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Abstract

Traditional photo-realistic rendering requires intensive manual and computational
effort to create scenes and render realistic images. Thus, creation of content for high quality
digital imagery has been limited to experts and highly realistic rendering still requires
significant computational time.

Image-Based Rendering (IBR) is an alternative which has the potential of making
high-quality content creation and rendering applications accessible to casual users, since
they can generate high quality photo-realistic imagery without the limitations mentioned
above.

We identified three important shortcomings of current IBR methods: First, each
algorithm has different strengths and weaknesses, depending on 3D reconstruction quality
and scene content and often no single algorithm offers the best image quality everywhere
in the image. Second, such algorithms present strong artifacts when rendering partially
reconstructed objects or missing objects. Third, most methods still result in significant
visual artifacts in image regions where reconstruction is poor.

To tackle the first problem, we propose a Bayesian IBR algorithm, which chooses
between different rendering algorithms in each image region, by making the best
quality/speed trade-off. This selection is performed in a pre-process, by evaluating
rendering quality according to distance in geometry and color via a leave-one-out strategy
on the input images. Our method results in significant speedup in rendering time,
permitting the use of this approach on mobile devices.

For the second problem, we focus on the case of reflective objects which are hard to
reconstruct, such as cars. The key insight is to replace these poorly reconstructed objects
with models from existing rich 3D CAD databases, and subsequently align them to the
input images. We adapted deep learning-based algorithms to a multi-view context to obtain
the 3D model present in the databases which is closest to the object seen in the images. We
formulate two optimizations using all available information to finely position and orient the
model and adapt it to image contours. Our method provides much higher quality rendering
results of such objects compared to previous solutions.

Finally we present initial ideas on two ways to measure and correct the error introduced
by poorly reconstructed regions in IBR in wide-baseline multi-view scenes, either with
hand-crafted descriptors or a deep learning approach. Initial results show promise for
improving the quality of depth and thus IBR.

Overall, this thesis addresses significant shortcomings of IBR for both speed and image
quality, offering novel and effective solutions based on selective rendering, learning-based
model substitution and depth error prediction and correction.
Keywords: Image-based rendering and modeling, Rendering, Bayes methods,
Estimation, MVS reconstruction Shape-preserving Warp, Superpixels, Deep
Learning.
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Résumé

Le rendu photo-réaliste traditionnel exige un effort manuel et des calculs intensifs pour
créer des scènes et rendre des images réalistes. C’est principalement pour cette raison
que pourquoi la création de contenus pour l’imagerie numérique de haute qualité a été
[est ] limitée aux experts et le rendu hautement réaliste nécessite encore des temps de
calcul significatifs. Le rendu basé image (IBR) est une alternative qui a le potentiel de
rendre les applications de création et de rendu de contenus de haute qualité accessibles
aux utilisateurs occasionnels, puisqu’ils peuvent générer des images photo-réalistes de
haute qualité sans subir les limitations mentionnées ci-dessus. Nous avons identifié trois
limitations importantes des méthodes actuelles de rendu basé image: premièrement, chaque
algorithme possède des forces et faiblesses différentes, en fonction de la qualité de la
reconstruction 3D et du contenu de la scène, et un seul algorithme ne permet souvent
pas d’obtenir la meilleure qualité de rendu partout dans l’image. Deuxièmement, ces
algorithmes présentent de forts artefacts lors du rendu d’objets manquants ou partiellement
reconstruits. Troisièmement, la plupart des méthodes souffrent encore d’artefacts visuels
significatifs dans les régions de l’image où la reconstruction est de faible qualité.

Pour répondre au premier problème, nous proposons un algorithme IBR Bayésien,
qui sélectionne pour chaque région de l’image, parmi différents algorithmes de rendu,
celui permettant d’obtenir le meilleur rapport qualité / temps de calcul. Cette sélection
est effectuée dans une phase de pré-traitement, en évaluant la qualité du rendu en
fonction de la distance en termes de géométrie et de couleur, par l’intermédiaire d’une
stratégie de validation croisée sur les images d’entrée. Notre méthode permet d’obtenir
une accélération significative des temps de rendu, rendant possible l’utilisation de cette
approche sur des appareils portables. Pour le deuxième problème, nous nous concentrons
sur le cas des objets réfléchissants, qui sont difficiles à reconstruire, tels que les voitures.
L’idée clé consiste à remplacer ces objets mal reconstruits par des modèles 3D, provenant
des bibliothèques de modèles CAO de bonne qualité, et d’aligner ces modèles avec les
images d’entrée. Nous avons adapté des algorithmes de "deep-learning" dans un contexte
multi-vues pour obtenir le modèle 3D issu des bases de données qui soit le plus proche
de l’objet présent dans les images. L’estimation de la pose (position et orientation) et
l’adaptation du modèle 3d sont formulés comme 2 problèmes d’optimisation qui prennent
en compte l’ensemble de l’information disponible: images, contours, 3d. Notre méthode
fournit des résultats de qualité supérieure aux solutions existantes pour le rendu de tels
objets. Enfin, nous présentons une première réflexion sur la manière de mesurer l’impact
des erreurs de reconstruction 3d sur le rendu basé image dans un contexte où les points de
vue d’acquisition sont éloignés. Nous avons exploré deux approches. La première utilisent
des descripteurs Daisy et la seconde utilisant le deep learning. Dans l’ensemble, cette thèse
propose plusieurs améliorations significatives du rendu basé image aussi bien en terme de
vitesse de rendu que de qualité d’image. Ces nouvelles solutions sont basées sur le rendu
sélectif, la substitution de modèle basé sur l’apprentissage, et la prédiction et la correction
des erreurs de profondeur.
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Chapter 1

Introduction

Contents
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . . . 6

In computer graphics, rendering refers to the process of generating 2D images from a
model of the scene, with applications in video games, film industry, scientific visualization
among others. Traditionally, the model of the scene is composed by 3D geometry, material
properties (including textures, normal maps, bump maps etc.), lights and animations for
dynamic scenes. Rendering algorithms are then applied to produce the final image.
Two well-known techniques are Scan-line Rasterization and Ray Tracing. Scan-line
Rasterization geometrically projects the scene to an image plane while Ray Tracing
algorithms intersect rays emanating from the camera with the geometry of the scene to
find the visible point at each pixel. Global illumination algorithms often use ray-tracing
to implement physically-based techniques and simulate the interaction between light and
materials (Pharr & Humphreys, 2004). Nowadays, with exhaustive detailed modeling of
the scene, ray tracing algorithms are very close to achieving one of the most important goal
of computer graphics: realism (see Fig. 1.1).

Figure 1.1: Realistic rendering applied to film industry. Right: Virtual middle age city created
for the series Games of Thrones. Left: Scene from The Jungle Book (2016). "The computer graphics
character Baloo is so large and furry, he took almost five hours of rendering time per frame".

The process of modeling geometry, defining and assigning materials and lights is very
complex. Depending of the size of the scene, it requires weeks of laborious work and
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expertise to precisely define material properties, geometric details, etc. The degree of
realism is heavily influenced by the number of primitives used in describing the scene.
Some automatic methods have been developed to overcome manual efforts of creating
scenes.

For geometry capture, examples include technologies for precise surface acquisition,
like laser scanners, which however are still inaccessible to casual users and are too
expensive for small business. Others, like Kinect-based solutions, present problems in
open exterior spaces; the resulting meshes often need to be refined and completed by
skillful artists. Another option is image-based reconstruction which might not offer enough
accuracy and completeness for high-quality photo-realistic rendering, and currently does
not easily allow material capture.

Material capture has also evolved in recent years, allowing acquisition of some
properties from photographs. Most such solutions however involve controlled lighting,
or laboratory setups and are not yet mature enough to substitute manual material creation
for synthetic scenes. Overall, current techniques for geometry and material capture do not
allow easy creation of synthetic digital assets and manual work of the artist is still central.

Once the scene is prepared, global illumination algorithms can render views from
a desired camera position and direction. These algorithms require an enormous
computational effort. Per single frame, it may take hours to simulate indirect light since
a huge number of samples is required for accurate computation. Consequently, precise
geometry plays a primary role in the simulation. For interactive graphics application,
global illumination is still very expensive. Normally, such methods have been use off-line,
for example, for film production.

In summary, correctly creating a scene for realistic rendering is a long process that
requires expertise and long manual treatment. Despite many recent advances in rendering
algorithms, expensive lighting simulation is still required to achieve realism. Content
creation for traditional renderers face a trade-off between detailed complex models and
time-to-deliver while rendering algorithms always provide a trade-off between rendering
time and final image quality.

In this thesis, we focus on image-based rendering algorithms which avoid both the
time-consuming content creation phase and expensive lighting simulation. Evidently, such
approaches suffer from limitations, namely reduced image quality when moving away from
input views, and large memory requirements. We provide new solutions to address these
limitations.

1.1 Context and Motivation

In this context, content creation for rendering has evolved to more casual procedures,
making graphics technologies available to wide number of users. For example, Computer
Assisted Design (CAD) tools like SketchUp1 allow easy creation of rough 3D graphics.
With applications like Autodesk 123D2 everyone can obtain 3D models of real objects

1http://www.sketchup.com
2http://www.123dapp.com
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from a set of photographs taken with mobile phones. The Tango project3 enables mobile
devices with an on-board Time-of-Flight camera to provide point clouds of the scene.
Large databases of 3D objects with semantic annotations are continuously increasing like
ShapeNet4 and Objectnet3D5. All these are examples of new sources of content that can be
potentially used for high-quality rendering.

Figure 1.2: Casual content creation. Right: Acquisition with Autodesk 123D. Center: Tango
device. Left: Some instances of 3D models available in ShapeNet database.

With this heterogeneous content, rendering algorithms have to adapt to integrate
these kind of models into the rendering process and deal with imperfect geometric data.
Image-based Rendering (IBR) presents an alternative in such scenarios where the difficulty
of producing realistic models of real environments is greatly reduced by replacing the entire
rendering process with image interpolation, assisted by 3D reconstruction from images.
Instead of relying on 3D geometry, predefined material characteristics and a subsequent
complex lighting simulation, IBR uses information contained in photographs to synthesize
novel view-points of the scene. Another way to see the IBR paradigm is that “Nature
already simulates light and material interactions with the right model for free”. This is one
of the informal principles of IBR, namely that 3D geometry plays a secondary role while
2D images are directly used at rendering time to look up information of possible novel
view appearance.

How we sample this information (rays, pixels, superpixels), where we take the
information (which cameras, which regions?) and how we blend that information are
central elements of the different IBR approaches. Another important component is how
much geometry is involved in this process.

In Fig. 1.3 we present an abstraction of the general IBR process. By encoding the model
in photographs, IBR tries to solve core problems of computer graphics: First, the need
for simpler modeling techniques so the representation becomes independent from scene
complexity. Second, the need to dissociate the rendering time from scene complexity.

A very popular – but simplistic – IBR application is Google Street View, where the
user can move to discrete locations to see environment maps of streets. Microsoft has also
developed successful IBR commercial applications with Photosynth6 and Hyperlapse7. In

3https://get.google.com/tango
4https://shapenet.cs.stanford.edu
5http://cvgl.stanford.edu/projects/objectnet3d
6https://photosynth.net
7http://research.microsoft.com/en-us/um/redmond/projects/hyperlapseapps
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Figure 1.3: Abstraction of an Image-based Rendering algorithm. Input: A set of cameras Ci

and input images Ii (preferably with unstructured capture); the goal of IBR is to generate an image
I “as seen” from the novel camera Cn. Approximate geometry of the scene (Proxy) can be used in
the process. Output: Synthesized view I.

the former, the user can interpolate between the photographs. In the latter, an algorithm
optimizes a smooth camera trajectory and synthesizes a smooth video sequence from
very shaky time lapses. All applications mentioned above restrict the rendering path to
the positions of input views, while IBR methods that allow free-view point navigation
make assumptions about the scene geometry. For instance, Street View assumes spherical
projections of the world, while in Photosynth the user must use “a type of shooting” (spin,
panorama, wall, walk) and thus making assumptions about scene geometry.

Recent IBR algorithms try to compensate for geometric errors by adapting the scene
geometry in preprocessing or regularizing the synthesized view at render time. The key
concept is visual plausibility: a generated view does not need to be physically correct but
plausible to the human eye (Zitnick & Kang, 2007). Methods that correct misalignments
can be based on optical flow (Eisemann et al., 2008), interpolate in world space from 2D
correspondences (Lipski et al., 2014), or use piece-wise regularization to preserve local
shape (Chaurasia et al., 2013). All of them process an initial approximate and incomplete
3D reconstruction; the creation of this "proxy" is considered a preprocessing step of the
IBR algorithm.

In recent years, concurrently with this thesis, we have seen an accelerated progress
of image synthesis using machine learning techniques. Rematas et al. (2014) and Zhou
et al. (2016) have attempted to predict the appearance of novel views. Although their
contributions have applications for inpainting and other vision tasks, their results are not
good enough for high quality graphics as we can be seen in Fig. 1.4. Nonetheless, deep
learning algorithms have reached a high level of robustness and accuracy for detection
tasks. Thus, they can be used as a powerful tool to interpret image content and can be
used in conjunction with large sources of available 2D and 3D data collections in order to
enhance rendering.

Image-based rendering is related to, but quite different from Image-based modeling
(IBM) (Xiao et al., 2008, 2009; Micusik & Kosecka, 2009). The latter refers to the use
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Figure 1.4: View synthesis with learning methods. Top row: View synthesis of Zhou et al.
(2016). Input view (left) and Synthesized view (right). Bottom row: View synthesis of Rematas
et al. (2014). Input view (left) and Synthesized view (right).

of images to drive the creation of explicit 3D models with textures mapped on this 3D
model, consistently with the reference views. For IBM the rendering algorithm is a separate
and independent process. As mentioned previously, IBM assets usually require manual
post-processing (e.g., addition of materials) before being used in a traditional rendering
engine. The Vanishing of Ethan Carter8 is an example of a video game where most assets
where acquired with IBM. Although IBR and IBM are orthogonal subjects, the natural way
to acquire the scene geometry is through IBM, particularly, we are interested in acquisition
with consumer level hand-held cameras due the simplicity and availability which might
extend the range of users who use IBM.

