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Extracting Geometric Structures in Images with
Delaunay Point Processes

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau and Alex Auvolat

Abstract—We introduce Delaunay Point Processes, a framework for the extraction of geometric structures from images. Our approach
simultaneously locates and groups geometric primitives (line segments, triangles) to form extended structures (line networks,
polygons) for a variety of image analysis tasks. Similarly to traditional point processes, our approach uses Markov Chain Monte Carlo
to minimize an energy that balances fidelity to the input image data with geometric priors on the output structures. However, while
existing point processes struggle to model structures composed of inter-connected components, we propose to embed the point
process into a Delaunay triangulation, which provides high-quality connectivity by construction. We further leverage key properties of
the Delaunay triangulation to devise a fast Markov Chain Monte Carlo sampler. We demonstrate the flexibility of our approach on a
variety of applications, including line network extraction, object contouring, and mesh-based image compression.

Index Terms—Spatial point process, Delaunay triangulation, Geometric structures, Line network extraction, Object contouring, Image
compression
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1 INTRODUCTION

Many Vision tasks involve the extraction of geometric struc-
tures from images. Typical examples include the extraction of
networks of blood vessels from retinal images, the extraction of
building footprints from urban satellite images, or the extraction
of 3D surfaces from multiple photographs of a scene. While these
structures cover chains or regions of pixels in the input images,
they are often converted into sets of geometric primitives for
subsequent global analysis and efficient storage. For instance,
vessel networks can be represented as planar graphs made of line
segments, building footprints can be represented as closed poly-
gons, and 3D surfaces can be represented as triangular meshes.

Unfortunately, existing algorithms often decouple the detec-
tion of local primitives from the construction of global struc-
tures. Continuing on our examples, object contouring methods
typically detect line segments along image discontinuities before
assembling them to form polygons [1], [2], and multiview stereo
reconstruction algorithms extract 3D points by feature matching
before interpolating them with a surface mesh [3], [4]. While this
two-step approach reduces computational burden, the quality of
the resulting structures depends heavily on the local decisions
taken during primitive detection.

As an alternative to primitive detection, generative models
seek to synthesize structures and measure their agreement with
image data. In particular, point processes have shown their ability
to generate configurations of geometric elements that align with
image content [5]. However, the synthesis of large-scale structures
often requires strong interactions between geometric primitives,
which are hard to model with existing formulations. For example,
a point process that would generate independent line segments is
very unlikely to produce coherent line networks where segments
only join at their endpoints. The key idea of our work is to con-
strain point processes to only produce well-connected geometric
structures.

• J.-D. Favreau, F. Lafarge, A. Bousseau and A. Auvolat are with Inria
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Fig. 1. Example applications of Delaunay Point Processes to extract
planar graphs representing blood vessels in retina images (left), and
complex polygons representing object silhouettes (right). The point dis-
tribution creates a dynamic Delaunay triangulation while edge and facet
labels specify the geometric structure (see red edges on close-ups).

This paper focuses on the extraction of 2D structures and
leaves the extraction of 3D entities to future work. Our main
observation is that any 2D structure composed of non-overlapping
lines or polygons can be embedded in a triangulation of the
image domain. Given this representation, generating linear or
triangular primitives amounts to inserting new vertices in the
triangulation, which is a standard operation for existing geometry
libraries [6]. Extracting global structures then amounts to grouping
subsets of edges or facets of the triangulation. By construction,
our representation offers strong geometric guaranties, such as the
fact that line segments and polygons always meet vertex-to-vertex
or edge-to-edge. We further build on properties of the Delaunay
triangulation to propose an efficient sampler for fast stochastic
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optimization of the geometric structures we wish to extract. We
demonstrate the versatility of this approach to extract 2D structures
for a variety of Vision tasks.

In summary, our main contributions are (i) a general frame-
work to extract geometric structures for a variety of Vision prob-
lems, (ii) an efficient stochastic optimization to find high-quality
structures, and (iii) models for line network extraction, object
contouring, and image compression; demonstrating the potential
of our approach on real-world tasks.

2 BACKGROUND ON POINT PROCESSES

We first provide the necessary background on point processes and
their applications before describing our novel approach, which we
call Delaunay Point Processes. We refer the reader to the book by
Descombes [7] for a detailed presentation of the theory of point
processes for image analysis.

Definition. Point processes are probabilistic models that de-
scribe random configurations of points in a continuous bounded
domainK , where the number of points of a configuration and their
positions in the domain are random variables [8]. They have been
introduced in Vision by Baddeley and Moller to extend traditional
Markov Random Fields (MRFs) with an object-based formalism
[9]. We denote Ω = ∪

n∈N
Ωn the configuration space of a point

process, where the sub-spaces Ωn correspond to configurations
of exactly n points distributed in K . We denote p ∈ Ω a
realization of this point process, and p ∈ p a point of the resulting
configuration.

Fig. 2. Point processes distribute points randomly in a bounded domain.
While the left example illustrates a uniform distribution, the middle and
right examples show point processes guided by a non-uniform density h
(top left insets). In particular, the right example uses the image gradient
magnitude as a density to distribute points along image contours.

The simplest point process is the homogeneous Poisson point
process, for which the number of points follows a discrete Poisson
distribution and the position of the points follows a uniform dis-
tribution. As illustrated on Figure 2, more complex configurations
can be obtained by guiding the point process with a density h(.)
defined in Ω. Intuitively, h(p) measures the probability of the
realization p to occur. By carefully designing the density h(.),
practitioners can model processes where the number and position
of the points are consistent with input data and where neighboring
points obey specific spatial interactions. In the remaining of this
paper we often express the density as a Gibbs energy U(.) which
we seek to minimize

h(p) ∝ exp−U(p). (1)

Markovian property. Similarly to Markov Random Fields,
the Markovian property of a point process provides a spatial
dependency between neighboring points in a configuration. For-
mally, a point process of density h is Markovian under the

neighborhood relationship ∼ if and only if ∀p ∈ Ω such that
h(p) > 0, and ∀q ∈ K , h(p ∪ {q})/h(p) only depends on q
and its neighbors {p ∈ p : q ∼ p}. In other words, when adding
a point to a configuration, the resulting variation of density only
depends on the new point and its neighbors in the configuration.
As discussed next, the Markovian property is essential to many
efficient optimization algorithms because it guarantees that the
variation of energy induced by a local perturbation of a configura-
tion can be computed using a small number of points around that
perturbation.

