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Figure 1: Re-renderings of materials captured using a single flash picture (top-left) and our deep acquisition method.

ABSTRACT

Texture, highlights, and shading are some of many visual cues
that allow humans to perceive material appearance in pictures. De-
signing algorithms able to leverage these cues to recover spatially-
varying bi-directional reflectance distribution functions (SVBRDFs)
from a few images has challenged computer graphics researchers
for decades. I explore the use of deep learning to tackle lightweight
appearance capture and make sense of these visual cues. Our net-
works are capable of recovering per-pixel normals, diffuse albedo,
specular albedo and specular roughness from as little as one picture
of a flat surface lit by a hand-held flash. We propose a method
which improves its prediction with the number of input pictures,
and reaches high quality reconstructions with up to 10 images — a
sweet spot between existing single-image and complex multi-image
approaches. We introduce several innovations on training data ac-
quisition and network design, bringing clear improvement over the
state of the art for lightweight material capture.
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1 INTRODUCTION

The appearance of real-world objects results from complex inter-
actions between light, reflectance, and geometry. Disentangling
these interactions is at the heart of lightweight appearance capture,
which aims at recovering reflectance functions from one or a few
photographs of a surface. This task is inherently ill-posed, since
many different reflectances can yield the same observed image. For
example, any photograph can be perfectly reproduced by a diffuse
albedo map, where highlights are “painted” over the surface. A com-
bination of two strategies is generally employed to deal with this
ill-posedness. First, ambiguity can be reduced by collecting addi-
tional measurements under different viewing or lighting conditions.
While this strategy is currently the most appropriate to achieve
high accuracy, it requires precise control of the acquisition process
[Xu et al. 2016]. The second strategy is to introduce a priori assump-
tions about the space of plausible solutions. While designing such
priors by hand has challenged researchers for decades [Guarnera
et al. 2016], Convolutional Neural Networks (CNNs) have emerged
as a powerful method to automatically learn effective priors from
data.

We propose a deep learning approach to lightweight appearance
capture, where we use forward rendering simulations to train a
neural network to solve the ill-posed inverse problem of estimating
a spatially-varying bi-directional reflectance distribution function
(SVBRDF) from one or a few photographs of a flat surface lit by a
hand-held flash. While our method shares ingredients with recent
work on material capture [Li et al. 2017; Rematas et al. 2017], mate-
rial editing [Liu et al. 2017], and other image-to-image translation
tasks [Isola et al. 2017], achieving high-quality SVBRDF estimation
requires several key innovations on training data acquisition and
neural network design.

The task of our deep networks is to predict four maps corre-
sponding to per-pixel normal, diffuse albedo, specular albedo, and
specular roughness of a planar material sample using near-field
flash-lit photographs as input. Flash photographs are easy to ac-
quire, and have been shown to contain a lot of information that can
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be leveraged in inferring the material properties from one [Aittala
et al. 2016] or multiple images [Riviere et al. 2016].

This work is a summary of our recent contributions to the light-
weight material capture domain [Deschaintre et al. 2018, 2019]. By
combining Deep Learning, Computer Vision and Computer Graph-
ics knowledge we design convenient material acquisition systems
and improve the state of the art results quality.

2 PROCEDURAL SYNTHESIS OF TRAINING
DATA

While several recent papers have shown the potential of synthetic
data to train neural networks [Richter et al. 2016; Su et al. 2015],
care must be taken to generate data that is representative of the
diversity of real-world materials we want to capture. We address
this challenge by leveraging Allegorithmic Substance Share [Alle-
gorithmic 2019], a dataset of more than 800 procedural SVBRDFs
designed by a community of artists from the movie and video game
industry.

We curated a set of 155 high-quality procedural SVBRDFs from
9 material classes from which we generated around 1,850 variants
by applying random perturbations to their important parameters.