1.2 Problem Statement

In spite of the big advances in free view-point IBR during the current decade there is
still room for improvement. In a standard pipeline for IBR without user intervention,
the process starts with camera calibration, multi-view stereo and mesh reconstruction. In
reality, each of theses steps can be incomplete and includes inaccuracies and errors. Even
under perfect reconstruction information, one would ideally need an infinite number of
photographs to freely render every view-point of the scene. In this thesis, we are interested
in sparse casual capture, for example 10 to 30 photographs for a walk-through of 10-30
meters. Reconstructions and IBR methods have to make assumptions about the world to fill
the lack of information. The relationships of all mentioned process with the final rendered
image are very complex with many interdependent components.

In this thesis, we are interesting in urban scenes that represent a special challenge and
use case because:

8http://ethancartergame.com
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• Such scenes contain complex geometry (e.g. vegetation, specularities,
transparencies, etc.) with complex appearance of different objects.

• Active cameras do not work in exteriors and so, multi-view stereo is required.

• Urban scenes need scalability. Scene size is large (compared for example to
single-object capture), the number of cameras must be limited and the result should
not require manual intervention.

Under these conditions, the goal of this thesis is to propose new approaches to improve
high-quality image-based rendering of urban scenes acquired with hand-held cameras and
free-viewpoint navigation. The unique restriction we have to capture is a static scene with
fixed illumination. We address three main problems:

• Given a set of IBR algorithms, each of them has different quality/speed trade-offs
and no single algorithm is better than all others. We investigate how to combine
them so the final image has the best quality-speed trade-off.

• We investigate how to improve rendering of poorly reconstructed objects for IBR
scenes given databases of 3D CAD models.

• We provide some initial results on identifying and correcting poorly reconstructed
regions in IBR scenes.

1.3 Contributions and Overview

The rest of this thesis is structured as follows. In Chapter 2 we review the history of
image-based rendering methods and group them in a taxonomic classification. In chapter
Chapter 3 we present a principled way to choose amongst a set of IBR algorithms for each
image region. This allows to maximize rendering quality while keeping or increasing the
speed. Our real-time implementation has low computational requirements which allowed
high quality Image-based Rendering on mobile platforms. In chapter Chapter 4 we present
the first approach able to automatically augment IBR using objects from 3D databases.
In per-processing, a 3D CAD model is selected from a database. The model is aligned
to image content and morphed to finely adapt it to image silhouettes. We applied our
methods to cars which are often poorly reconstructed, and the resulting IBR quality is
greatly improved. In chapter Chapter 5 we attempt to identify unreliable reconstruction
information that affects rendering. We discuss two different approaches. First we use
an image descriptor that detects regions with extra or missing geometry. In the second
approach, we train a deep network with synthetic data to identify imprecise reconstruction.
Chapter 6 concludes the thesis, and presents some possible directions for future work.

Thesis context This thesis was in the context of the EU project CR-PLAY9, which
focused on providing a usable IBR system for game development. As we will describe

9www.cr-play.eu
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in Chapter 3, our work was actually used by game developers as part of an evaluation
workshop, and provided concrete evidence of the potential of IBR in a real-world
application.
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It has been more than two decades since Image-Based Rendering has emerged as an
alternative to polygon-based rendering. Since then, although IBR has been an active field
of research, few surveys have been presented (Shum & Kang, 2000; Zhang & Chen, 2004;
Shum et al., 2008; Lipski et al., 2015). Usually, IBR taxonomies are presented according to
the accuracy and amount of geometry required by the different algorithms. The spectrum
of methods varies from algorithms that do not require any geometry, IBR methods that
use image correspondences (implicit geometry) to methods that require detailed explicit
geometry (see Fig. 2.1). This continuum reveals that the number of reference views needed
is inversely proportional to the available geometry.

Another way to classify IBR input data requirements is by considering the capture
setup. IBR capture setups have been heavily influenced by the evolution of Computer
Vision (3D reconstruction and image analysis). We could divide IBR methods circa the

Figure 2.1: Taxonomy proposed by Shum & Kang. From left to right: IBR algorithms that do
not use any geometry require a high number of images while algorithms that use detailed geometry
need a small number of images.
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year 2000. Initial methods (see Section 2.1) either used synthetic images or involved
a specific setup, often with user intervention. Low complex scenes or very restricted
navigation were also common. In Section 2.2 we mention some reconstruction algorithms
that influenced an evolution to unstructured casual captures with more complex scenarios
and greater freedom in viewpoints permitted for navigation. Then, in Section 2.3 we
present modern algorithms more related to our context.

2.1 Initial IBR Methods

In a systematic way, Adelson & Bergen (1991) tried to derive the early visual cues1

that are involved in the human vision process. Their work influenced researchers in the
Computer Vision and Graphics communities during the 90's (Levoy & Hanrahan, 1996;
Gortler et al., 1996; McMillan & Bishop, 1995; Shum & He, 1999; Chai et al., 2000).
Adelson and Bergen showed that all the basic visual measurements can be characterized
as local changes of a single function called the plenoptic function2. The plenoptic function
P(Vx,Vy,Vz, θ, φ, λ, t) has 7 dimensions and describes the radiance perceived from all
positions (Vx,Vy,Vz) and directions (θ, φ) for every possible wavelength λ at the time t.
If we only consider static scenes (thus dropping t) with fixed light conditions (dropping λ),
it takes the form: P(Vx,Vy,Vz, θ, φ) see Fig. 2.2a.

(a) (b) (c) (d)

Figure 2.2: (a) Plenoptic eye: For static scenes with fixed light conditions, what the eye sees
at position (Vx,Vy,Vz) and direction (θ, φ) can be considered a sample of the plenoptic function
(McMillan & Bishop, 1995). (b) Top-view of a panoramic capture. (c) Top-view of Lumigraph
style of capture. (d) Relationship between Lumigraph and an arbitrary pixel (Gortler et al., 1996).

Initial IBR approaches tried to explicitly sample the plenoptic function (McMillan &
Bishop, 1995; Levoy & Hanrahan, 1996; Gortler et al., 1996). Previously, Chen & Williams
(1993) and Laveau & Faugeras (1994) had demonstrated that sequences of synthetic images
can be used to represent a scene as in Fig. 2.3. In between novel views could be created
by interpolating the color and position of pixels for which dense optical flow was known
beforehand. McMillan & Bishop (1995) were the first to use real scene photographs. They

1Visual cues -motion, color, orientation, binocular disparity, etc.- before a higher level visual process that
involves the memory.

2From the Latin plenus, meaning complete or full, and the Greek opticus meaning vision
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Figure 2.3: Interpolation from synthetic views in Chen&Williams. Interpolated view (middle)
from the two synthetic source images (in the corners).

captured cylindrical panoramic (see top view in Fig. 2.2b). They could render cylindrical
projection at discrete locations by stitching photographs, similarly to QuickTime VR
(Chen, 1995). These systems are only capable of describe image variations due to view
rotations. View translations can only be approximated by “jumping” discretely from one
environment map to another (location of the capture) comparable to what is nowadays
Google Street View.

Levoy & Hanrahan (1996) and Gortler et al. (1996) simultaneously presented a 4D
parametrization of the plenoptic function called Light Field or Lumigraph respectively.
They encoded the scene's light rays by their intersection with two parallel planes st− plane
(near to cameras locations) and UV − plane (behind the object of interest). Levoy
& Hanrahan acquisition was done by densely sampling a regular grid on the st plane.
Novel views could be render by querying rays and interpolating between them. Some
commercial implementation of Light Fields cameras (Lytro camera3) allow to focus in
different points of the photographs after the photo has been taken. While Levoy &
Hanrahan used an electronic setup to regularly acquire photographs, Gortler et al. allowed
a semi-unstructured capture around the object (see Fig. 2.2c) and marker-based calibration
cameras to map camera positions toward the st plane. They also allowed the use of
approximate geometry to restrict and correct the queried rays (to alleviate self-occlusions
and quantization error). Thanks to this parametrization and capture setup, Light fields
and Lumigraph systems can navigate around objects contained in between the two planes
(Fig. 2.2d). For Lambertian surfaces this representation has a high degree of redundancy
because they store many rays that intersect the object surface at the same point and
therefore, represent the same color.

Another group of methods use explicit geometry in the form of polygonal meshes
(Debevec et al., 1996) or dense depth (Mark et al., 1997), (Shade et al., 1998). Debevec
et al. recover a scene “proxy”, i.e., a simple geometric representation, from geometric
primitives drawn by users. The accuracy of the recovered model is improved by
computing re-projection offsets. This rendering algorithm texture mapped the recovered
geometry with blending weights depending on the novel camera position. That was called
View-Dependent Texture Mapping (VDTM) (Debevec et al., 1998) and it is still used in

3https://www.lytro.com
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(a) (b)

Figure 2.4: (a) Reconstruction method of Debevec et al.: Left: A photograph with user marked
edges. Center: The model recovered by their photogra-metric modeling method. Right: A synthetic
view generated using VDTM. (b) 2D Warp of Mark et al.: In black, areas of the scene that were
occluded are now exposed due to warping from a reference view. Multiple reference frames can be
composited to fill the gaps.

modern IBR algorithms to select and synthesize color keeping view-depending effects (see
Fig. 2.4). To increase frame rates in remote display graphic applications, Mark et al. (1997)
presented a forward warping IBR system. Instead of sending polygons to the client every
frame, Mark et al proposed to send rendered reference views. Using z-values at each
pixel a dense triangle mesh is constructed for the two reference views and with Chen &
Williams forward warp them to the novel in-between position. Normal vectors and z-values
at each pixel are used to locate false connections across edges of occluding and occluded
surfaces. The new view is composed filling dis-occlusion holes. Another representation to
fill dis-occlusion caused in forward mapping methods was presented by Shade et al. (1998).
Shade et al called this representation Layered Depth Images (LDI). A LDI is a view of a
scene from a single input camera but with multiple depth pixels along each line of sight.
Depth pixels are revealed to fill holes along with view position changes.

The afore-mentioned IBR methods involved complicated capture (or use of synthetic
data) and tedious user intervention. At the same time, they are restrictive in the navigation.
Before going into more modern IBR systems, in Section 2.2 we give a brief overview of
some reconstruction algorithms that allowed the evolution of IBR system.

2.2 Implicit and Explicit Reconstruction for IBR

In general, image-based rendering approaches that use geometry produce better rendering
results. As mentioned before, geometric information could be presented implicitly in the
form of correspondences between pairs of images (in Section 2.2.2) or explicitly with 3D
reconstructions (in Section 2.2.1). In both cases, the natural way to obtain the scene
geometry for IBR is through conventional photographs themselves without any further
user intervention or specific device. At early stages, for each image, implicit and explicit
reconstruction approaches detect interest points, match them and filter outliers. SIFT
(Lowe, 2004) and SURF (Bay et al., 2006) are well established local descriptors for interest
points due to their invariance to image transformations. Inspired from SIFT, Tola et al.
(2010) designed a fast descriptor for dense matching that reports remarkable robustness for
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wide baseline camera setups. With a set of matched features, what is done after depends on
the type of desired geometry. Correspondence methods use matched features to seed and
propagate dense pixel-wise matches. 3D reconstruction methods use matched features to
firstly calibrate input cameras and generate a sparse set of depth samples, then iteratively
expand and filter 3D samples (stereopsis) and finally generate a mesh that approximates
the scene geometry (proxy).

2.2.1 3D Reconstruction (Explicit geometry)

To be consistent with IBR, image-based reconstruction systems leverage only the
information available in photographs. They start with a set of calibrated input views.
Parameters of calibrated cameras are usually estimated with Structure from Motion (SfM).
Structure from motion Tomasi & Kanade (1992) provides 3D point correspondences given
2D point matches in two or more images, and provides the camera matrices for these views.

The output of a SfM system is a sparse set of 3D points (structure) and camera
parameters (motion). It was not until Snavely et al. (2006) presented a system called Photo
tourism that SfM reached maturity and robustness to be used effectively with outdoor urban
scenarios. Photo tourism allows navigation in a large collection of community photographs,
with transitions from one view to another depending on their relative position. Snavely
et al. (2006) iteratively refined the SfM optimization by minimizing re-projection error
(Bundle adjustment4). Parallel implementations of SIFT feature detection (Wu, 2007)
and Bundle adjustment (Wu et al., 2011) are available in the VisualSFM5 tool. Other
implementations of recent SfM methods that report more precision and robustness by
automatically adapting SfM parameters (Moulon et al., 2012) are available in the library
OpenMVG6.

Given a set of calibrated cameras, recovering the static 3D information of a scene is
one of the most active areas in Computer Vision. For complete and well known reviews
of two-view and multi-view stereo techniques, see Scharstein & Szeliski (2002) and Seitz
et al. (2006) respectively.

Multi-View Stereo The baseline of a stereo system is the relative distance between the
cameras's optical centers with respect to the depth of the scene. In Fig. 2.5 we can see
two different baseline configurations. Okutomi & Kanade (1993) showed that using wider
baselines produces several local minima on the matching score along epipolar lines. They
proposed a window-based search along the corresponding epipolar line and as a search
parameter (window size), they used inverse depth relative to the reference image. To
resolve ambiguities, Okutomi & Kanade searched along the epipolar line of more than one
neighboring view. Since then, stereo systems use multiple views (Multi-View) (Furukawa
& Ponce, 2010; Goesele et al., 2007; Jancosek & Pajdla, 2011) to improve matching
robustness. As a drawback, this strategy implies to choose a reference view (which could
be virtual) and to deal with occlusions.

4refers to the bundle of light rays leaving each 3D feature and converging on each camera center.
5http://ccwu.me/vsfm/
6http://imagine.enpc.fr/~moulonp/openMVG/
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Beside window-based stereo reconstruction, contour-based or voxel-based methods
have been explored. An example of these alternatives is the Space Carving algorithm
(Kutulakos & Seitz, 2000) that relies on silhouette extraction and initialization of a
bounding box around an object of interest. Also, Space Carving needs to close the loop
of capture; it is thus not suitable for open spaces as in street views reconstructions and
requires more views than patch-based algorithms.