The symmetric relationship∼ is usually defined via a maximal
Euclidean distance ε between two points of K such that

pi ∼ pj = {(pi, pj) ∈ p2 : i > j, ||pi − pj ||2 < ε} (2)

Figure 3-left shows a realization of such a point process for
K ⊂ R2.

Fig. 3. Markovian point processes. Traditional point processes exploit
the Markovian property to define pairs of interacting points, typically a
maximal Euclidean distance ε between two points (left). Such processes
are used for detecting objects in images by associating a simple geomet-
ric shape, eg a rectangle [10], to each point (middle), and for extracting
line-networks by selecting a subset of pairs of interacting points [11]
(right).

Inference. Reversible Jump Markov Chain Monte Carlo
(RJMCMC) [12] is a popular family of algorithms to search for
configurations that maximize the density h, or equivalently, that
minimize the energy U . A RJMCMC sampler simulates a discrete
Markov chain (Xt)t∈N on the configuration space Ω, converging
towards a target density specified by U .

Algorithm 1 provides the pseudo-code of a RJMCMC
sampler for point processes. The algorithm starts with a random
configuration p0. At each iteration, the current configuration
p of the chain is perturbed to a configuration p′ according
to a proposition density Q(p → .), also called a kernel. The
perturbations are local, which implies that the energy variation
between configuration p and p′ depends only on a few points
thanks to the Markovian property of the point process. The
configuration p′ is then accepted as the new state of the chain
with a probability that depends on the ratio of kernelsQ(p→ p′)
and Q(p′ → p), the energy variation between p and p′, and a
relaxation parameter Tt. We next detail the role of kernels and
relaxation, followed by a discussion of existing work on object
and structure extraction using point processes.

Kernels. For many applications, the kernel Q is formulated as
a mixture of kernels Qm associated with probabilities qm

Q(p→ .) =
∑
m

qmQm(p→ .), (4)

where each kernel Qm is typically dedicated to a specific type
of perturbation. The kernel mixture must satisfy two necessary
conditions to guarantee the convergence of the Markov chain.
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Algorithm 1 RJMCMC sampler for point processes
1- Initialize X0 = p0 and T0 at t = 0;
2- At iteration t, with Xt = p,

• Choose a kernel Qm according to probability qm
• Perturb p to p′ according to Qm(p→ .)
• Compute the Green rate

R =
Qm(p′ → p)

Qm(p→ p′)
exp

(
U(p)− U(p′)

Tt

)
(3)

• Choose Xt+1 = p′ with probability min(1, R), and
Xt+1 = p otherwise

First, to make the Markov chain irreductible, the kernel mixture
must allow any configuration in Ω to be reached from any other
configuration with a finite number of perturbations. Second, to
make the Markov chain reversible, each kernel must be able to
propose a perturbation and its reverse with a non-zero probability.
This second condition is necessary to compute the kernel ratio
in Equation 3, which provides a detailed balance between a
perturbation and its reverse [13].

Point processes typically rely on a birth and death kernel that
adds or removes a point from p [7]. This kernel is parameterized
by a birth probability Pb, the death probability Pd being equal to
1 − Pb. Denoting |p| the number of points in the current config-
uration, and λ the parameter of the discrete Poisson distribution
that governs the number of points in p, the kernel ratio for a birth
event can be expressed as

Qm(p′ → p)

Qm(p→ p′)
=
Pd
Pb

λ

|p|+ 1
. (5)

Similarly, the kernel ratio for a death event is expressed as
Pb

P−d
|p|
λ . Intuitively, λ represents the expected number of points

in the output configuration. Choosing a birth (respectively a
death) when the number of points in the current configuration is
higher (resp. lower) than λ will reduce the chance of accepting
the proposed perturbation.

Relaxation. The relaxation parameter Tt, also called the tem-
perature, controls the acceptation rate of the RJMCMC sampler.
A high temperature allows the algorithm to explore very different
configurations, including configurations that temporarily increase
the energy. In contrast, a low temperature encourages the algo-
rithm to only accept perturbations that decrease the energy. A
common practice is to start with a high temperature for initial ex-
ploration of the solution space, before decreasing the temperature
to converge to a local miminum. Although a logarithmic decrease
of Tt is necessary to ensure convergence to the global minimum
from any initial configuration, practitioners typically use a faster
geometric decrease of the form

Tt = T0.α
t (6)

where T0 is the initial temperature and α controls the speed of
decrease and is typically set to a value inferior yet close to 1.
Such a geometric decrease gives an approximate solution close to
the optimum [14].

From points to objects. Many Vision tasks involve the
extraction of extended objects rather than infinitesimal points.
Marked point processes are a family of point processes that

tackle such tasks by associating each point with a parametric
object. For example buildings can be represented with rectangles
[10], persons with cylinders [15], [16], or textures with sets of
parametric shapes [17]. Figure 3-middle illustrates a realization
of a marked point process where each point is associated with
a rectangle defined by its orientation, width and length [10].
The domain of this marked point process is thus K × M with
K ⊂ R2 and M =] − π

2 ,
π
2 ] × [lmin, lmax] × [Lmin, Lmax].

Marked point processes are particularly effective for the extraction
of groups of objects from images because they can model rich
spatial interactions and because they do not require the number
of objects to be known a-priori. More details on marked point
processes can be found in [7].