Instead of pre-rendering a fixed set of training data, we imple-
mented our own SVBRDF renderer in TensorFlow, so that it can
be called at each iteration of the training process. At each step, we
augment our dataset through random crop and convex combina-
tions of random pairs of SVBRDFs by using a-blending on their
maps. The mixing greatly increases the diversity of low-level shad-
ing effects in the training data, while staying close to the set of
plausible real-world materials, drastically reducing the chance of
the network seeing the same material twice.

While rendering our training data on the fly incurs additional
computation, we found that this overhead is compensated by the
time gained in data loading. In our experiments, training our system
with online data generation takes approximately as much time as
training it with pre-computed data stored on disk.

3 ONE IMAGE NETWORK ARCHITECTURE

Our problem boils down to translating a photograph of a mate-
rial into a corresponding SVBRDF map representation, which can
be represented as a multi-channel image. The U-Net architecture
[Ronneberger et al. 2015] has proven to be well suited for a wide
range of similar image-to-image translation tasks [Isola et al. 2017].
However, our early experiments revealed that despite its multi-scale
design, this architecture remains challenged by tasks requiring the
fusion of distant visual information. We address this limitation by
complementing the U-Net with a parallel global features network
tailored to capture and propagate global information.

3.1 U-Net Image-to-Image Network

We adopt the U-Net architecture as the basis of our network design,
and follow Isola et al. [2017] for most implementation details. Note
however that we do not use their discriminator network, as we did
not find it to yield a discernible benefit in our problem.

Our base network takes a 3-channel photograph as input and
outputs a 9-channel image of SVBRDF parameters — 3 channels for
the RGB diffuse albedo, 3 channels for the RGB specular albedo,
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2 channels for the x and y components of the normal vector in
tangent plane parameterization, and 1 channel for the specular
roughness. The input image is processed through a sequence of
8 convolutional layers that perform downsampling (the encoder),
followed by a sequence of 8 upsampling and convolutional layers
(the decoder).

3.2 Global Features Network

Distant regions of a material sample often offer complementary
information to each other for SVBRDF recovery. This observation
is at the heart of many past methods for material capture, such
as the recent work of Aittala et al. [2015] where spatial repeti-
tions in the material sample are seen as multiple observations of
a similar SVBRDF patch. Taking inspiration from these successful
heuristics, we aim for a network architecture capable of leveraging
redundancies present in the data.

The hourglass shape of the U-Net results in large footprints of the
convolution kernels at coarse spatial scales, which in theory provide
long-distance dependencies between output pixels. Unfortunately,
we found that this multi-scale design is not sufficient to properly
fuse information for our problem. We hypothesize that the ability
of the network to compute global information is partly hindered by
instance (or batch) normalization, which standardizes the learned
features after every convolutional layer by enforcing a mean and
standard deviation learned from training data.

We propose a network architecture that simultaneously addresses
both of these shortcomings. We add a parallel network track along-
side the U-Net, which deals with global feature vectors instead of
2D feature maps. The global and convolutional tracks exchange
information after every layer.

Each pair of these information exchanges forms a nonlinear
dependency between every pixels, providing the network with
means to arrive at a consistent solution by repeatedly transmitting
local findings between different regions.

3.3 Rendering Loss

The parameterizations of popular BRDF models arise from a com-
bination of mathematical convenience and relative intuitiveness
for artists, and the numerical difference between the parameter
values of two (SV)BRDFs is only weakly indicative of their visual
similarity.

We therefore propose a loss function that is independent of the
parameterization of either the predicted or the target SVBRDF,
and instead compares their rendered appearance. Specifically, any
time the loss is evaluated, both the ground truth SVBRDF and the
predicted SVBRDF are rendered under identical illumination and
viewing conditions, and the resulting images are compared pixel-
wise. We use the same Cook-Torrance BRDF model [1982] for the
ground truth and prediction, but our loss function could equally be
used with representations that differ between these two quantities.