For IBR, rather than accuracy of reconstruction, desirable properties are robustness and
scalability. Goesele et al. (2007) were able to extract dense depth maps from community
photograph collections with high variability in the photo content. A globally consistent
point cloud was obtained by merging depth maps. Another popular reconstruction was
presented by Furukawa & Ponce (2007, 2010). From the center of calibrated cameras
and starting with a sparse set of initial matches, they iteratively expand matches to nearby
locations toward the exterior of the images while using visibility constraints to filter out
false matches. If we would like to represent surfaces as triangular meshes we could use the
point or patch clouds resulted from Goesele et al. or Furukawa & Ponce to feed a surface
reconstruction algorithm as Floating Scale (Fuhrmann & Goesele, 2014) or traditional
Poisson reconstruction (Kazhdan et al., 2006).

Although Goesele et al., Furukawa & Ponce and other approaches proposed different
algorithms, the final 3D reconstructions are fairly similar (see Fig. 2.6b and Fig. 2.6c)
because they all assume diffuse materials (Lambertian model) and thus they measure
photo-consistency validity. “Holes” usually appear in specular surface such as the windows
and car in Fig. 2.6a and in busy texture such as the tree and bushes in Fig. 2.6a.

The power of IBR is precisely to be able to render view dependent effects and
complex surfaces without having a detailed 3D model. By definition these surfaces are
not photo-consistent. Even though they are poorly supported in the point cloud, they
represent real parts of the scene. Jancosek & Pajdla (2011) can roughly approximate
weakly supported surfaces by leveraging visual-hulls to reconstruct them. Improvement
in reconstruction of these non photo-consistent surfaces can be seen in Fig. 2.6d.

Width of
a pixel

Center of the cameras Center of the cameras

Width of
a pixel

Figure 2.5: Two baselines configurations. On the right we have a larger baseline than on the left.
The search space along the epipolar line of the is bigger (red dashed) in the right-hand configuration.



2.2. Implicit and Explicit Reconstruction for IBR 15

(a) (b)

(c) (d)

Figure 2.6: Different reconstructions for a 10 view dataset. (a) One out of 10 input images. (b)
Point cloud of PMVS reconstruction Furukawa & Ponce (2007). (c) Mesh of MVE reconstruction
Goesele et al. (2007). (d) Mesh of CMPMVS reconstruction Jancosek & Pajdla (2011).

Piece-wise Planar Man-made scenes present strong regularities that can be
approximated with piece-wise geometry. Also, planarity assumptions overcome the
challenge when reconstructing texture-less surfaces. With this in mind, Zitnick &
Kang (2007) and Sinha et al. (2009) presented two approaches designed specifically for
image-based rendering. Instead of trying to extract physically correct depth, Zitnick &
Kang observed that one can synthesize plausible views from view-dependent piece-wise
planar depth maps. They also observed that preserving contours was crucial for plausible
view synthesis and thus they presented a color based over-segmentation algorithm to
precisely delineate object boundaries. Dividing input images in a regular grid (seeds),
they grouped neighboring pixels color using a simple K-means clustering. Although this
superpixel over-segmentation was originally presented by Zitnick & Kang, the version of
Achanta et al. (2010, 2012), named SLIC - Simple Linear Iterative Clustering, became
popular due the availability and efficient implementation limiting the range of search of
K-means. Depth estimation at the superpixel level is more robust than at the pixel level. For
each segment, Zitnick & Kang estimate depth solving a MRF on superpixel segments. For
rendering, they assumed fronto-parallel segments with respect to the input camera where
they belong.
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Figure 2.7: Overview of the system of Sinha et al.: Multiple planes are robustly extracted from
sparse 3D points and lines; piecewise planar depth maps are then generated by graph-cut based
energy minimization.

Differently, Sinha et al. (2009) extracted dominant planes of architectural scenes (see
Fig. 2.7). Instead of constraining planes to orthogonal scene configurations with the
Manhattan world assumption (Furukawa et al., 2009), Sinha et al. detect vanishing
directions from point clouds. Vanishing directions serve to reconstruct 3D lines that will
support the 3D planes. Finally they solve a graph-cut energy to assign pixels to planes with
photo-consistency, depth and visibility cues. For rendering they used VDPM (Debevec
et al., 1998). These reconstructions can appear incorrect for non planar objects such as
vegetation and clutter.

To overcome this problem, Gallup et al. (2010) generate plane hypothesis from depth
maps with traditional top-down RANSAC. They fuse overlapping maps across the views to
obtain a globally consistent set of plane hypothesis. To assign pixels to planes, Gallup et al.
minimizes a graph-cut labeling energy that includes a non-planar label. The non-planar
label was found with supervised learning, trained with hand-labeled non-planar regions
using traditional Computer Vision features.

2.2.2 Correspondences (Implicit geometry)

Per-pixel correspondences between photos is still an unsolved problem in natural scenarios.
Dense optical flow works only for very narrow baselines. Wider baselines require
awareness of preserving spatial discontinuities and tolerance to appearance changes.
Analogous to dense optical flow, SIFT flow (Liu et al., 2011) matches densely sampled,
pixel-wise SIFT features between two images. Many false matches makes this method
not good enough for rendering purposes by itself, but it has been used in hybrid algorithm
(Lipski et al., 2014).

The group of M. Magnor has developed several methods for view synthesis by
interpolation, using correspondences based on geometry. Motivated by the way humans
perceive motion, Stich et al. (2008, 2011) presented a piece-wise homography warp. The
most important properties to create convincing smooth transitions were: keep exact edge
correspondences and homogeneous region correspondences. That is because the motion of
edges can be easily detected by the human eye while in homogeneous regions this is more
difficult. They could interpolate space and time directly in image space without the need of
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synchronized or calibrated cameras, however, to apply this method directly to real images
with no user intervention would be challenging. Hence, their laboratory7 has produced
some tools for interactive correction of correspondences (Klose et al., 2011) and tools to
introduce depth information into dense correspondences (Ruhl et al., 2012). Their tools
were applied to hybrid implicit-explicit IBR renderings (Lipski et al., 2014).

Discussion Explicit geometry allows IBR algorithms to have a more generic camera
configuration and navigation with wider baselines than algorithms that use implicit
geometry. On the other hand, implicit representations are better suited for dynamic scenes8

because the number of primitives (pixels) remains constant regardless of changes in the
structure. Acquisition in both representation schemes might fail and rendering algorithms
should be robust to such representation inaccuracies.

Pure image-based algorithms for camera selection and color blending could integrate
geometric proxies from other sources such as a scanner (Pulli et al., 1997). In principle,
reconstruction methods should be orthogonal to IBR approaches. However, quality and
performance of modern IBR methods are tightly related to the way geometry is represented
(see Section 2.3).

2.3 Unstructured-capture IBR

Calibrated cameras combined with approximate scene geometry provide powerful
information for novel view synthesis in unstructured capture situations. Often, unstructured
capture also means less restrictive navigation. With that in mind, Heigl et al. (1999)
and further improvements (Koch et al., 2001; Pollefeys et al., 2004) used hand held
video sequences (dense sampling) to capture IBR scenes. After calibrating cameras and
performing stereo reconstruction, they project input camera's centers into the virtual image.
They triangulate these projections and each triangle is texture mapped with the cameras
from which the triangle vertices originated. The final color is drawn as a weighted sum of
view-dependent textured triangles (see Fig. 2.8a). Due to their camera selection procedure,
they could render only novel view “behind” the input ones. The pipeline presented
by Heigl et al. globally represents what casual-capture for free view-point navigation
IBR systems employ even today: scene batch preparation (SfM camera calibration and
stereo reconstruction) and a view synthesis algorithm (view selection, color mapping and
blending).

We can classify algorithms according to the way they map color information to
synthesize rays, pixels or entire regions. We can distinguish two kinds of IBR methods.
The first use re-projection (backward map) to look up color, (e.g. Debevec et al. 1998;
Buehler et al. 2001). The second set of methods use forward color mapping from inputs to
target views in image space (e.g. Zitnick et al. 2004; Chaurasia et al. 2013). Both types of

7http://graphics.tu-bs.de/
8IBR for dynamic scenes is a.k.a. Video-Based Rendering (VBR). In this thesis, we do not treat dynamic

scenes.
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(a) (b)

Figure 2.8: Camera selection and rendering of Koch et al. (2001). (a) Select the three spatially
close cameras, triangulate the geometry and progressively sub-divided triangles for refinement. (b)
Details of rendered images showing the result with initial sub-division (left) and with geometric
refinement (right).

methods count on geometric information to drive their mappings and will be discussed in
Section 2.3.1 and Section 2.3.2 respectively.

2.3.1 Re-projection Methods

To build a novel view, re-projection approaches ask the question: starting from this
pixel/ray of the novel camera, from where can we take color information to “draw” the
pixel/ray? Or what are the nearest rays/pixels that give the best support to synthesize the
novel color? The notion of proximity was determined uniquely by the camera configuration
in initial IBR methods (in Section 2.1 except for Debevec et al. 1996). The final rendered
image would strongly depend on the structure of the capture. It should depend on both
camera configuration and the available geometry.

With the proxy and input cameras, minimal angular deviation9 gives an effective
measure of closeness to render rays with view-dependent effects. Buehler et al. (2001)
reviewed this and other desired properties that all IBR methods should fulfill resulting in
the Unstructured-Lumigraph Rendering (ULR) algorithm, that has greatly influenced this
domain. Equivalent ray consistency10 and sensibility to image resolution are some of the
desired properties. To enforce them, Buehler et al. designed an heuristic without trying
to further explain the physical phenomena involved. From each ray of the novel view and
guided by the scene proxy, they look up color in input cameras. With minimal angle and
resolution measures, their heuristic assigns a weight to each back-projected source of color
(camera).

To ensure continuity, Buehler et al. stored camera weights in a continuous Blending

9Source image rays with similar angles to the desired ray should be used
10A ray along the line of sight of an empty regions should be reconstructed consistently regardless of the

virtual view position.
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(a) (b)

(c)

Figure 2.9: Blending Field and rendering artifacts of ULR. (a) Continuous blending field. For
this visualization, we assign one color to each input camera. A “pure” color (e.g. blue) means
that uniquely one camera contributes to the novel view. We observe continuous transition of color
(contribution of cameras) except on the right side where some regions where exclusively seen from
some cameras and in black regions where no depth was available. (b) View rendered form a novel
position. (c) At left, the top view of the scene with the red triangle representing the novel view
position and the blue triangles the input camera positions. Some regions of (b) are highlighted in
(c).

Field data structure (see Fig. 2.9a). This parallel structure allows real-time and continuous
blending of color. Since image based reconstruction can only approximately describe the
scene, errors in camera calibration and geometry produce misalignment of re-projections.
This causes the selected textures to be blended a different appearance; producing in
ghosting artifacts (see Fig. 2.9b).

Eisemann et al. (2008) presented a method to automatically re-align the different
projections using optical flow. Optical flow works effectively if re-projected textures
coming from different input images finely approximate each other (see Fig. 2.10a). Other
kind of error happens due to approximation in depth discontinuities (occlusion errors).
Instead of using hard geometric-based visibility maps, Eisemann et al. tackle this problem
by introducing “soft” visibility: they weight each pixel of the visibility maps according to
the distance to the next occlusion pixel.

In some regions where the geometry is incomplete (see Fig. 2.9b), the reconstruction
process cannot commit to a single depth because of ambiguity and uncertainty in the
matching. Goesele et al. (2010) randomly sample the epipolar line of pixels with no depth
to distribute multiple depth samples along segments of the viewing ray in the direction
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Figure 2.10: (a) Rendering with Floating Textures (Eisemann et al., 2008): Input views Ci, are
re-projected onto the novel view V with the geometry GA and The resulting intermediate images IV

i
are aligned with optical flow to obtain the final image IV

Float. (b) Rendering of Lipski et al. (2014):
image correspondences might not be at the same location in 3D (points P1 and P2). The location of
the new point is interpolated before projection onto novel view V .

of uncertainty. They called this representation Ambient Point Cloud. Combined with the
mesh, ambient point clouds create a of more appealing transition, although they produce a
non photo-realistic blur effect in image transitions.

In re-projection IBR algorithms, the selection of content from input photographs is
largely guided by a globally consistent representation. The global representation allows
selection of content from all input views for each ray of the novel view. In this thesis,
we do not commit to global geometric representations which can be inaccurate and
incomplete. Instead, we prefer approaches with view-dependent representations. These
approaches usually transform views from input views toward the novel one as we will see
in Section 2.3.2.

2.3.2 Forward-mapping Methods

Different from re-projection approaches, forward mapping methods start from input
cameras and transform these inputs toward the novel view position. Inspired by Layered
Depth Images (Shade et al., 1998), Zitnick et al. (2004) use a two-layer representation,
one layer for general image content and other layer for image contours. The layer
of contours is a boundary strip around depth discontinuities, containing information of
background/foreground colors, alpha values and depths. From a set of synchronized
video cameras, they first over-segment input frames and then compute dense stereo.
Zitnick et al. use this to detect depth discontinuities and compute the layer of contours.
Rendering is accomplished by 3D warping all layers from two reference views toward the
intermediate view and blending the layers. They formally presented their reconstruction
steps (superpixel segmentation and superpixel stereo) for IBR in Zitnick & Kang 2007.
With an independent layer for alpha values of contours they avoid blending artifacts in
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Figure 2.11: Novel view rendered with 4 previous methods. Top-left: Floating textures of
Eisemann et al. (2008). Optical flow fails in specular regions like the front of the car. Top-right:
Ambient point clouds of Goesele et al. (2010). Regions with no depth (upper corners of the image)
are sampled with multiple depth pixels. Bottom-left: Silhouette-aware warping of Chaurasia et al.
(2011). Regions around the car present distortion. Bottom-right: Shape-preserving warping of
Chaurasia et al. (2013). A complete and plausible image is generated, however, the car and the
facade present artifacts.

the contour of warped regions, however, they completely rely on accurate dense depth
estimation which would make difficult the application of their system to complex outdoor
environments quite challenging.