From points to structures. While marked point processes are
well adapted to the extraction of groups of disconnected objects,
their application to the extraction of connected structures is more
challenging because local perturbations may affect the structure
globally, breaking the Markovian property necessary for efficient
RJMCMC sampling. Prior work attempted to extract geometric
structures by designing the point process energy such that it
encourages neighboring objects to connect. For example, Lacoste
et al. [18] and Sun et al. [19] extract line networks by encouraging
line segments to form a graph, while Drot et al. [20] segment im-
ages by encouraging triangles to form a tessellation. However, this
strategy does not scale well because the probability of sampling
objects that connect together decreases quickly with the number
of objects. To the best of our knowledge, junction-point processes
[11] is the only solution designed to extract structures that are
well-connected by construction. As illustrated in Figure 3-right,
junction-point processes exploit the ∼neighborhood relationship
of Equation 2 to define a graph over p, where edges link pairs of
neighboring points. A subset of edges is then selected to form a
planar graph, which represents the output line network. However,
a planar graph should not contain crossing edges. Enforcing this
topological constraint makes RJMCMC sampling of junction-
point processes very slow because a large majority of perturbations
yield crossings.

3 DELAUNAY POINT PROCESSES

As discussed in the previous section, existing attempts to extract
structures with point processes were strongly limited in their
ability to enforce the connectivity of the structure elements. We
address this challenge by embedding the point process into a
Delaunay triangulation from which we extract structures as groups
of edges or triangles. Since the triangulation forms a tesselation
of the image plane, our structures are well-connected by construc-
tion. While a few studies also combined spatial point processes
with Delaunay triangulations [21], [22], they only demonstrated
the synthesis of point configurations. In contrast, we augment
Delaunay Point Processes with point, edge and facet parameters
to extract geometric structures from images.

3.1 Delaunay-Based Neighborhoods
The Delaunay triangulation of a point configu-
ration p subdivides the image domain K into
triangles such that no point in p is inside the
circumcircle of any triangle. Figure 4-left shows
the Delaunay triangulation of the same point
configuration as in Figure 3.
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Fig. 4. Delaunay Point Processes. Contrary to traditional point pro-
cesses, pairs of interacting points are defined more naturally by a
Delaunay triangulation instead of an arbitrary distance parameter ε (left).
Exploiting such a geometric meta-structure allows us to partition the
image domain into complex polygons by jointly labeling the triangles
(middle) or to extract planar graphs by jointly labeling the edges (right).
We add the four corner points of Domain K to p for computing the
Delaunay triangulation so that K is entirely partition by triangles.

We denote the set of edges and facets of the Delaunay
triangulation of p as C2(p) and C3(p) respectively. This trian-
gulation offers a convenient neighborhood relationship ∼D for
point processes: two points are neighbors if they are connected by
an edge in the Delaunay triangulation

pi ∼D pj = {(pi, pj) ∈ p2 : (pi, pj) ∈ C2(p)}. (7)

We define Delaunay Point Processes as Markovian point pro-
cesses supported by the Delaunay neighborhood ∼D. Delaunay
Point Processes inherit from several interesting properties of the
Delaunay triangulation:

• Parameter-free neighborhood. Traditional point processes
require a parameter to specify the area of attraction of the
neighborhood relationship. Tuning this parameter is often
problem-dependent and strongly impacts result quality. In-
stead, Delaunay edges connect neighboring points without
requiring any parameter.

• Geometric guarantees. Delaunay triangulations maximize
the minimum angle of all the angles of the triangles in
the triangulation, and thus tends to avoid skinny triangles.
This property is especially beneficial to reduce imprecision
when measuring radiometric quantities over the pixels
covered by a triangle, as is the case in our applications
to object contouring (Section 4.2) and image compression
(Section 4.3).

• Uniqueness. The Delaunay triangulation of a point set
is unique, unless four or more points are inscribed on
the same circle, which is very unlikely when the point
coordinates are expressed in floating point precision. This
property implies that sampling a point set is equivalent to
sampling a triangulation.

• Efficient sampling. Perbubations during RJMCMC sam-
pling, e.g. removing or adding a point in p, only af-
fects the Delaunay triangulation locally. Moreover, such
perturbations correspond to the basic operators offered
by existing computational geometry libraries to modify
Delaunay triangulations [6].

• Flexibility. The Delaunay triangulation is a flexible geo-
metric representation to address numerous Vision prob-
lems. As illustrated on Figure 4, we can select edges of
the triangulation to represent line-networks, we can group
triangles to represent closed contours, or we can assign
labels to the triangles to segment the image into parts.

3.2 Marks and Energy Formulation
Similarly to marked point processes, we tackle the extraction
of extended geometric structures by associating parameters –
or marks – to the elements of the Delaunay point process.
However, while traditional marked point processes only associate
parameters to points, we also associate parameters to the edges
and facets formed by the points. This novel feature of Delaunay
point processes is key to extract well-connected line-networks and
polygons, which are better expressed via edges and triangles than
via punctual primitives.

We denote a geometric structure as x = (p,m) where p
defines the geometric configuration of the triangulation, while m
represents the set of additional parameters on the triangulation
elements. For example, m can identify active edges for line-
network extraction, or assign different labels to facets for polygo-
nal object segmentation (Figure 4). Note that m can also take real
values such as colors, as demonstrated in our application to image
compression (Section 4.3).

Our study of various structure extraction tasks led us to
formulate a generic energy U for Delaunay point processes, which
we express as the sum of two terms balanced by a parameter
α ∈ [0, 1]

U(x) = (1− α)Ufidelity(x) + αUprior(x). (8)

The first term, Ufidelity(x), measures the agreement of the
configuration with image data. For instance, it can measure the
alignment of the Delaunay edges with image contours for line
network extraction, as detailed in Section 4.1. The second term,
Uprior(x), encodes shape priors on the structures we wish to
extract. In the example of line network extraction, Uprior can
penalize acute angles between successive edges to favor smooth
polylines. These two terms can be expressed with local energies
on points, edges and facets of the Delaunay triangulation. Note
that U not only measures the quality of an output structure x, but
also accounts for the quality of the underlying triangulation p.