We use our in-tensorflow renderer to implement the rendering
loss. This strategy has the benefits of seamless integration with the
neural network training, automatically-computed derivatives, and
automatic GPU acceleration.

Using a fixed finite set of viewing and lighting directions would
make the loss blind to much of the angular space. Instead, we
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formulate the loss as the average error over all angles, and follow
the common strategy of evaluating it stochastically by choosing
the angles at random for every training sample, in the spirit of
stochastic gradient descent.

We compare the logarithmic values of the renderings using the [;
norm. The logarithm is used to control the potentially extreme dy-
namic range of specular peaks, and because we are more concerned
with relative than absolute errors.

While the training a network with only a [; loss produces plausi-
ble maps when considered in isolation, these maps do not reproduce
the appearance of the ground truth once re-rendered. In contrast,
the rendering loss yields a more faithful reproduction of the ground
truth appearance.

4 MULTI-IMAGE CAPTURE

While we are able to achieve plausible results with a single image
in many cases, one image is often not enough to capture the rich
appearance of real-world material. We propose an architecture
capable of aggregating the information available in any number of
pictures, while maintaining a high level of convenience.

4.1 Capture Setup

We designed our method to take as input a variable number of
images, captured under uncalibrated light and view directions. We
consider two capture setups where we place the material sample
within a white paper frame and capture it by holding a smart-
phone in one hand and a flash in the other, or by using the flash
of the smartphone as a co-located light source. Similarly to Hui
et al. [2017], we use the four corners of the frame to compute an
homography that rectifies the images, and crop the paper pixels
away before processing the images with our method.

4.2 Multi-image architecture

Since we are targeting a lightweight capture scenario, we do not
provide the network with any explicit knowledge of the light and
view position. We rather count on the network to deduce related
information from visual cues. The core of our method is a multi-
image network composed of several copies of our single-image
network -described in 3). The number of copies is dynamically
chosen to match the number of inputs provided by the user (or the
training sample). All copies are identical in their architecture and
weights, meaning that each input receives an identical treatment by
its respective network copy. The findings from each single-image
network are then fused by a common order-agnostic pooling layer
before being processed into a joint estimate of the SVBRDF.

4.3 Multi-image fusion

The second part of our architecture fuses the multiple feature maps
produced by the single-image networks to form a single feature
map of fixed size.

Specifically, the encoder-decoder track of each single-image net-
work produces a 256 X 256 X 64 intermediate feature map corre-
sponding to the input image it processed. These maps are fused
into a single joint feature map of the same size by picking the maxi-
mum value reported by any single-image network at each pixel and
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feature channel. This max-pooling procedure gives every single-
image network equal means to contribute to the content of the joint
feature map in a perfectly order-independent manner [Aittala and
Durand 2018].

The pooled intermediate feature map is finally decoded by 3
layers of convolutions and non-linearities, which provide the net-
work sufficient expressivity to transform the extracted information
into four SVBRDF maps. The global features in the fully-connected
tracks are max-pooled and decoded in a similar manner.

5 RESULTS

We show results of our one image method on two different materi-
als with strong spatial variations in Fig. 2. We illustrate how the
inferred material quality improves over more inputs provided in
Fig. 3.

6 CONCLUSION

In my thesis work, I present a number of contributions to the light-
weight material acquisition problem. We introduce two network
architectures allowing to conveniently capture real world materi-
als with as little as one image, while being able to leverage more
information if available.
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Figure 2: Based on the input photographs (left), our method has recovered a set of SVBRDF maps that exhibit strong spatially
varying specular roughness and albedo effects. The gold-colored paint (top) and the highly glossy black tiles (bottom) are
clearly visible in the re-renderings of SVBRDF under environment illumination (right).
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Figure 3: Evaluation on a measured BTF. Three images are enough to capture most of normal and roughness maps. Adding
images further improves the result by removing lighting residual from the diffuse albedo, and adding subtle details to the
normal and specular maps.
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