Similarly Zheng et al. (2009a) use depth maps, over-segmentation and matting – but in
a joint optimization – to keep consistency of segments and depths. They merge superpixel
segments if they contain one single depth. On top of each superpixel they construct a 2D
mesh. In rendering, they choose which segments should be mapped and their contribution
(blending weights) from the three spatially closest cameras. Zheng et al. (2009a) use 3D
warp and blending with soft z-buffer to resolve depth inconsistencies. They also extend
color of segments to fill holes produced by dis-occlusion. The over-segmentation without
shape regularization degraded the quality, therefore they presented an off-line version with
depth guided inpainting to fill holes. Their rendering method was used in Zheng et al.
(2009b) to create parallax effect from still photographs.

The quality of previous approaches heavily depends on the accuracy of reconstructed
geometry. To deal with cases when we have a sparse set of 3D points, Chaurasia
et al. (2011) introduced a variational warping that avoids distortion of image content
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with piece-wise regularization. The inputs to the rendering algorithm are a sparse set
of calibrated input views, 3D points and user annotated relevant silhouettes (around
foreground objects). With ULR blending weights, the novel view is rendered blending
intermediate warped views and filling holes left by the forward mapping. To implement
the variational warp, Chaurasia et al. perform 2D Delaunay triangulation on the photos
with uniformly distributed vertices except in predefined silhouettes, where they density
vertex samples. With more vertices in contours they create an elastic band to resolve
distortions caused by the transformation and simulate occlusion and dis-occlusion. The
warp optimizes the position of vertices given by this band, and regularizes by a piece-wise
rigid transformation. This regularization is called As-Rigid-as-Possible and was introduced
in Computer Graphics by Alexa et al. (2000). It enforces the constraint that each triangle of
the warping mesh can only be scaled, rotated or translated. Thus triangles compete among
selves to keep rigidity. This regularization had been also implemented in video stabilization
applications (Liu et al., 2009). Warping the whole image with big foreground objects and
large baselines can introduce distortions. Their blending strategy avoids blending several
images which minimizes ghosting artifacts but produces temporal artifacts like popping.

To automatically preserve silhouettes Chaurasia et al. (2013) opted for a greedy
approach. They over-segment the image into superpixels with SLIC (Achanta et al.,
2012) under the hypothesis that superpixels preserve discontinuities and hence contain one
single depth. They deal with non-reconstructed regions and approximation of geometry in
preprocessing and during rendering. In preprocessing, they propagate front-parallel depth
information to non-reconstructed regions from reconstructed regions. With a graph-based
data structure, Chaurasia et al. (2013) propagate depth samples based on the appearance
and proximity of superpixel segments (see Fig. 2.12). During rendering, they used a shape
preserving warp: segment-wise 2D transformation driven by re-projection constraints and
as-rigid-as-possible warps. With a multi-view data structure they keep track of which
superpixel can be blended and as Zheng et al. (2009a) they render extra pixels around each
superpixel to fill empty spaces produced by the forward transformation. A final Poisson
hole filling render pass completes empty regions. To render with the shape preserving
warp, thousands of linear equations (one per segment) must be solved; thus the rendering
approach requires high-end (the linear systems are solved on the CPU) hardware (to be able
to solve linear in real time), which means that it may not run on all computing platforms
like mobile phones.

Hybrid Approach. Another approach that tackles drawbacks of incomplete
reconstruction was presented by Lipski et al. (2014). Their hybrid algorithm
leverages advantages of both correspondences-based (discussed in Section 2.2.2)
and explicit geometry-based methods. They compensate for inaccurate scene geometry
by incorporating visually plausible correspondences into the rendering equation, however,
estimate plausible dense correspondences can be as difficult as estimate depth. From
dense correspondences and calibrated cameras they obtain an explicit representation of
the scene. For rendering, instead of mapping and interpolating color directly in image
space, Lipski et al. interpolate in world space to compensate for mismatches in 3D
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(a) (c)(b)

Figure 2.12: Depth synthesis of of Chaurasia et al. (2013). (a) Over-segmentation of an
input view. The superpixel in red did not contain any depth (target superpixel). Superpixels
with similar appearance (saturated in green) potentially offers approximated depth. (b) Chaurasia
et al. create a graph structure with connections on adjacent superpixels. Weights of edges depend
on the appearance of neighboring superpixels (high weights highlighted in cyan and low weight
highlighted in red). (c) Target superpixel obtains depth sampled from the three nearest neighbors in
the graph (superpixels in cyan).

position of depth pixels in correspondences (see Fig. 2.10b). This approach reported
a time consuming per-possesing (hours per pair of images) and a manual foreground
segmentation to compute reliable correspondences which is a very difficult problem.

In this thesis we use forward-mapping methods, specifically, we build on Chaurasia
et al. (2013) which has been demonstrated to outperform previous methods in terms of
image quality in most cases.

2.3.3 Handling Reflections

The methods review so far assumed that the scene can be approximated by a single
geometric layer (proxy). This assumption is violated in reflective and semi-transparent
surfaces. Based on layered depth images, Lischinski & Rappoport (1998) represent
separately both view-dependent and view-independent appearance of synthetic scenes.
Their IBR algorithm recombines the two layers together in a manner that produces an
approximation to the correct image.

Sinha et al. (2012) observed that for real scenes, there is a reflective component and a
refractive component that have different geometries. They separate the stereo matching
process into these two-layers. They also separate the appearance of the two layers.
Then they compute piecewise-planar proxies with local-plane fitting and seed-and-grow to
cluster planes. For rendering they move each piece of the image according to their layered
geometry and additively combine them from two closest images. Separating these two
layers is not always clean producing ringing artifacts. Sinha et al. (2012)'s method does
not generalize to reflections and could be only applied to strong planar reflectors (e.g., a
glossy painting in a museum).

Instead of explicitly separating the scene into these components, Kopf et al. (2013)
are able to deal with general scenes with reflections. They do so by synthesizing views
in the gradient domain. Depth gradients are estimated for pixels instead of depth itself.
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In rendering they splat gradients into the novel view, use additive blending and integrate
to recover the color. They compute an approximate integration by solving a Poisson
problem and apply weakly weighted data term to regularize the solution. Gradients of
contours occlude each other but not necessarily gradients of reflective areas. Kopf et al.
suggested an heuristic to detect which gradient should vanish because of occlusion. The
method produces artifacts when incorrect depth values are associated to gradients e.g., for
horizontal gradients with horizontal camera motions and busy textures like vegetation. This
limits the application range.

2.3.4 Optimization and Learning-based Approaches

A different set of approaches use optimization and learning to directly synthesize novel
views. Fitzgibbon et al. (2005) reconstruct color rather than depth. In a Bayesian
framework, they estimate the most likely novel view given the input images, calibrated
cameras and novel camera. The color to be synthesized has the Maximun a Posteriori
probability given the colors that lie in the epipolar lines of input images. Fitzgibbon et al.
(2005) regularize with statistics of input textures (patches around the selected depth). The
off-line optimization was speeded up in Woodford & Fitzgibbon (2005). They used small
baselines and reported some ghosting that depends on the size of the patches (prior).

Pujades et al. (2014) also use a Bayesian framework to formulate mathematically a
description of the physical principles behind ULR's heuristics. They consider uncertainty
of reconstruction as a gap around the surface. Re-projection color lookups propagate this
gap of uncertainty. By considering the proxy uncertainty, they penalize the minimum angle
deviation property of non-reliable geometry. Pujades et al. measure un-reliability of the
proxy, based on photo-consistency of re-projection.

A remarkable application that yielded a commercial product11 of IBR was presented
by Kopf et al. (2014). They stabilize videos that were recorded in long interval of time
(e.g., 1 frame per second) by very irregular motion - and thus very shaky. With calibrated
frames and per-frame proxies, they optimize for a smooth rendering path where one of
the criteria was the rendering quality. Given a proxy, they showed that ULR's minimum
angle deviation does not always correlate with rendering artifacts. Kopf et al. (2014)
used invariant texture stretching as rendering quality measure. They generate the novel
video with an optimized path by rendering, stitching, and blending selected source frames
appropriately.

Currently, there is a new research trend in view synthesis with machine learning
algorithms like Convolution Neural Networks. A novel application of deep learning in
view synthesis has emerged (Flynn et al., 2015). Flynn et al. hypothesis says that deep
networks trained with input cameras and poses can learn to predict appearance of novel
views. Relationships of images-cameras and novel view are way too complex and the
network would need to learn re-projection and encode epipolar constraints. Instead they
train with a stack of re-projected input images at variable depths (plane sweep-volume).
The network's architecture contains two blocks: one to select depth and the other to predict

11http://research.microsoft.com/en-us/um/redmond/projects/hyperlapseapps/
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color. This system has limitations of speed, scalability and dependency of resolution and
depth quantization.

Another deep learning method re-formulates the view synthesis problem as a
pixel-copy task. (Zhou et al., 2016). Zhou et al. Observed that visual appearance of
nearby views are highly correlated to input views. They train a CNN to predict 2D vectors
to reconstruct the novel view (appearance flow). This formulation does not require plane
sweep-volume that prohibits view extrapolation for Flynn et al. but the rendering results
are still far from high quality rendering. Although these two attempts are promising for
the future, they do not out perform the quality of previous methods and are still far from
achieving real-time performance.

Discussion Human vision uses a variety of depth cues to interpret 3D structures. Studies
show that users of IBR hardly notice perspective distortions of complete reconstructions
(Vangorp et al., 2011, 2013), however, users can easily identify artifacts and missing
reconstruction especially for free view-point IBR with cameras close to the scene. In spite
of impressive advances in image-based reconstruction techniques, they still present missing
parts of the scene. The big challenge of modern IBR techniques consists in generating
views that could provide images with convincing realism from a perceptual perspective,
even with incomplete information about the 3D world.

In this thesis we address this problem adapting incomplete information for rendering.
Specifically, in Chapter 3 we use a set of plausible navigation IBR methods and we estimate
per-region which of them allows better rendering quality. In Chapter 4 we use databases
of 3D models to automatically query, align and morph models of cars in our scenes. The
morphed meshes do not need to adapt precisely to the exact overall geometry but only
adapt to the image silhouettes. Finally, in Chapter 5 we present two possible approaches
(feature and learning based) to detect incomplete and inaccurate reconstruction information
for rendering.
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3.1 Introduction

As we have seen in the review of previous work in Chapter 2, new Image-Based
Rendering algorithms (Zitnick & Kang, 2007; Eisemann et al., 2008; Goesele et al., 2010;
Chaurasia et al., 2013; Kopf et al., 2013; Lipski et al., 2014), build on and improve
the original methods where geometry was either not used (Levoy & Hanrahan, 1996) or
provided (semi-) manually (Debevec et al., 1996; Gortler et al., 1996; Buehler et al.,
2001). Recent IBR algorithms often treat specific cases very well, e.g. the floating
textures algorithm (Eisemann et al., 2008) reduces ghosting, shape-preserving warps
(Chaurasia et al., 2013) allow plausible rendering of badly-reconstructed regions (low
texture, vegetation) and gradient domain rendering (Kopf et al., 2013) treats reflections.
These methods typically sacrifice performance for quality to treat hard cases; in well
reconstructed regions, simpler and faster methods (Buehler et al., 2001) perform very well.
We see that each IBR algorithm has different quality/speed trade-offs, depending on the
specific scene and cases it treats, and that no single algorithm is better than all others for
all cases. In addition, each method has different parameters which directly affect rendering
quality. Modeling such complex rendering processes to improve novel view synthesis is
hard, due to the complexity of the solutions and the data, which are often uncertain (e.g., 3D
reconstructions, camera calibration). In this dissertation we introduce a general Bayesian
approach that models different IBR algorithms but also the possibility to choose between
them.

Bayesian methods have been used in IBR to improve image quality for specific
algorithms (Fitzgibbon et al., 2005; Pujades et al., 2014). Our analysis will share some
common tools with these approaches, but our goal is real-time IBR. It can be considered
complementary to these and allows the combined use of several different IBR algorithms
by choosing between them in a local manner, i.e., at the level of image regions (see
Fig. 3.1). In Section 3.2, we first present this approach in general terms which can be
used in the context of several different algorithms. Our Bayesian methodology provides an
intuitive description of the problem and takes the full set of complex factors into account.
This formulation expresses the likelihood of a choice of rendering method by taking into
account the rendering quality, the priors given the assumptions about the scene as well as
the rendering algorithm and its parameters, which can be interpreted as the optimizations
performed in the methods described here. We solve a Maximum a Posteriori (MAP)
estimation to choose the rendering process at the granularity we target (pixel or image
region). We do this by applying Bayes rule and computing posterior probability densities
on rendering quality and choice of rendering process.

For the purposes of this work, we will concentrate in modeling the choice of algorithm,
as well as rendering quality, with the assumption that the rendering algorithm and
parameters are fixed. To demonstrate the utility of our framework, we apply our general
approach to the class of IBR algorithms based on oversegmentation (superpixels) presented
in the Section 3.3. These achieve high rendered image quality by preserving silhouettes.
In this algorithmic class, we use the algorithm of Zitnick & Kang (2007) as a baseline.
It uses fronto-parallel depth to render superpixels and is thus fast. We also consider
the recent algorithm of Chaurasia et al. (2013), which uses a shape-preserving warp to
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Figure 3.1: Overview. We propose a Bayesian formulation (a) to model rendering quality for
different Image-Based Rendering (IBR) algorithms, and a Maximum a Posteriori estimation to
select the algorithm producing the highest probability result for a given image region. We apply
our algorithm to three IBR methods which use oversegmented input images, each having different
speed/quality tradeoffs. In (b), we use planes fronto-parallel to the input view which fail for trees
and slanted planes. Using local plane estimation (c) the result is improved, especially for slanted
planes (blue box). Using the shape preserving warp (d) of Chaurasia et al. (2013), better results
are achieved for the tree (red box), but the quality of the slanted planes is worse. Our algorithm (e)
makes the correct choice locally, giving the best solution in each case.

regularize rendering of superpixels in hard case (in Section 3.3.3). This approach has been
demonstrated to be superior in quality to previous methods especially for free-viewpoint
navigation, but involves an expensive warping step during rendering. We also include
an intermediate approach (in Section 3.3.2), which uses planar estimation of superpixels
similar to that of Bodis-Szomoru et al. (2014). We render planar segments with a method
akin to View-Dependent Texture Mapping (Debevec et al., 1998).