3.3 Sampling procedure
We use the RJMCMC algorithm detailed in Algorithm 1 to search
for a good approximation of the optimal configuration. In all our
applications, the sampling operates on configurations of geometric
structures x = (p,m), which live in a wider space than the
point configurations p. We now propose three kernels to explore
this configuration space: birth or death of a point, relocation of a
point, and alteration of a mark. Each of these operators only affect
a configuration x locally, which is critical for efficient evaluation
of the energy variation at each iteration (Equation 3).

Birth and death kernel adds or removes a point from p,
as detailed in Section 2. In computational geometry terms, it
inserts or removes a vertex from the Delaunay triangulation as
illustrated in Figure 5. In practice, we give birth and death the
same probability (Pb = Pd = 0.5). In case of a death, we select
one of the points from p randomly. In case of a birth, we create
a new point in the image domain K . While we could draw the
position of this point from a uniform distribution, this is often
inefficient for Vision applications where the structures of interest
lie along image contours. We achieve much faster sampling by
following a distribution specified by image gradients. Once a
vertex is added (respectively removed), we update the marks of
its adjacent edges and facets by uniform sampling from the mark
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domain.

birth

death

Fig. 5. Birth and Death kernel. A birth inserts a new vertex in the
triangulation and recomputes the edge connectivity around it by applying
edge flips recursively until the circumcirle condition is valid everywhere.
A death removes a vertex and its adjacent edges and reconnect its
adjacent vertices so that the circumcirle condition is valid.

Point relocation modifies the position of a random point in
p. We make this operator efficient by constraining the point to
remain in its safety domain, which corresponds to the domain
in which a vertex can move without producing edge flips in the
Delaunay triangulation (Figure 6). We draw the new position of
a vertex p from a uniform distribution over the safety domain.
As the safety domain for the reverse move is identical, the kernel
ratio in the Green rate (Equation 3) is equal to 1. Note that this
kernel does not modify the marks of the configuration.

Fig. 6. Safety domain for point relocation. The blue region (left) corre-
sponds to the region where the red vertex can move without entering the
circumcirle of another triangle, i.e. without flipping the blue edges. The
red region (middle) corresponds to the region where the red vertex can
move without leaving the circumcirle of any three successive adjacent
vertices, i.e. without flipping the red edges. The safety domain, drawn
with a black border (right), is the intersection of the blue and red regions.
In this example, the blue region lies entirely inside the red region,
although this is not true in the general case.

Mark alteration changes the value of a mark in m. In
practice, we randomly select a point, an edge or a facet of the
Delaunay triangulation depending on which type of element the
marks are associated with. We then draw a new random value for
the mark following a uniform distribution. The kernel ratio is thus
equal to 1.

In practice, we give equal probability to the three kernels at
each iteration of Algorithm 1, i.e. qm = 1

3 . They play different
roles during the sampling procedure. Birth and death is the
core operator to simulate Delaunay triangulations with varying
complexity, and to access any configuration of the solution space.
Point relocation and mark alteration allow local adjustments that
would take many iterations to obtain using solely birth and death.
As illustrated in Figure 7, using only the birth and death kernel
gives a fast energy decrease at the beginning of the optimization as

Energy

Iterations

120

60

0

-60

-120
0 2× 103 4× 103 6× 103 8× 103

Fig. 7. Energy decrease with different combinations of kernels. A better
energy is reached with our combination of three kernels than with just a
birth and death kernel or with the three kernels with uniform birth.

the Delaunay vertices quickly align with the main image gradients.
However, the energy reaches a high plateau later on, when the
low temperature prevents the sampling to propose successive
births and deaths that would be necessary to eventually displace
a point to another position, or replace a mark by another one.
Including the point relocation and mark alteration kernels allows
the optimization to decrease the energy further. Figure 7 also
shows that the optimization reaches high quality configurations
faster when we guide the birth kernel with the image gradients
instead of distributing new points uniformly.

4 APPLICATIONS

We now demonstrate the versatility of Delaunay point processes
on three Vision tasks involving geometric structures: line-network
extraction, object contouring, and mesh-based image compression.
We provide for each application a brief discussion of related work.

4.1 Line-network extraction

Line networks form important structures in many application
domains such as medical imaging (vessel networks), remote sens-
ing (road networks), document analysis (line drawings). While
many pixel-based algorithms have been proposed to detect such
structures [23] or separate its components, e.g. strokes in line
drawings [24], pixel chains often need to be vectorized for further
analysis of the resulting planar graph. Several methods rely on
a two-step procedure to extract planar graphs by first generating
an overcomplete graph that is later simplified using optimization
[25], [26], [27], [28], [29]. In contrast, our approach samples
dynamic planar graphs over the image without resorting to a fixed,
overcomplete intermediate representation.

Given the Delaunay triangulation of a point configuration p,
we model a line-network by associating each edge with a binary
activation variable indicating if it belongs to the structure or not.
Formally, we define the mark space as m = (me)e∈C2(p) with
me ∈ {0, 1} the activation mark of edge e. We denote C̃2(p) the
set of active edges in C2(p).

Energy. We design the data fidelity term
to encourage active edges to align with strong
image gradients. To do so, we define for each
active edge e ∈ C̃2 an energy term that mea-
sures the strength of the image gradient and its
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alignment with edge e. Summing over all active
edges gives

Ufidelity(x) =
∑

e∈C̃2(p)

1

|Se|
∑
i∈Se

exp(−µ|∇I(i) ·ne|)−γ (9)

with Se the pixels covered by e,∇I(i) the image gradient at pixel
i, and ne the unit vector orthogonal to edge e (see inset).The
parameter µ controls the sensibility to image noise, and γ is an
offset to make the unary term negative for strong well-aligned
gradients, which encourages their capture by the end structure.
We set µ = 8 and γ = 0.5 in our experiments.

