillet
2003), 848–855.

[GSH∗19] Gryaditskaya Y., Sypesteyn M.,
Hoftijzer J. W., Pont S., Durand F.,
Bousseau A.: Opensketch: A richly-annotated
dataset of product design sketches. ACM Trans-
actions on Graphics (Proc. SIGGRAPH Asia). Vol.
38 (11 2019).

[GTDS04] Grabli S., Turquin E., Durand F.,
Sillion F.: Programmable style for npr line draw-
ing. In Rendering Techniques 2004 (Eurographics
Symposium on Rendering) (june 2004), Association
for Computing Machinery.

[HZ00] Hertzmann A., Zorin D.: Illustrating
smooth surfaces. ACM Transaction on Graphics
(Proc. SIGGRAPH) (2000).

[JP∗18] Jacobson A., Panozzo D., et al.: libigl:
A simple C++ geometry processing library, 2018.
https://libigl.github.io/.

[Koz15] Kozea: Cairosvg.
µhttps://cairosvg.org/, 2015. Version: 2.3.0.

[KST08] Kolomenkin M., Shimshoni I., Tal A.:
Demarcating curves for shape illustration. ACM
Transactions on Graphics (proc. SIGGRAPH Asia).
Vol. 27, Num. 5 (décembre 2008), 157:1–157:9.

[LGK∗17] Lun Z., Gadelha M., Kalogerakis
E., Maji S., Wang R.: 3d shape reconstruc-
tion from sketches via multi-view convolutional net-
works. In 2017 International Conference on 3D Vis-
ion (3DV) (2017).

[LPL∗18] Li C., Pan H., Liu Y., Sheffer A.,
Wang W.: Robust flow-guided neural prediction
for sketch-based freeform surface modeling. ACM
Transactions on Graphics (proc. SIGGRAPH Asia).
Vol. 37, Num. 6 (2018), 238:1–238:12.

[NGDA∗16] Nishida G., Garcia-Dorado I.,
Aliaga D. G., Benes B., Bousseau A.: Inter-
active sketching of urban procedural models. ACM
Transactions on Graphics (proc. SIGGRAPH). Vol.
35, Num. 4 (2016).

[OBS04] Ohtake Y., Belyaev A., Seidel H.-P.:
Ridge-valley lines on meshes via implicit surface fit-
ting. ACM Transactions on Graphics (proc. SIG-
GRAPH). Vol. 23, Num. 3 (août 2004), 609–612.

[PPR10] Panozzo D., Puppo E., Rocca L.: Effi-
cient multi-scale curvature and crease estimation. In
2nd International Workshop on Computer Graph-
ics, Computer Vision and Mathematics, GraVisMa
2010 - Workshop Proceedings (2010), pp. 9–16.

[SDY∗18] Su W., Du D., Yang X., Zhou S., Fu
H.: Interactive sketch-based normal map generation

c© JFIGRV 2019.

https://cairosvg.org/


Bastien Wailly and Adrien Bousseau / Line rendering of 3D meshes for data-driven sketch-based modeling

with deep neural networks. Proceedings of the ACM
on Computer Graphics and Interactive Techniques.
Vol. 1, Num. 1 (2018).

[WB19] Wailly B., Bousseau A.: Sketch-Based
Modeling of Parametric Shapes. In ACM/EG Ex-
pressive Symposium - Posters, Demos, and Art-
works (2019), Berio D., Cruz P., Echevarria J.,
(Eds.), The Eurographics Association.

c© JFIGRV 2019.


	Introduction and Related Work
	Overview
	Implementation
	Line extraction
	Filtering
	Visibility
	Chaining

	Interactive viewer
	Stylization tools
	Applications
	Performance
	Conclusion
	Acknowledgements
	Bibliography