In a preprocessing step, we estimate probability densities independently at each
superpixel to allow real-time selective rendering at runtime. The probability density
function representing rendering quality is expressed using both geometric and photometric
errors in re-rendering existing input views. In preprocessing, the MAP estimation on the
three possible rendering processes assigns the best choice to each superpixel based on our
Bayesian formulation, and our selective IBR algorithm efficiently generates high-quality
novel viewpoints in real-time accordingly.

Our main contributions are:

• A new Bayesian formulation to model the choice and quality of rendering algorithms
for IBR.

• A selective IBR algorithm for oversegmentation-based methods that chooses the
rendering method most suited for a given superpixel in a preprocessing step, allowing
high-quality real-time rendering.
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Thus, the new algorithm provides an efficient and practical IBR algorithm which offers
the best of previous methods by selecting the most suitable solution in a principled manner.
Our implementation shows that the selective rendering algorithm is much faster with
equivalent or even better quality than the best of the three approaches taken separately.

3.2 Bayesian Formulation

As mentioned in previous work (Chapter 2), Image-Based Rendering uses input data which
is inherently inaccurate and incomplete, e.g., the 3D geometric reconstruction, the camera
calibration, amount others. The actual rendering process contains uncertainty. The nature
of this uncertainty is unknown, and thus, rather than model uncertainty to improve an
algorithm, we model the choice between different rendering algorithms instead.

We next introduce our Bayesian approach to model this choice. Our final goal is to
compute the best quality image, which we model as being the most likely image in a
probabilistic sense (Bishop et al., 2006). The preprocessing step we describe next will
assign a rendering algorithm to each superpixel of each image. At runtime each superpixel
will be rendered using the chosen rendering algorithm.

3.2.1 A Bayesian Approach to IBR

We define a probabilistic model of the rendering function that generates novel images
I. The rendering function is very general and corresponds to the set of three rendering
methods we consider (i.e., Debevec et al. 1998; Zitnick et al. 2004; Chaurasia et al. 2013).
Each of these rendering methods are respectively characterized by the sets of parameters
ξ1, ξ2 and ξ3.

These parameters represent all the necessary information needed by the rendering
function to estimate images for new viewpoints. We define the label ls

i that identifies which
of the three rendering method is used for each superpixel s of the input view i.

Noting ξ = {ξ1, ξ2, ξ3} the set of all rendering parameters and L the vector of all
labels ls

i , we define the probability distribution p(ξ, L|I) which expresses the likelihood
of a choice L of rendering method with parameters ξ given reference images I. To estimate
this distribution, we use a generative model (Bishop et al., 2006) as we will explicitly
model inputs (input images) and outputs (renderings). The model describes the method of
rendering new viewpoints as follows:

p(ξ, L|I) =
p(I|ξ, L)p(ξ)p(L)

p(I)
(3.1)

The denominator p(I) is a normalization factor and since we will be maximizing
likelihood, we can ignore it, leading to the simpler expression:

p(ξ, L|I) = p(I|ξ, L)p(ξ)p(L) (3.2)

We define this model for rendering methods based on superpixels (Debevec et al., 1998;
Zitnick & Kang, 2007; Chaurasia et al., 2013), but it can be applied to any rendering
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(a) General Model (b) Selective Rendering

Figure 3.2: Probabilistic graphical models for selective IBR: (a) In the general model, the rendering
of image I is estimated according to label L that indicates which rendering method to use with
parameters ξ. (b) Selective rendering uses a set of 3 rendering methods. Each rendering method
is described by its parameters ξ1, ξ2 and ξ3. These parameters can be, for example, the number of
superpixels. For superpixels, L is a vector of labels specifying which rendering method to use for
each one of them.

method. The selection can be defined for different parts of the process, e.g., image regions
in input images, input or output camera positions, specific pixels, etc.

The general relation described by this generative model is illustrated in Fig. 3.2(a),
along with the specific case of selective rendering in Fig. 3.2(b)

Rendering quality We model rendering quality with the term p(I|ξ, L), which expresses
the likelihood to generate images I given vectors of labels L and parameters ξ. It models
the uncertainty in the rendered image due to the errors associated with the rendering
method selected by L. More precisely, high probability p(I|ξ, L) means that the image
I is close to the result obtained with the rendering method selected by the state variable
L. In Section 3.4, we use this rendering quality to choose the rendering method for each
superpixel of the input images.

Priors on rendering parameters We consider the rendering methods used by the
rendering function as black boxes. The prior p(ξ) is thus considered uniform and we do
not need to further develop the list of parameters of each method. Our assumption is that,
independently, each algorithm is close to optimal and our objective is to find the best way
of combining them. However, if the goal is also to improve the rendering algorithm, such
a PDF can be used to favor a certain set of parameters.

Prior on the choice of rendering method The probability p(L) is a prior on the choice
of rendering algorithm. It does not depend on the resulting images but only on the selected
method. We can use it for example to favor a specific rendering method when we expect
it to perform better in a given context. For example, if we have very precise geometry and
images close to the novel view, direct warping or reprojection of input images will work
well, while if the reconstruction is sparse or uncertain, the shape-preserving warp will
work better. In our generative model, p(L) is the the most general term. Each rendering
algorithm has a different set of implicit and explicit assumptions that relate to the geometry
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or to appearance (image pixels); p(L) may depend on geometry or color and the challenge
is to propose a distribution p(L) which best expresses how well these assumptions are met.

Discussion In summary, we now have a probabilistic framework for image based
rendering that models the relation between different algorithms and the final rendered
image. Instead of estimating the most probable image which is time consuming (Pujades
et al., 2014), this probabilistic model can be used to choose a real-time rendering method
and its parameters in a pre-process. Adopting a probabilistic approach has several
advantages. First, we delay any decisions until all factors have been considered, helping
us avoid incorrect decisions early on which cannot be subsequently corrected. Second, we
compute an overall probability for a given choice of algorithm which allows us to improve
the final blending step of rendering. Finally, our formulation can be easily adapted to
different algorithms.

3.2.2 Rendering selection as MAP estimation

Using the proposed generative model, we can express the selection of the rendering method
L∗ as a MAP estimation:

L∗ = arg max
L

p(I|ξ, L)p(ξ)p(L) (3.3)

Quality measures on the rendered images to estimate are used to select the rendering
method L. These rendering methods are treated as black boxes and we do not impose any
prior on their parameters, so p(ξ) can be ignored in further development:

L∗ = arg max
L

p(I|ξ, L)p(L). (3.4)

To solve the above equation, we would ideally need to evaluate Eq. 3.4 over a large
number of images I. Unfortunately, this is impossible since these images are not available.
As an approximation, we can evaluate the density p(Ii|ξ, L)p(L) for each input image Ii. We
do this by rendering all other input images {I1, . . . , Ii−1, Ii+1, . . . , In} into the viewpoint of
Ii, and evaluating how well the synthesized image matches the ground truth input Ii. This
MAP estimation can thus be performed as a pre-process.

3.3 Superpixel IBR Algorithms

To demonstrate the utility of our approach, we will apply it in the context of a specific class
of IBR algorithms that use over-segmented input images. As explained previously, IBR
methods based on oversegmentation achieve high quality by preserving silhouettes while
maintaining real-time performance; they are thus suited to our objectives. In preprocessing,
we use the proposed Bayesian model to choose the best method for each superpixel in
a principled way, allowing fast and high quality rendering at runtime. In what follows
we assume that the input is a set of over-segmented images from different viewpoints,
processed by SfM and MVS. We thus assume that a set of reconstructed points Xs is
assigned to each superpixel s of the oversegmentation.
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Figure 3.3: IBR methods for our selective approach. (a) The geometry, input cameras, and
oversegmented images. (b) FPLAN: a fronto-parallel plane is assigned to superpixel s (Zitnick
et al., 2004). (c) PLAN: a plane is estimated for s similar to Bodis-Szomoru et al. (2014). (d)
SWARP: a shape preserving warp is applied to s in image space (Chaurasia et al., 2013).

3.3.1 Fronto-parallel superpixels

We consider the algorithm of Zitnick et al. as the baseline algorithm which oversegments
the input images, and uses fronto-parallel depth for subsequent rendering. In our case for
each superpixel s we use the median depth of the 3D points Xs. We extend the original
method by using depth values hallucinated by propagation from similar superpixels in the
image when a superpixel does not contain reconstructed geometry (Chaurasia et al.). Such
superpixels are assumed to be fronto-parallel to the corresponding input camera. The novel
view is rendered with forward projections and additive blending. We call this algorithm
Fronto-parallel PLANar rendering (FPLAN).

3.3.2 Planar superpixels for IBR

As shown in Fig. 3.1(b), view synthesis with FPLAN can result in visual artifacts when
the actual surface is grazing with respect to the camera position – at the pillar base, a
curved surface looks distorted because segments cannot reproduce perspective effects. To
achieve perspective of piece-wise planar regions, beside depth we must assign orientation
to segments by estimating planes. Thus, we also propose an intermediate algorithm that
enhances FPLAN with a local plane estimation.

In general, fitting planes to point clouds follows two strategies: top-down (Argiles
et al., 2011) versus bottom-up (Mičušík & Košecká, 2010; Bodis-Szomoru et al., 2014).
Globally, the former strategy takes the whole point cloud to iteratively fit and remove big
planes with robust methods like RANdom SAmple Consensus - RANSAC Fischler & Bolles
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(1981). In Appendix A we explain how we applied this strategy combined with color
appearance models to estimate and recover the ground floor of the scene since commonly
MVS reconstruction fails for this region. Another alternative fits planes to local regions.
Given a noisy point cloud, estimating planes with the superpixel's local geometry is prone
to localized noise and results in rendering artifacts. We first present a strong conservative
filter to remove local noise in Section 3.3.2.1 and in Section 3.3.2.2 we present a procedure
to assign planes to superpixels after filtering. In Section 3.3.2.4 we explain how to render
a novel view with this approach called PLANar reprojection (PLAN).

3.3.2.1 Filtering Outliers

Feature points for reconstruction usually occur at color gradients and discontinuities.
The boundary of a superpixel segment also occurs in color gradients. By construction,
superpixel boundaries correspond to feature points that can be at depth discontinuities. As
a result, 3D points close to the superpixel boundaries can often be at multiple depths which
makes them unreliable for plane estimation. We design a simple filter to avoid multiple
depth and filter out possible outliers. For each superpixel we define a 3D sphere centered
in Xs

c ∈ X
s. The radius of the sphere is proportional to the size of the superpixel and to the

distance from the camera. We thus filter out points in Xs that lay outside the sphere.
Given xs, the set projections of Xs ∈ Xs, we obtain xs

c as the weighted geometric median
of xs. The geometric median is the point that minimizes the weighted sum of distance to all
points and provides a robust estimator for the location of the uncorrupted data even when
up to half of the sample data may be arbitrarily corrupted. To discourage MVS points near
boundaries, weights wn_i in Eq. (3.5) are the values of a normal distribution centered at the
centroid of the 2D position of pixels inside s and standard deviation the minimum distance
of the centroid to a contour of s. The equation for the weighted geometric median is:

arg min
xs

c

|Xs |∑
i

wn_i‖xs
c − xs

i ‖ (3.5)

We unproject the farthest pixel in s with the same depth as xs
c. The distance between

this 3D point and Xs
c is the radius of the sphere centered in Xs

c . Any points outside this
sphere are rejected. Intuitively, in this procedure the size of a volume that encloses 3D
samples is proportional to the distance from the camera and proportional to the size of
the 2D segment. In Fig. 3.4 we show some examples of this procedure after centering the
sphere.

3.3.2.2 Plane Estimation

After filtering out noisy 3D samples as described above, we follow a similar approach to
Bodis-Szomoru et al. (2014) to generate plane hypothesis. Given the filtered 3D samples
Xs, we estimate a plane πs for the segment s with RANSAC. The base of a plane model
is defined by three points samples. Iteratively, we select a random base in Xs, fit a plane
πi to the selected samples and compute the score of that base. Points within a distance τ
from πi are the inlier points for the base. The base with the highest score and the inlier
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(a) (b) (c)

Figure 3.4: Geometric median sphere filtering. In the upper part of the images, segments with
superpixel contours in magenta. The red point inside the superpixel is the weighted geometric
median of depth samples. Weights of 3D points are color coded (the higher a weight, the closer to
red). All the 3D points outside the sphere are ignored during plane estimation. (a) All points are
selected. The superpixel is well formed with a single depth. (b) Two clusters of 3D points belong
to the superpixel (two depths). Fitting a plane to all points would give us an slanted plane. Only the
points inside the sphere are used for plane estimation. (c) Multiple points along a 3D corner. We
select a subset where most points are concentrated far from contour.

points from this base define the final plane πs. As score, we do not use the inlier count
but the weighted sum of point to plane distances d(·, ·) in Eq. (3.6). Weights wXs represent
the confidence of reconstruction of each point (usually normalized cross-correlation of
photometric consistency) and τ is the inlier threshold. Finally, the score is given as follows:

scorei =
∑

Xs∈Xs

wXs exp
(
−

1
2τ2 d2 (

Xs, πi
))

(3.6)

3.3.2.3 Improvements

We test stability of planes with Single Value Decomposition and an heuristic considering
visibility reasoning and discouraging sharp orientation of planes with respect to the
camera they originate from. Further improvements for PLAN could be done by merging
superpixels with the same plane description or splitting them when a single segment
contains two or more planes as described in Fig. 3.5.