We design the shape prior to penalize isolated edges, short
edges, and sharp angles between adjacent edges. The two last
criteria prevent the line network to zigzag over image contours.
We achieve this behavior with two terms, wl(e) measuring the
length of edges and wc(p) evaluating the connectivity of active
edges at vertices

Uprior(x) =
∑

e∈C2(p)

wl(e) + β
∑
p∈p

wc(p). (10)

Parameter β balances these two terms, we fixed it to 1 in our
experiments.

We define the edge length penalty wl(e) to be close to
1 when the edge is shorter than a threshold, and close to 0
otherwise. While we could use a Heaviside function to model this
penalty, such as discontinuous energy would hinder the stochastic
optimization. We use instead a smooth sigmoid function of the
form Sa,b(|e|) = (1 + exp (a( 2|e|

b − 1)))−1 with |e| the edge
length and a, b two real values. In our context, b corresponds to
the desired minimal length of edges, which we typically fix to
5% of the image diagonal in our experiments. We set the positive
constant a to 5 to shape the sigmoid like a smoothed Heaviside
function.

The connectivity penalty wc(p) should penalize both isolated
active edges and pairs of active edges forming sharp angles. We
achieve this behavior by setting wc(p) = 0 if vertex p has no
adjacent active edge, wc(p) = 1 if vertex p has one (i.e. isolated)
adjacent active edge, and wc(p) = Sa,b(δ(p)) if vertex p has
more than one adjacent active edge, where δp is the maximal
value of dot products between any pair of active edges around p.
We set a = 5 and b = cos( π12 ) in our experiments.

Experiments. We applied our model to extract line networks
from different application domains, such as vessels in organic
images (retina in Figure 1, leaf in Figure 10), pen strokes in line
drawings (Figure 8), regular edge patterns in man-made textures
(tiles in Figure 10). Our model performs well on this diverse set
of images thanks to its generic fidelity term, which only depends
on image gradients (Equation 9). The insets in Figure 8 show that
our model extracts clean line intersections from rough drawings.
Recovering such topological information is a necessary step for
many line drawing vectorization algorithms [27], [28].

A major strength of our approach over existing two-steps
strategies is its ability to jointly recover the geometric configu-
ration of the Delaunay triangulation and identify its active edges.
Figure 9 illustrates the benefits of this joint procedure compared to
a two-steps method that first estimates the position of the vertices,
and then estimates the activation of the edges. We implemented
the first step by sampling points according to an energy that
encourages them to be on strong image gradients and to form

Fig. 8. Vectorization of line-drawings. Our Delaunay point process re-
covers the center-line of sketchy pen strokes in bitmap line drawings
(active edges shown in red). The insets shows that our model produces
well-connected structures even in the presence of multiple overlapping
strokes and complex regular patterns.

long edges, i.e. Ufidelity(x) =
∑
p∈p(1 − |∇I(p)| − γ) and

Uprior(x) =
∑
e∈C2(p)

wl(e). Note that we cannot encourage
alignment of the edges to image gradients at this point, since
we don’t know yet which edges will form the end structure.
The second step identifies these active edges by minimizing
the complete energy (Equation 9 and 10) using only the mark
alteration kernel of RJMCMC to keep the triangulation fixed.
The comparison shows that the two-steps approach often misses
line junctions in the final network because such junctions are not
captured by the triangulation during the first step.

Fig. 9. Comparison with a two-steps optimization for line drawing vec-
torization. When sampling points independently of the marks (middle),
edges of the Delaunay triangulation often miss important line junctions,
which cannot be recovered by a subsequent marking step. Our Delau-
nay point process samples points and marks jointly, which favors the
emergence of a well-connected line network (right).

Figure 10 and Table 1 provide qualitative and quantitative
comparisons of our model to existing line-network extraction
methods based on point processes. Using a marked point process
with line segments [30] results in many isolated segments as
the algorithm struggles to enforce connectivity. Junction-point
processes [11] better model connectivity, but have difficulties
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Input Ground Truth Marked point process [30] Junction-point process [11] Ours

Fig. 10. Visual comparisons with existing point processes. Marked point process [30] produces configurations of mostly disconnected line-segments.
Junction-point process [11] better preserves the connectivity of edges but recover badly complex junctions of at least four branches (see junctions
in tiles). Our Delaunay point process exhibits better connectivity and accuracy for both cyclic (bottom) and acyclic (top) line-networks.

TABLE 1
Quantitative comparisons with existing point processes. Our Delaunay

point process outperforms marked point process [30] and junction-point
process [11] in terms of precision and F-measure while being faster.

Precision F-measure Time

Le
af

Junction-point process [11] 0.59 0.64 73s
Marked point process [30] 0.76 0.70 33s
ours 0.79 0.73 20s

Ti
le

s Junction-point process [11] 0.46 0.54 227s
Marked point process [30] 0.67 0.72 103s
ours 0.70 0.74 70s

extracting high degree junctions such as the crossings of the tiles.
Our method extracts well-connected networks and gives higher
precision scores.

We evaluated our algorithm quantitatively on the first 100
images of the Berkeley segmentation dataset BSDS500 [31],
which provides ground truth contour lines drawn by five humans
on each image. While our basic formulation relies on the image
gradient magnitude to locate lines (Eq. 9), we used a more accurate
boundary probability map for this experiment [32]. We ran our
algorithm on each image several times to produce a range of
results with different output compactness. We measure accuracy
as the mean Intersection-over-Union scores of our pixelized output
against the five provided ground truths. We measure compression
as the percentage of vertices of the output planar graph with
respect to the average number of pixels of the ground truth
boundaries. Tab. 2 shows how accuracy evolves in function of
compression.

We compared our algorithm with three approaches capable
of producing planar graphs likes ours. For a fair comparison,
all approaches use the same boundary probability maps in the
experiments, i.e. those produced with the method by Isola et al.
[32]. The first approach (weighted OT), simplifies pixels chains
into planar graphs using an optimal transport formulation where
pixels are weighted by their boundary probability [26]. The second
approach (binary OT) first applies adaptive thresholding [33] on
the boundary probability map to only operate the simplification by
optimal transport [26] on pixels with high boundary probability.
The last approach (Edge Contraction) binarizes the boundary
probability map by adaptive thresholding [33], chains pixels with
a high boundary probability using a Delaunay Triangulation, and

TABLE 2
Quantitative evaluation on BSDS500. Our method is competitive with
different dedicated pipelines. In particular,our accuracy is higher than
the one of the Weighted Optimal Transport (OT) pipeline [26] when

output complexity becomes very low, i.e. when compression is lower
than 3%.

Compression
1% 2% 3% 4% 5%
A

cc
ur

ac
y Weighted OT 0.16 0.194 0.22 0.236 0.241

Binary OT 0.135 0.161 0.179 0.184 0.187
Edge Contraction 0.142 0.148 0.164 0.177 0.194
ours 0.185 0.208 0.223 0.231 0.238

operates edge contraction with a cost function set as the edge
length [6]. Tab. 2 shows our method is competitive with these
three approaches. In particular, by discarding weak discontinuities,
binary OT and Edge contraction baselines reduce pixel chaining
ambiguities on strong discontinuities but produce results with
lower accuracies than our method and the weighted OT baseline.
The accuracy of the latter drops at high compression rates where
vertices start connecting across uniform image regions. For such
cases, weighted OT tends to draw edges across uniform regions,
while our simplified line-networks remain consistent with the
image content since we explicitly account for both the connectivity
of the network and its distance to the input image data. Fig. 11
provides a visual comparison of this behavior at low compression
rates.

4.2 Object contouring

Object contouring by polygonal shapes provides a compact and
structure-aware representation of the object silhouette. Polygonal
contours are particularly well suited to represent man-made ob-
jects like buildings, cars or furniture that are dominated by straight
segments. Existing object polygonalization methods typically start
by detecting line-segments, which are then assembled into poly-
gons. This second step can be done by searching for cycles in a
graph of line-segments [2], or by connecting line-segments using
gap filling [1]. Another strategy for object contouring consists in
over-segmenting the image before extracting objects as groups of
superpixels [34]. However, obtaining polygonal objects with this
strategy either requires a preprocessing step to convert pixels or
superpixels into small polygons [35] [36], or a post-processing
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Fig. 11. Visual comparisons on line-network extraction at low compres-
sion rates. Our method produces a compact line network that captures
the dominant boundaries of the image (top). In contrast, the dedicated
pipeline based on optimal transport [26] often connects vertices across
uniform regions (bottom).

step to vectorize chains of pixels into polygons [37], which often
introduces inaccuracy. Recent work considered the use of recurrent
neural networks to sequentially predict the vertices of a polygonal
object contour [38], but such a black-box algorithm offers little
control on the complexity of the outcome. Closer to our work
are Polygonal Markov Fields [39], which are stochastic models
designed to sample polygons in images. Based on local operators
that add or remove vertices to a polygon, these models struggles
to explore topological variations and remain very slow to converge
on natural images. Our model also shares ideas with the work of
Ren et al. [40] who builds on a constrained Delaunay triangulation
to fill gaps in object contours. However, they formulate contour
completion as an edge labeling task on a fixed triangulation,
while our method lets the triangulation evolve dynamically to best
capture the object contour.

To achieve polygonal object contouring within our framework,
we associate each facet of the Delaunay triangulation with a
binary activation variable indicating if it belongs to the object or
not. The output polygonal contours correspond to the set of edges
separating active polygons from inactive ones, which ensures
that the contours are closed by construction. Formally, we define
the mark space as m = (mf )f∈C3(p) with mf = {0, 1} the
activation mark of triangle f . We guide the object segmentation
with a pixelwise probability map H . The computation of this
probability map depends on the application scenario, as detailed
in our experiments.

Energy. We express our data fidelity energy as the sum of
two terms, one measuring the agreement between the binary mark
of each facet and the underlying probability map, the other one
encouraging homogeneous colors within each facet to preserve
image contours

Ufidelity(x) =
1

|I|
∑

f∈C3(p)

∑
i∈f

(1−H(i|mf )) + β1 |I|f |σ2
I|f

(11)
where |I| is the number of pixels of image I , |I|f | is the number
of pixels inside facet f , σ2

I|f
∈ [0, 1] is the normalized variance

of pixel colors inside facet f , and H(i|mf ) is the probability of

assigning mark mf to pixel i. The parameter β1 balances the two
terms, we fixed it to 1 in our experiments.

Our shape prior for object contouring uses the same term as
for line network extraction to penalize short edges. In addition, we
define a smoothness term based on Potts model to favor compact
polygons. Summing the two terms gives

Uprior(x) =
∑

e∈C2(p)

wl(e) + β2 ws(e) (12)

where the edge length penalty wl(e) is defined as in equation 10,
and ws(e) = |e| if the two facets adjacent to edge e have different
marks, and ws(e) = 0 otherwise. The parameter β2 balances the
two terms, we fixed it to 1

|I| in our experiments.

Experiments. We tested our contouring model on the Berkeley
segmentation dataset [31] as well as on images with regular man-
made structures, such as facades and urban aerial photographs.
For each input image, we compute the probability map H from
a few user-provided scribbles, which roughly characterize the
radiometric distribution of the foreground objects of interest and
the image background. We express the probability H(i|mf ) of a
pixel i to belong to class mf as its normalized RGB distance to
the closest color in the set of scribbled pixels belonging to that
class

H(i|mf ) =

min
j∈Smf

‖I(i)− Î(j)‖22

min
j∈S0

‖I(i)− Î(j)‖22 + min
j∈S1

‖I(i)− Î(j)‖22
(13)

where S0 (respectively S1) is the set of pixels scribbled as
foreground (resp. background), and Î is the input image convolved
by a 11×11 mean filter to remove noise. Note that more advanced
methods could be used to predict foreground and background
pixels, but this is beyond the scope of this paper.

α = 0.5, |p| = 51 α = 0.005, |p| = 221 α = 0.0005, |p| = 771

Fig. 12. Trade-off between fidelity and simplicity. Parameter α offers
control over the complexity of the output polygon. A low α value gives
more weight to the fidelity term of the energy, resulting in more complex
polygons that tightly fit to the object silhouettes.