Concurrently with Bodis-Szomoru et al. (2014) and in a closely related direction,
we attempted to regularize planes assigned to superpixels with pairwise multi-view and
intra-view constraints. However, they attempted fast and light-weight representations of
urban scenes, while our ultimate goal is rendering. Solving this problem would imply a
new reconstruction algorithm, which is beyond the scope of this thesis. Instead, we follow
the procedure described in Section 3.3.2.2 and with an imperfect reconstruction, leave our
Bayesian Approach to select the most reliable rendering algorithm, given that PLAN is the
least reliable in many cases.
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(a) (b) (c) (d)

Figure 3.5: Splitting superpixels and Matting. PLAN reconstruction could be improved by
splitting superpixels that contains multiple planes. (a) A superpixel in a corner of a building with
depth samples in white. (b) With J-linkage (Magri & Fusiello, 2014) we can robustly identify that
the samples actually describe two instances of planes. (c) We can observe two groups of depth
samples (in green versus blue) that belong to two different planes. (d) We could separate these two
planar regions with Spectral matting (Levin et al., 2008). The two regions (red and blue) separated
by a matte layer (in yellow/green).

3.3.2.4 Rendering

If a superpixel s is well approximated by a plane, we define a planar quadrilateral bounding
the superpixel and transform the superpixel to the new view using standard OpenGL
projection. We assume for now that the quadrilateral is a good approximation of the
geometry corresponding to the superpixel since our probabilistic model will identify other
cases as discussed below. Note that the actual rendering uses s as a mask and only
renders pixels of the rendered quadrilateral which correspond to the region of s Chaurasia
et al. (2013). This algorithm can be seen as a combination of Zitnick et al. (2004) and
View-dependent Texture Mapping (Debevec et al., 1998).

3.3.3 Superpixel warp

The highest quality oversegmentation-based IBR method we consider is shape-preserving
warp Chaurasia et al. (2013). For each input view, the shape-preserving warp algorithm
(SWARP) takes as input the set of superpixels and the corresponding reconstructed
3D points. The method then propagates depth into superpixels which do not contain
reconstructed geometry over the mesh triangles. Rendering proceeds by building a small
mesh of triangles over each superpixel s and performing an image-space warp of the
mesh into the novel view, using shape-preserving constraints and 3D reconstruction. This
algorithm, though computationally expensive, handles poorly reconstructed regions and
allows free-viewpoint navigation far from the input viewpoints. If the reconstruction of
the model corresponding to 3D space covered by the superpixel s is of high quality and
if s is (almost) planar, the warp is wasteful since it will give essentially the same result
as direct reprojection. However, when the quality of the reconstruction is uncertain or
unknown, the shape-preserving constraints will dominate and provide a plausible solution
in many cases. Clearly the two rendering algorithms are somewhat complementary, and by
carefully selecting which one to use, the resulting renderer will provide equivalent or even
better quality at a lower cost.
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3.4 Map Estimation for Rendering

We now have three rendering algorithms based on image over-segmentation, PLAN,
FPLAN, and SWARP. In this section we show how the probabilistic framework presented
in Section 3.2 can be used to select which rendering method should be considered for a
given superpixel.

3.4.1 MAP selection at superpixel level

With the rendering methods precisely defined we can adapt the general formulation
(Eq. 3.4) to our specific scenario. As already mentioned, the observations for the MAP
estimation are the input images {I1, I2, . . . , In} and we can rewrite Eq. 3.4 as:

L∗ = arg max
L

n∏
i=1

p(Ii|ξ, L)p(L) (3.7)

To find L∗ the MAP estimate of the labels L, we need to evaluate p(Ii|ξ, L). In this MAP
estimation, we generate the image corresponding to the viewpoint of Ii using the images I j

( j , i). To do this, the images I j are transformed to the viewpoint of Ii using depth and/or
shape-preserving warps and blended together. If we note R j→i the rendering obtained by
transforming I j, then creating the approximation Ĩi to the input image Ii can be expressed
as:

Ĩi =
∑
j,i

α jR j→i with
∑
j,i

α j = 1 (3.8)

So p(Ii|ξ, L), which models the error in rendering, can be expressed as a function of the
distance between Ii and the transformed images R j→i. With the assumption that improving
any of these intermediate images improves the final blended image, we can write:

p(Ii|R, L) ∝
∏
j,i

p(Ii|R j→i, L j) (3.9)

The rendering methods reason on superpixels and novel viewpoints are generated by
independently estimating superpixel transformations and blending them. Thereby, the
choice of rendering algorithm must be made for each superpixel. The selection variable
L j is defined as the vector of labels ls

j selecting the rendering method to use with each
superpixel s from image I j. We can now expand the expression for the MAP estimation:

L∗ = arg max
L

n∏
i=1

∏
j,i

p(Ii|R j→i, L j)p(L j) (3.10)

In our case the possible values for ls
j are {PLAN, FPLAN, SWARP}. Assuming that

rendering is independent between the superpixels, the MAP estimation becomes:

L∗ = arg max
L

n∏
i=1

∏
j,i

∏
s

p(Ii|R
s
j→i, l

s
j)p(ls

j) (3.11)
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Maximizing the previous probability can be done independently for each superpixel and
the MAP equation for each superpixel label is thus:

ls,∗
j = arg max

ls
j

∏
i, j

p(Ii|R
s
j→i, l

s
j)p(ls

j) (3.12)

This equation allows the selection of the rendering algorithm. Note that starting from
the general Eq. 3.4 and by leveraging rendering algorithm properties, we derive a model
that expresses the same ideas at the level of superpixels. In this case, p(Ii|R

s
j→i, l

s
j) expresses

the quality of rendering superpixel I s
j in the different view i using the rendering algorithm ls

j.
The probability p(ls

j) is the prior on the choice of rendering algorithm ls
j and is considered

uniform over all the labels. In the following, we show how using only rendering quality for
superpixels we are able to perform algorithm selection for rendering.

3.4.2 MAP selection using rendering quality

We model the probability distribution p(Ii|R
s
j→i, l

s
j) as a function of the distance between

the transformed image Rs
j→i and the observed input Ii image, using two distributions:

p(Ii|R
s
j→i, l

s
j) = pgeom(Ii|R

s
j→i, l

s
j)ppho(Ii|R

s
j→i, l

s
j). (3.13)

The first term corresponds to the geometric rendering quality. It expresses how well
the 3D structure of the scene is preserved under the rendering transformation. The second
distribution is based on appearance and will be referred to as photometric rendering
quality. It models the error between the rendered image and the observation in terms of
color differences. We also use occlusion information from MVS reconstruction estimating
rendering quality only in viewpoints where the superpixel is visible.

3.4.2.1 Geometric rendering quality

To render the image at the view of input image Ii, the superpixel s will undergo a
transformation corresponding to a warp (for ls

j = SWARP) or a plane projection (for
ls

j = PLAN or FPLAN). One way to measure the error in this transformation from a
geometric point of view is to use reconstructed 3D points present in the superpixel.

We define Xs
j as the set of the 3D reconstructed points X that project in the superpixel

s in view j. We denote x j the 2D position of the projection of X in view j. As previously
described, the superpixel s undergoes a transformation to the viewpoint of an input camera.
The points x j will follow the same transformation and their new position is noted x j→i. If
the transformation is well estimated, then x j→i and xi (the projection of X in view i) should
coincide. To define the geometric term, we use a Gaussian distribution defined on the
distance between x j→i and xi (see Fig. 3.6):

pgeom(Ii|R
s
j→i, l

s
j) =

∏
X∈Xs

j

Nσ

‖x j→i − xi‖

|Xs
j|

(3.14)
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(A)

(B)

Situation A Situation B
- 3 - 2 - 1

1 2 3

- 3

- 2

- 1

Density of probability in each case

Figure 3.6: Geometric rendering quality. In these examples, a superpixel s j is transformed to
image i using a plane approximation. The geometric quality will depend on the distance between xi,
the projection of the 3D point X in view i, and x j→i, the transformation of x j into view i. Situation
A: The plane approximation is relatively good so the distance ‖x j→i − xi‖ is small and it results in
a high value for Nσ. Situation B: The transformation for superpixel s is not well estimated and in
this case the distance ‖x j→i − xi‖ is large resulting a small value for Nσ.

0

Figure 3.7: Photometric rendering quality. We compute the mean squared distance between the
colors of the superpixel s j→i and the superpixel si. The distribution Nσ2 will give a high density
value when there is a strong match between the two superpixels.

If there are no reconstructed points, it is impossible to estimate a plane and so pgeom is
set to zero for PLAN. For FPLAN and SWARP depth will be propagated from neighbors.
The choice between these two labels will only depend on ppho.
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3.4.2.2 Photometric rendering quality

The objective is to estimate the rendering quality in terms of appearance. We denote s j→i

the result of transforming the superpixel s to the image plane of camera Ci. To measure the
rendering quality in terms of appearance, we use the mean squared distance (MSE) between
the pixel colors of I s

j and I s j→i
i . If the transformation is well estimated, the distance should

be small. To define the photometric term, we use a Gaussian distribution defined on the
mean squared distances between I s

j and I s j→i
i (see Fig. 3.7):

pphoto(Ii|R
s
j→i, l

s
j) = Nσ2(MSE(I s

j , I
s j→i
i )) (3.15)

We note that other error measures could be considered but this was sufficient in our case.
We also tried inverse normalized cross-correlation (NCC) which has similar results but it
is computationally more expensive.

3.4.2.3 Validation of rendering hypotheses

In general the probability associated with rendering hypotheses p(L) (in Eq. 3.1) describes
the compatibility of the rendering algorithm with the considered scene. In the context of
our algorithm selection, we derive a similar probability p(ls

i ) at the superpixel level.
For PLAN, FPLAN, we should choose the planar approximation if the 3D geometry

corresponding to the superpixel is well approximated by a plane. To model this we
could use principal component analysis (PCA) on the 3D points, and examine the weight
associated with each principal component. If note w1, w2 and w3 the decreasingly ordered
weights associated with the three main components obtained from PCA. If 3D points are
located on a planar surface, we have two main components and the third one negligibles.
We could model this by defining a distribution on the bounded surface defined by the two
variables w2/w1 and w3/w2. These two values are defined in the interval [0, 1] and we
naturally use the Beta distribution (Bishop et al., 2006) (noted Bα,β) to model the validity
of the planarity assumption with respect to w2/w1 and w3/w2:

p(ls
i = PLAN) = Bα1,β1

(
w2

w1

)
Bα2,β2

(
w3

w2

)
(3.16)

With the distribution Bα1,β1( w2
w1

) we can give lower probability density to small values
of w2/w1 as the underlying geometry is more likely to be a line. On the other end, the
distribution Bα2,β2( w3

w2
) we can give higher probability density to small values of w3/w2 as

the underlying geometry is more likely to be a plane. The Fig. 3.8 shows the resulting
distribution p(ls

i = planar).
For SWARP there is no assumption related to geometry, since the algorithm

uses the shape-preserving warp to get the best possible result, both for well- and
poorly-reconstructed regions. Similarly, for FPLAN no assumptions are made. Since for
FPLAN and SWARP we do not make any assumption, for our experiments, we decided
not to include the planarity assumption for PLAN. Consequently, we assume a uniform
distribution for all of them:
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p(ls
i = SWARP) = 1 p(ls

i = PLAN) = 1 p(ls
i = FPLAN) = 1 (3.17)

We can now compute Eq. 3.7 for each superpixel of each image, for each of PLAN,
FPLAN, SWARP. We discuss below how we use this estimation in a preprocessing step for
our selective rendering algorithm.

Figure 3.8: Example of probability distribution for p(ls
i = planar) with respect to PCA

decomposition weights w1, w2 and w3. When w2/w1 is small the underlying geometry is more likely
to be a line and it less probable to obtain a good rendering result using a planar approximation.
When geometry is closer to a plane (w2/w1 close to 1 and w3/w2 close to 0), using planar
approximation for rendering is favored with higher values for p(ls

i = planar).

3.4.2.4 Final labeling

To obtain a fast rendering algorithm we need to favor plane projection methods (PLAN and
FPLAN) when they result in similar quality to the warp based approach. To this end we use
a smaller value for σ2 in the case of PLAN and FPLAN labels. Thanks to this, when both
planar and warp based methods achieve good results, the planar rendering will be favored,
resulting in significant speedup. We can now compute Eq. 3.12 for each superpixel of
each image, for each of PLAN, FPLAN, and SWARP. We discuss below how we use this
estimation in a preprocessing step for our selective rendering algorithm.

3.5 A Selective IBR Algorithm

The input to our approach is a set of images of a given scene, which have been processed
by automatic camera calibration (e.g., VisualSFM Wu et al. 2011) and MVS reconstruction
(e.g., Furukawa & Ponce 2010 or Jancosek & Pajdla 2011). These two steps provide
camera calibration parameters, and a 3D point cloud of the scene, which can be sparse
and inaccurate in regions with low texture or stochastic (e.g., vegetation) or reflective (e.g.,
cars) content.
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Preprocessing For each image, we first run the superpixel oversegmentation of Achanta
et al. (2010) and the depth synthesis as described in Chaurasia et al. (2013). We then
perform the plane estimation for each superpixel, as described in Section 3.3.2. In a
preprocessing step, we perform the MAP estimation on this data, following Eq. (3.7).
This is done for each superpixel of each input image and each rendering algorithm, i.e.
L = {PLAN,FPLAN,SWARP}. A rendering algorithm is then chosen for each superpixel
in this preprocess.

Rendering Similarly to Chaurasia et al. (2013), the four spatially closest views to the
novel view are chosen and each superpixel of these views is projected into the novel view.
In contrast to previous methods, each superpixel is projected into the novel view using the
choice of rendering algorithm ls

j, as computed in the pre-processing step.
We can also use the probability of the chosen algorithm in the blending weights.