Figure 12 illustrates the trade-off between fidelity and sim-
plicity for different values of parameter α, keeping the Poisson
parameter fixed. Although we cannot control the exact number of
edges in the output polygons, tuning α has a direct impact on
polygon complexity. Figure 13 shows the results of this model
on a variety of images with organic and man-made shapes. Our
method extracts low-complexity polygons that accurately capture
the object silhouettes, despite the simplicity of our color model
H . Our method performs best on man-made objects composed
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Fig. 13. Object contouring on a few example images. Our Delaunay point process samples polygons that capture the silhouettes of foreground
objects. The user first draws a few scribbles that roughly characterize the objects of interest (blue lines) and the image background (red lines).
Output polygons preserve details, such as the flower petals and the vase handles, while having low complexity.

of piecewise-linear contours, such as the facade elements in the
street-level picture and the roofs in the aerial picture.

Figure 14 provides a visual comparison to several two-steps
strategies, for an increasing number of user scribbles. We first
compare to a pixel-based segmentation algorithm (GrabCut [41]),
which requires many scribbles to capture fine details accurately.
In contrast, our approach achieves better segmentations with fewer
scribbles by working at the scale of Delaunay triangles. Converting
the GrabCut pixel segmentation to a polygon as a post-process [37]
reduces accuracy further. We also compare to running GraphCut
segmentation [42] on a graph of polygonal superpixels [35], using
H(i|mf ) for the unary term and a Potts model for the pairwise
term. However, we only obtained satisfactory results when using
small superpixels, which result in very complex output polygons.
In contrast, our method achieves both high accuracy and low
polygon complexity, even when very few scribbles are provided.

We tested our algorithm on the first 100 images of the HKU-IS
dataset proposed by Li and Yu [43] for evaluating salient object
detection methods. To avoid providing foreground and background
scribbles for each image, we replaced the color model used in our
basic formulation (Eq. 13) by the saliency map returned by the
automatic algorithm of Li and Yu [43]. We measure accuracy as
the Intersection-over-Union score of our pixelized output fore-

TABLE 3
Quantitative evaluation on HKU-IS dataset. Our method outclasses

two-step pipelines in which object extraction and geometry
simplification are performed independently.

Compression
5% 6% 7% 8% 9%

A
cc

ur
ac

y Contour vectorization 0.73 0.77 0.81 0.83 0.84
Voronoi 0.71 0.73 0.75 0.76 0.77
Voronoi with regularization 0.7 0.71 0.72 0.73 0.74
ours 0.76 0.8 0.84 0.86 0.87

ground region against ground truth. We measure compression as
the percentage of vertices of the output polygons with respect to
the number of pixels of the ground truth region boundary. Tab. 3
shows how accuracy evolves in function of compression.

We compared our method with several two-step pipelines that
produce polygonal contours. These pipelines exploit the same
saliency maps in the experiments, i.e. those produced by the
method of Li and Yu [43]. The first pipeline (contour vectoriza-
tion) consists in i) extracting pixel-based regions by thresholding
the saliency map and ii) simplifying the chains of pixels of the
region contours into polygons using the Douglas-Pecker algorithm
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Input scribbles [41] [41] + [37] [35] + [42] Ours

Fig. 14. Visual comparisons with two-steps object contouring methods given different sets of input scribbles. The GrabCut pixel-based segmentation
[41] requires many input scribbles to correctly capture horse silhouettes (see the bottom parts of the legs). Converting the output pixel chains to
polygons using Douglas-Peucker algorithm [37] accentuates their defects, whereas pre-segmenting the input image into polygonal superpixels [35]
only give satisfactory results when small superpixels are used, i.e. for high output complexity. In contrast, our Delaunay point process produces low
complexity polygons that accurately capture the horses, even when only two scribbles are provided.

[37]. The second pipeline (Voronoi) exploits the inverse strategy:
the image is first simplified into a Voronoi diagram using a
polygonal decomposition method [35] before extracting polygon-
based regions by thresholding the saliency map averaged over each
cell of the diagram. The last pipeline (Voronoi with regularization)
is a variant in which the thresholding operation has been replaced
by a graph-cut approach that explicitly favors simple output
polygons. The three pipelines perform object extraction and ge-
ometry simplification independently. Voronoi with regularization
improves the visual quality of output polygons with respect to
thresholded Voronoi, but produces slightly less accurate polygons.
The contour vectorizaton pipeline produces more accurate results
than Voronoi when the saliency map is of high quality. The
accuracy values obtained at different compression rates are higher
for our method because it is able to merge regions to achieve the
best accuracy/compactness trade-off.

4.3 Image compression

Our third application consists in representing an image as a
colored triangular mesh, as illustrated in Figure 15. While this
geometric representation is not as flexible as wavelet-based com-
pression schemes [44], we show that it achieves competitive com-
pression rates on images dominated by smooth color variations
(Figure 17). Our approach is inspired by prior work on Delaunay-
based image compression [45], [46], [47], image vectorization
[48], and image stylization [49]. However, existing methods em-
ploy heuristic or greedy strategies to define the location of the
Delaunay vertices. In contrast, Delaunay point processes allow us
to jointly optimize the position and color of the vertices to best
balance image reproduction with image compression.

We represent a color image as a Delaunay triangulation, where
each vertex is associated to a color and each triangle interpolates
the colors of its vertices bilinearly. Formally, we define the mark
space as m = (cp)p∈p where cp is a RGB color. Since we

assume that the Delaunay triangulation is uniquely defined by its
vertices, we can store the image compactly as a list of colored
points.

Fig. 15. Image compression by Delaunay point process. A Delaunay
triangulation with only 2.8K colored points (right) is sufficient to approxi-
mate a 262Kpixels image (left) with a structural similarity (SSIM) greater
than 0.97. Each triangle is colored by bilinear interpolation of its three
vertices. Here we display the Delaunay edges in grey for visualization.