Previous algorithms (Buehler et al., 2001; Chaurasia et al., 2013) use heuristic blending
weights, i.e. if two superpixels do not contain reconstructed points, the background is
preferred. Instead, for a superpixel S we scale the blending weights with the probability
density over all views for the chosen algorithm:

pS =

n∏
i=1

∏
j,i

∏
s

p(Ii|Rs
j→i, l

s
j)p(ls

j) (3.18)

The projection operation for FPLAN,PLAN uses standard OpenGL polygon rendering
in the GPU, and is much cheaper than the superpixel warp. We measured a factor
of approximately 3 times speedup, depending on the number of MVS points in each
superpixel which add constraints to the warp. Speedup depends on the percentage of
superpixels using the SWARP, as shown in the results.

Implementation Details The preprocessing step and rendering were implemented in
C++ with OpenGL/GLSL shaders. For SWARP a triangle mesh covering superpixels is
warped (Chaurasia et al., 2013). The reconstructed points are used as constraints in the
warp mesh. For Eq. (3.14) we use barycentric coordinates of the mesh triangle before the
warp to determine their position in the same triangle after the warp. For Eq. (3.15) every
rasterized patch is read back in RGB color space. This requires 2 min to process an image
of 1M pixels. A subsequent implementation in CUDA does this computation directly on
the GPU and instead of reading back at every iteration, we read the final computation only
once. This reduces the labeling process to a few seconds per image.
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3.6 Results and Evaluation

We ran our algorithm on twelve urban scenes with different conditions and one interior
scene (Fancy_restaurant-26). The datasets ChapelHill1-25 and ChapelHill2-30 were
captured by a moving vehicle at street-level in Pollefeys et al. (2008). The other
datasets where captured with different DSLR-cameras and some of them have been
referenced in other IBR publications as wi will see in comparisons. For all of them we
calibrate cameras with VisualSfM structure from motion (Wu et al., 2011). The scenes
Yellowhouse-12, Museum-27, Street-10, Aquarium-20 were previously reconstructed
with PMVS (Furukawa & Ponce, 2007) in Chaurasia et al. (2011, 2013). The
scene Library_RM-50 was reconstructed with MVE (Goesele et al., 2007) while for

Figure 3.9: Selection of the rendering algorithm Superpixels in dark and medium red are rendered
using planes with respectively the FPLAN and PLAN algorithm (with the same rendering time
computational cost). When the SWARP algorithm is selected the superpixels are in blue. This last
label is mainly used in regions with poor or non existing 3D information such as leaves and specular
car windows.
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Figure 3.10: Proportion of selected algorithm for some datasets and the gain in rendering speed.

the rest of scenes (Tree-18, Bouquet_house-25, Museum_back-29, SaintAndrews-28,
Fancy_restaurant-26, ChapelHill1-25, ChapelHill2-30) we used CMPMVS reconstruction
(Jancosek & Pajdla, 2011). We reconstruct the scene Hotel_corner-10 with all
three mentioned reconstructions (PMVS, MVE, CMPMVS) and discuss this result in
Section 3.6.2. The suffix in the name of a dataset indicates the number of input photographs
used. In Section 3.6.1 we present visual comparisons for all these datasets.

The main goal of our approach is to choose the most appropriate rendering process
according to quality criteria. This limits the usage of expensive computations for
image-space warps (Chaurasia et al., 2013) to regions with poor 3D information and favors
planar approximation for the superpixels where its rendering quality is high. In Fig. 3.9 we
illustrate the selected IBR method for superpixels of one view for three different datasets.
The planar approximations are mostly used on buildings where 3D reconstruction is most
reliable. In more challenging parts of the scene, the image-space warps are more likely to
be used. This is the case for leaves where geometry is not necessarily well approximated by
a plane. Due to reflections, windows are also not well reconstructed and we notice a higher
proportion of superpixels of SWARP labels selected (in blue), as well as some occlusion
boundaries where it is harder to accurately fit a plane.

Table 3.1 shows the percentages of superpixels classified in FPLAN, PLAN, SWARP
on average (± standard deviation) for each dataset. Planar approximations are used on
average for 74% of superpixels allowing our algorithm to run 2.5 times faster (mean value)
than SWARP. We ran a batch preprocess and rendering of the scene Bouquet_house-25
on a 12-core 2.5GHz Dell Z800 (NVIDIA Titan GTX GPU); all others on a 6-core Dell
3.2GHz Z420 (GTX 680). After MVS reconstruction, the whole preprocess takes about
1min/image. Warps are parallelized, explaining the difference in overhead of our approach
compared to planar methods in the two configurations. At rendering time, the cost of
choosing the four nearest neighbors views is negligible.

The main advantage of our method is speed, since it only uses shape-preserving warps
when necessary. By appropriately selecting the rendering method to use for each region
of the image, our selective IBR is on average 2.5 times faster than SWARP, reaching 3.5
times for the Aquarium-20 scene. In (Table 3.2) we show frames per second (FPS) for
each algorithm. In Fig. 3.10 we can see how the number of segments rendered with planar
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re-projection correlates with the gain in speed. This gain in speed can be critical for the
usage of free-viewpoint IBR on devices with limited compute resources, such as mobile
phones for example.

3.6.1 Qualitative Comparisons

Quality evaluation is subjective, especially for the complex imagery we consider here. In
the following we present qualitative comparisons of Selective rendering against individual
methods used for labeling. We also compare our approach with the three recent IBR
methods (Chaurasia et al., 2013; Lipski et al., 2014; Flynn et al., 2015). These two
first approaches have already shown their superiority Chaurasia et al. (2013); Lipski et al.
(2014) over methods based on optical flow estimation (Eisemann et al., 2008), epipolar

Scene FPLAN PLAN SWARP
Yellowhouse-12 36.62 ± 5.84 39.45 ± 5.88 23.93 ± 7.87

Street-10 35.30 ± 6.03 38,47 ± 5.12 26.23 ± 6.62
Museum_front-27 31.52 ± 3.12 43.20 ± 17.35 12.98 ± 1.30
Museum_back-29 24.79 ± 4.86 52.64 ± 4.88 22.57 ± 3.16

Aquarium-20 34.02 ± 4.94 56.75 ± 5.23 9.23 ± 1.93
Library_RM-50 44.27 ± 4.00 16.55 ± 3.47 39.18 ± 3.56

Hotel_corner-101 29.71 ± 43.20 22.52 ± 3.42 27.09 ± 14.08
Tree-18 33.48 ± 5.40 42.48 ± 5.43 24.04 ± 1.55

Bouquet_house-25 38.87 ± 5.47 37.65 ± 5.01 23.48 ± 5.99
SaintAndrews-28 45.40 ± 4.47 30.85 ± 4.53 23.75 ± 1.43
ChapelHill1-25 29.97 ± 3.20 42.39 ± 3.31 27.64 ± 1.75
ChapelHill-30 32.450 ± 1.60 41.83 ± 1.80 25.67 ± 1.32

Fancy_restaurant-26 47.01 ± 11.42 30.96 ± 8.41 22.03 ± 4.70
Average 35.65 40.69 23.66

Table 3.1: Average (± standard deviation) percent of the labels of Bayesian preprocessing
phase. The percentage of superpixels requiring a warp is low on average.

Scene Speedup Selective SWARP F/PLAN
Yellowhouse-12 2.5 145.7 58.7 346.0

Street-10 2.5 158.5 62.5 373.5
Museum-27 2.9 158.3 55.3 319.3

Tree-18 2.2 136.5 62.5 418.3
Aquarium-20 3.5 218.0 62.5 314.3

House-25 2.4 97.0 41 102
Average 2.67 152.33 57.08 312.23

Table 3.2: FPS for each algorithm and our selective approach. The speed up factor is relative to
the SWARP method.
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constraints (Goesele et al., 2010) or manually defined silhouettes (Chaurasia et al., 2011).

Figure 3.11: Rendering close-up of the scene Bouquet_house-25. Top left: FPLAN. Top
right: PLAN. Bottom left: SWARP. Bottom right: proposed. From top to bottom, the scenes
Bouquet_house-25.

From visual inspection of interactive sessions, using different navigation paths for the
various datasets, our approach globally outperforms the other superpixel based algorithms.
To illustrate this, Fig. 3.11 to Fig. 3.16 show a selection of challenging viewpoints, off

the view-interpolation trajectory. Each time the proposed selective approach results in
rendering quality equivalent or better than the three methods taken separately. This is
more obvious in a continious navigation path than in single photography. We provide a
video in supplementary material available here: http://team.inria.fr/graphdeco/
publications. In this video, artifacts (e.g., incorrect plane reconstruction) become
particularly visible during camera motion. The choice of SWARP for unreconstructed
regions results in improved overall visual quality compared to PLAN, FPLAN albeit with
an increase in computational overhead, depending on the CPU used.

In Figs. 3.17 to 3.19, we compare selective rendering only with SWARP (Chaurasia
et al., 2013). For each scene we present the spatially closest reference camera to have in
idea of how the scene should look like. For these extreme cases, we can see on the top
view that the novel camera positioned and oriented much farther than previous examples.
In general, we observed that Selective and SWARP present equivalent results.

In Fig. 3.20, we show a visual comparison with the dense correspondence approach
of Lipski et al. (2014), notably the rendered image for a given position on the view
interpolation path. Overall visual quality is close, although our methods avoids some
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Figure 3.12: Rendering close-up for the scene Yellowhouse-12. Top left: FPLAN. Top right:
PLAN. Bottom left: SWARP. Bottom right: our result.

of the blurring due to correspondence tracking and interpolation. We note however that
the rendering based on dense correspondences (left image) has the typical artifacts due
to a bad estimation of correspondences (see close up on the tree). In regions with poor
3D information (building of the left) both methods show some artifacts as well as in thin
structures as the flag pole.

In Fig. 3.21, we compare with the most recent paper for IBR walkthroughs (Lipski
et al., 2014) that uses pre-trained deep networks. Their offline synthesis takes several
minutes to render this low resolution image. Other artifacts that characterize their system,
include the vanish of thin foreground structures. Also, partially occluded objects tend to
appear overblurred. However, they manage to obtain a sharper region on the flag (upper
left) which in our case, presents ghosting because during the capture it was waving.

3.6.2 Comparison using Different Reconstructions

To test the effect of the reconstruction methods on our labeling, we used three different
multi-view reconstructions algorithms publicly available on Hotel_corner-10: PMVS
(Furukawa & Ponce, 2007), MVE (Goesele et al., 2007) and CMPMVS (Jancosek &
Pajdla, 2011). We have previously shown reconstructed point cloud for PMVS and
recovered meshes MVE and CMPMVS in Section 2.2. The average percentage of
superpixels labeled as SWARP is about 50%, 37% and 27% for PMVS, MVE and
CMPMVS respectively. This result was expected considering the improvement in
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Figure 3.13: Rendering close-up for the scene Street-10. Top left: FPLAN. Top right: PLAN.
Bottom left: SWARP. Bottom right: our result.

completeness and quality of reconstruction from PMVS to CMPMVS and shows that
our approach has the very desirable property of improving speed as the quality of the
reconstruction improves.

Consider the point of view presented in Fig. 3.22. We can observed that for this point of
view, CMPMVS clearly offers better rendering results with a more complete mesh even in
regions of vegetation and specularities. With MVE and PMVS we observed in Fig. 3.22(c)
and Fig. 3.22(d) respectively, different kind of artifacts inherent to the kind of explicit 3D
information provided by the reconstruction. For example, PMVS provides a point cloud
with visibility information per 3D sample. Visibility information helps to decide which
segments do not contain depth samples and so we must synthesize their depth. We see on
the left side of Fig. 3.22(d) visual errors in the slanted wall and the branches of the cactus
because of depth approximations. On the other hand, for MVE provides a mesh with no
visibility information. Regions that where not initially reconstructed, like the branches of
the cactus, might take the depth from what is reconstructed behind. As a result, we obtain
ghosting when this vegetation projects into wrong places.
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Figure 3.14: Rendering close-up for the scene Aquarium-20. Top left: FPLAN. Top right:
PLAN. Bottom left: SWARP. Bottom right: our result.

3.6.3 Quantitative Evaluation

To validate our results quantitatively, we investigated the use of visual metrics for image
quality assessment like Structure Similarity Index SSIM (Wang et al., 2004) or Visual
Difference Predictor VDP (Mantiuk et al., 2011). These metrics need a reference image
to compare against. Hence the procedure followed was leave-one-out: We calibrate all
input photographs but we set apart a subset of inputs to use them as reference images
for quality metrics. MVS reconstruction and subsequent steps were performed only in
the subset of input images. For test algorithms (PLAN, SWARP and Selective), rendered
images were generated at calibrated cameras of the reference images. In Table 3.3 we set
some results (the higher the number, the better the quality) which are actually inconclusive
since according to VDP, we are not significantly better and even in some cases, our score
is lower.

To understand these results, we show the probability maps of error detection for SSIM
in Fig. 3.23(c) and VDP in Fig. 3.23(d) for the synthesized view in Fig. 3.23(b) given the
reference image Fig. 3.23(a). Higher error is encoded as a color closer to red. We observe
that the error is high and localized around the windows, at the flag and all the vegetation.
However, in terms of subjective visual quality, the human eye has difficulty perceiving
small errors in reflections or in cluttered vegetation (Reinhard et al., 2012). Given the
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Figure 3.15: Rendering close-up for the scene Tree-18. Top left: FPLAN. Top right: PLAN.
Bottom left: SWARP. Bottom right: our result.

bias of high error, it is difficult to differentiate the quality of different algorithms. For
more rare cases the error is slightly worse due the difference in color and other aspects.
We can see mainly red everywhere in Fig. 3.23(e) and Fig. 3.23(f) which biases the
result of the metric, to the point that the numbers presented in Table 1.3 are essentially
meaningless. The weakness of these metrics has been highlighted by Čadík et al. (2012)
while evaluating the performance of state-of-the-art metric for detection and localization
of rendering distortions. As a result, quantitative assets Image-based Rendering methods
in a reliable way is still an open research topic.