Energy. We design the point process energy to offer a trade-
off between fidelity to the input image and simplicity of the output
mesh. The fidelity term measures the per-pixel error between input
and output,

Ufidelity(x) =
1

|S|
∑
i∈S
||I(i)− Ix(i)||22, (14)
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Fig. 16. Parameter α offers a trade-off between visual quality and compression rate. A high α value preserves high frequency details and sharp
discontinuities, but gives a low compression rate. Highly compressed results (bottom) expose the underlying triangulation, especially on fine details
and regular patterns such as the building facades.

where S is the set of pixels of input image I and Ix is the
image reconstructed from configuration x using bilinear color
interpolation over each triangle. Ufidelity can be seen as a sum
of unary data terms on each facet. The shape prior penalizes the
number of points in the configuration,

Uprior(x) =
|p|
λ
, (15)

where |p| is the number of points in configuration x and λ is the
Poisson parameter of the point process.

Experiments. We implemented the algorithm with the birth
and death and point relocation kernels described in Section 3.3.
However, we found that we can avoid using the mark alteration
kernel by computing the optimal color of a mark every time the
corresponding point is created or relocated. We compute this color
by minimizing Equation 14 over the pixel domain covered by the
facets adjacent to the point.

Figure 16 illustrates the effect of parameter α, which weights
Ufidelity and Uprior according to Equation 8. A low α preserves
well the input image but generates complex configurations, with
typically more points than the Poisson parameter. Increasing α
yields simpler configurations where fine details are removed.

We compare the performance of our model to state-of-the-
art image compression algorithms in Figure 17. We perform this
comparison on images with varying levels of realism and noise (a
clipart, a studio photograph, and a real-world photograph). Since
our model represents an image as a piecewise-linear function, it
performs best on cliparts that are often composed of linear color
gradients. Our approach is also competitive on studio photographs

that contain large, uniform highlights and soft shadows with little
image noise. However, our approach tends to smooth-out the
high-frequency grain of real-world photographs, achieving a low
SSIM score on such images. Note that, similarly to other vector
graphics representations, our colored meshes can be rasterized at
any resolution. This model does not outperform the best image
compression algorithms on real-world images, but it illustrates the
diversity of applications for which Delaunay Point Processes can
be used.

5 DISCUSSION

We have introduced Delaunay Point Processes for the extraction of
2D geometric structures composed of line segments or polygons.
By building on point processes, our approach simultaneously
detects geometric primitives and group them into structures, which
is more robust than performing these two tasks in sequence. By
building on the Delaunay triangulation, our approach produces
well-connected structures and allows more efficient stochastic
optimization than point processes based on an Euclidean distance
neighborhood. Our three applications demonstrate the flexibility
of this framework. We now detail the performance of our method
and give some design guidelines for practitioners who would like
to apply it to other structure extraction tasks.

Performance. Because the RJMCMC sampler is memoryless,
Delaunay point processes are very memory efficient with a
constant memory allocation during sampling. Running times
range from a few seconds, e.g. for the extraction of horse
silhouettes on Figure 14, to a few minutes, e.g. for the
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Fig. 17. Comparisons with state-of-the-art image compression algorithms. Our method competes well with image compression standards on
synthetic images (top) and, to a lesser extent, on studio photographs (middle). Our use of bilinear color interpolation inside triangles is well suited
to the smooth color variations of synthetic images. However, this interpolation tends to remove the fine grain of real world photographs (bottom).
As a result, our approach achieves low SSIM scores on the portrait, even though its tendency to smooth out noise may be appreciated in some
applications.

compression of the parrots on Figure 16. Timings depend on the
input image size and, to a lesser extent, on the complexity of
the energy formulation. In particular, the line-network extraction
model requires more iterations to converge than our two other
models. The design of kernels tailor-made for manipulating
Delaunay triangulations allows us to reach attractive timings
compared to traditional point processes, especially with the use of
an efficient computational geometry library [6]. Note that recent
work proposed faster optimization strategies for point processes,
such as parallel Monte Carlo samplers [30] and binary labeling of
object proposals [50], although these approaches make restrictive
assumptions on the energy. Sampling Delaunay point processes
in parallel would require an efficient GPU implementation of
Delaunay data-structures, which is currently not available in
standard geometry libraries.

Design guidelines. We have identified several guidelines to

follow to develop efficient models for Delaunay Point Processes.

• Small mark space. The mark space should only contain
a few discrete values to allow efficient exploration by
random mark alterations. While our model for image com-
pression relied on the much larger space of 24bits colors,
we resorted to a closed-form optimization to estimate the
mark value instead of random sampling.

• Simple energy. Simple energy formulations improve con-
vergence stability. In particular, we recommend using (i)
no more than three energy terms to avoid unstable pa-
rameter tuning, and (ii) as-continuous-as-possible energy
functions so that the Monte Carlo sampler better guides
the current configuration into interesting energy valleys.

• Application-specific kernels. Although the birth and death
kernel is theoretically sufficient to explore the entire con-
figuration space, application-specific kernels often greatly
speed-up the optimization. In particular, data-driven ker-
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nels can concentrate perturbations in the interesting areas
of the input data, e.g. on the high image gradients when
extracting line-networks.

• Reasonably-sized images. Because the Monte Carlo sam-
pler operates sequentially, timings are strongly impacted
by the input image resolution. We obtained competitive
performances by running Delaunay point processes on
images with a few million pixels. The parallelization of
Delaunay point processes constitutes an important re-
search challenge to scale to high-resolution images.

Perspectives. Besides the optimization challenges, an inter-
esting direction for future research would be to develop efficient
strategies for marking Delaunay point processes with parametric
functions. This would allow the extraction of more complex
geometric structures, such as networks of Bezier curves for line
drawing vectorization, or non-linear color gradients for image
compression. We also would like to investigate the extension of
Delaunay point processes to 3D, opening the door to many vision
problems that involve the extraction of surfaces and volumes.
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