Scene Selective SWARP PLAN
Yellowhouse-12 65.44 66.14 64.96
Street-10 65.78 65.77 68.8
Museum-27 65.96 66.17 66.41
Tree-18 66.10 65.39 65.17
Aquarium-20 60.26 60.24 60.22
House-25 66.10 65.39 65.17

Table 3.3: Leave-one-out quantitative evaluation with VDP (Mantiuk et al., 2011). Results are
inconclusive for this metric.
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Figure 3.16: Rendering close-up for the scene Library_RM-50. Top left: FPLAN. Top right:
PLAN. Bottom left: SWARP. Bottom right: our result.

3.7 Conclusions and Discussions

We proposed a Bayesian formulation to model the choice of the most suitable rendering
method for IBR algorithms based on superpixels, using probability distributions to model
rendering quality and choice of rendering method. We solve for the most suitable rendering
method using MAP estimation, which chooses a rendering method for each superpixel in a
preprocess. We use the result to define a selective IBR algorithm combining the benefits of
previous algorithms, with very good overall speed/quality tradeoff. One important strength
of our approach is that it identifies regions of the image where using a more expensive IBR
approach (e.g., Chaurasia et al. 2013) is wasteful, and replaces it with a cheaper planar
reprojection method of equivalent quality while another important aspect is that as the 3D
reconstruction improves, the speedup offered by our approach is higher.

We currently use the camera selection and blending of Chaurasia et al.. These can
definitely be improved, but both topics are hard problems involving different tradeoffs
which we will investigate in future work. A good solution will improve the quality of
our algorithm significantly. The recent rendering method for indoors methods (Hedman
et al., 2016) is an interesting avenue to explore in this direction.

This work provides a first indication on the utility and power of MAP estimation
as a preprocess for real-time IBR. An interesting future direction is to pursue these
ideas further in a more general context taking the prior p(ξ) into account, improving the
rendering methods and their parameters. Developing such solutions raises several hard
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challenges, including a way to estimate quality of IBR in the absence of a reference
and preferably online. Another important issue is the balance between preprocessing
and runtime: optimization per pixel at rendering time is prohibitively expensive, but
some combination of preprocessing and well-designed GPU data structures could result in
significant improvements in rendering quality using an extension of our Bayesian approach.

This thesis was funded by the CR-PLAY2 project, led by a video-game company3. Our
selective IBR algorithm has been implemented in Unity engine framework which makes
integration with prototypes very easy. Thanks to the reduction in rendering time and
memory footprint, our algorithm has been deployed on mobile devices such as the Google
Tango (see Fig. 6.1) and used for video game prototypes like Silver-Arrow, IBR-Basketball
and others. We will discuss this in more detail in Chapter 6.

2cr-play.eu
3Testaluna: http://www.testaluna.it
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One input view Top view

SWARP Our Result

(a) Museum_front-27

One input view Top view

SWARP Our Result

(b) Museum_back-29

Figure 3.17: Bottom row: novel views rendered far from reference images with SWARP (left) and
Selection (right). Top row: a reference view (left) and top view (right). Position and orientation of
the novel camera is represented by the red pyramid in the top right view.
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One input view Top view

SWARP Our Result

(a) ChapelHill1-25

One input view Top view

SWARP Our Result

(b) ChapelHill3-30

Figure 3.18: Bottom row: novel views rendered far from reference images with SWARP (left) and
Selection (right). Top row: a reference view (left) and top view (right). Position and orientation of
the novel camera is represented by the red pyramid in the upper right.



3.7. Conclusions and Discussions 55

One input view Top view

SWARP Our Result

(a) SaintAndrews-28

One input view Top view

SWARP Our Result

(b) Fancy_renstaurant-26

Figure 3.19: Bottom row: novel views rendered far from reference images with SWARP (left) and
Selection (right). Top row: a reference view (left) and top view (right). Position and orientation of
the novel camera is represented by the red pyramid in the upper right.
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(a) Lipski et al. (b) Ours

Figure 3.20: Comparison of Dense correspondences and DIBR (Lipski et al., 2014) (on the left)
and our Selective Rendering method (on the right). For a given position on the view interpolation
path. We note that the rendering based on dense correspondences has the typical artifacts due to a
bad estimation of correspondences (see close ups). In regions with poor 3D information (building
of the left) both methods show rendering artifacts.

(a) Flynn et al. (b) Ours

Figure 3.21: Comparison of DeepStereo (Flynn et al., 2015) (on the left) and our Selective
Rendering method (on the right). Views were synthesized with parameters of a camera left out
for rendering. Flynn et al.’s network took about 12 minutes on a multi-core workstation to render
this 512x512 pixel image. In our case, our system renders this image in real-time at 1200x800
resolution.
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(a) (b)

(c) (d)

Figure 3.22: Rendered images with three different reconstructions. (a) In red, the point of
view from where the images were rendered. (b) Rendering with selective algorithm with CMPMVS
reconstruction. (c) Rendering with selective algorithm with MVE reconstruction. (d) Rendering
with selective algorithm with PMVS reconstruction.
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(a) Reference image (b) Selection

(c) SSIM local error values (d) VDP probability detection map for (b)

(e) Prob. Map for Yellowhose-12 (f) Prob. Map for Museum_front-27

Figure 3.23: Maps of Visual Metrics for Image Quality. (a) Reference image. With the calibrated
camera from the point of view of (a) we render the image in (b) with our approach. (c) Structural
Similarity Index for the image in (b) with respect to the reference image in (a). (d) VDP detection
map for the image in (b) with respect to the reference image in (a). (e) VDP detection map for a
view in Yellowhouse-12. (f) VDP detection map for a view in Museum_front-27.
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In the previous chapter we presented a new method providing a good trade-off between
speed and quality. We achieved this by choosing the best IBR algorithm to render a given
local region. Our approach provides satisfactory results, but does not inherently improve
the quality of the rendering, since we are limited by the capabilities of available algorithms.
The algorithms we use suffer from artifacts on poorly reconstructed objects, e.g., reflective
surfaces such as cars. To alleviate this problem, we propose a method that automatically
identifies stock 3D models, aligns them in the 3D scene and performs morphing to better
capture image contours. Our method provide models which are well-aligned in 3D and
to contours in all the images of the multi-view dataset, allowing us to use the resulting
model in our mixed IBR algorithm. As we will see in the results section of this chapter, our
method shows significant improvement in image quality for free-viewpoint IBR, especially
when moving far from the captured viewpoints.

4.1 Introduction

A key element of a high quality IBR is good 3D reconstruction estimated from the
images. While great progress has been made in this domain, these methods do not
work well in the case of transparent surfaces or reflective objects. IBR methods try to
compensate for missing 3D geometry using strategies like fronto-parallel assumptions
(Zitnick & Kang, 2007), 2D image warps (Chaurasia et al., 2013) or interpolation from
image correspondences (Lipski et al., 2015). For poorly reconstructed foreground objects,
close to the novel, synthesized view, this is usually not sufficient to mask errors in the
reconstruction. A typical example of incomplete reconstruction of foregrounds in outdoors
scenes are cars. (see Fig. 4.1).

We focus on urban environments, where captured scenes contain buildings and many
man-made objects (cars, signposts, benches etc.). With the recent development of 3D
model databases it is more and more likely to find a corresponding model to objects in
a captured scene. Examples of these databases are Trimble Warehouse 3D1, ShapeNet2

(Chang et al., 2015), and ObjectNet3D3 (Xiang et al., 2016). Trying to use CAD models
is a promising strategy that has been used for various application such as depth correction
(Lee et al., 2015) or image editing and manipulation (Kholgade et al., 2014), even though
selected 3D models usually do not exactly correspond to the images, requiring deformation
of the model. However, these previous methods rely entirely on user interaction for
selection, placement, alignment and deformation of the model and often are not designed
to handle multi-view data which is required for IBR.

In this chapter, we present an automatic method which leverages databases of 3D CAD
models to augment IBR scenes and allow better navigation. The core idea is to use the
stock models as a better proxy for the objects in the scene. To be visually convincing the
stock models first needs to be correctly placed in the scene and carefully aligned with the
silhouettes in input photographs. We then use the model in our mixed IBR algorithm that

1https://3dwarehouse.sketchup.com
2http://shapenet.cs.stanford.edu
3http://cvgl.stanford.edu/projects/objectnet3d



4.1. Introduction 61

Figure 4.1: MVS reconstruction of specular objects of an urban scene. Left: input view. Right:
reconstructed scene.

renders the background and the objects in two passes, blending them in a final pass. Our
new approach which builds on learning methods in a preprocess and proposes an improved
contour-based alignment and morphing approach to automatically chose, align and morph
3D models in a reconstructed scene for IBR. To the best of our knowledge this is the first
method automatic method for this process to improve IBR.

Our contributions can be summarized as follows:

• We first adapt learning-based methods to detect and identify an object class and an
object pose in the input views.

• We present an accurate object alignment and correspondence selection method
for morphing with more fine-grain and accurate treatment. We then propose a
method which exploits all available information, namely partial and inaccurate 3D
reconstruction, multi-view calibration, image contours and the 3D model to achieve
accurate object alignment for morphing.

Our method provides fine-grain alignment and automatic correspondence detection
for contours, achieving a good initial placement in the scene. Thanks to the good initial
placement and the correspondence detection, we can automatically morph the stock-model
to better align with contours in all the images of the multi-view dataset. The resulting
model is then used in our mixed IBR algorithm, greatly improving image quality, especially
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when moving far from the captured viewpoints thanks to the stability given by an explicit
geometric representation of objects nearby the cameras.

Our approach is fully automatic and can directly benefit from any future improvement
in model selection or larger databases. We demonstrate our method on the example of cars
in urban environments, since very often instances of this class are present in street-view
datasets and MVS algorithms struggle to recover their geometry. Another good reason to
focus on cars, is that the number of models available is sufficiently large 3D model database
(Chang et al., 2015); when databases of models for other objects become available, our
approach can be directly applied. Our experiments demonstrate a clear improvement in
rendering quality compared to state of the art methods.

Before presenting an overview (Section 4.3) and details of our system, in Section 4.2
we discuss related work which is specific to the method developed in this chapter, which
complements the general review of IBR presented in Chapter 2.

4.2 Related Work

We propose a new mixed IBR algorithm, improving rendering quality of objects by
automatically retrieving, aligning and morphing 3D geometry from stock models. Since
each of these components is a vast area in itself, we restrict discussion of previous
work only to the most closely related methods. In contrast to previous IBR methods,
we provide an end-to-end automatic pipeline which finds a good match for such objects
from stock 3D models, and then performs fine-grain alignment and morphing to provide
multi-view consistent 3D model for the object, resulting in much higher visual quality for
free-viewpoint IBR. In the Following, we review some methods for learning with 3D object
databases (in Section 4.2.1) and geometry alignment (in Section 4.2.2).

4.2.1 3D Object Databases and Learning

Initial methods to align 3D models to photos for model retrieval, extract edges from both
the 3D model and the photograph (Roberts, 1965; Huttenlocher & Ullman, 1987; Lowe,
1987). Such approaches work well especially for untextured objects (Lim et al., 2013;
Arandjelović & Zisserman, 2011), but can be limited by the difficulty of extracting reliable
and consistent edges in 2D and 3D. The most popular approach for matching CAD models
to photographs is to use handcrafted descriptors such as HOGs (Dalal & Triggs, 2005; Su
et al., 2014; Aubry et al., 2014b) or learned Convolutional Neural Network (CNN) features
(Massa et al., 2015; Aubry & Russell, 2015). Hueting et al. (2015) use both HOGs and
CNN features to co-align and sort collections of class-labeled images and CAD models.
Considering the recent success of CNN features, we follow this option.

CNNs (LeCun et al., 1998) are composed of a succession of simple operations, such as
convolutions, non-linearities and max poolings, whose parameters are optimized to perform
a given task. They have demonstrated impressive results in many domains such as image
classification (Krizhevsky et al., 2012a; Simonyan & Zisserman, 2014) and object detection
(Girshick et al., 2014; Gidaris & Komodakis, 2015). In addition, they provide intermediate
features which have proven to be generic enough to be re-used or adapted for very different
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tasks (Yosinski et al., 2014; Girshick et al., 2014). Here we use CNNs to first detect object
categories using the framework of Gidaris & Komodakis (2015) and then simply match
images and rendered views from the 3D models using the intermediary pool4 features of
the network of Simonyan & Zisserman (2014) to retreive the corresponding 3D model in a
way similar to Aubry & Russell (2015). As mentioned before, here we focus only on cars
to validate our approach since this is the best database available for objects in the scenes
we target.

We next review previous methods for car pose estimation. Koller (1993) proposed
a method based on a polyhedral 3D vehicle model which was further improved by
Ferryman et al. (1995). The use of more complex deformable models has become more
common (Leotta & Mundy, 2011). Hödlmoser et al. (2013) applied Random Forests
(using handcrafted features) to track cars in videos. More recently, fine-grained model
classification has received more attention (Lin et al., 2014). By taking advantage of 2D
detections from deformable part models, a 3D model is deformed to better fit the estimated
landmark positions. Part based features are then used for fine grained model classification.
Finally, Mottaghi et al. (2015) use a coarse-to-fine hierarchical representation for object
detection, pose estimation and sub-category recognition. This method is not limited to cars
and results are demonstrated with planes and boats. These car pose estimation methods
focus on the single-view case. The inherent 3D ambiguity for our multi-view setting makes
these methods suboptimal for our goal.

Model selection and pose estimation are the first component of our solution; To be
as generic as possible we build on the CNN-based methods and extend it to handle the
multi-view data we treat here.

4.2.2 Geometry Alignment

A first category of methods treat automatic 3D model alignment. With the goal of a
more compact geometric representations, Lafarge et al. (2010) attempted to insert basic
primitives in the reconstructed geometry while preserving details. In Lafarge et al. (2013)
this insertion was jointly done with multi-view reconstruction. In their multi-object
energy model a photo-consistency term would favor the mesh alignment with content of
photographs, however some objects would not be correctly represented by piece wise
primitives. Other solutions (Rosenhahn et al., 2007; Dambreville et al., 2008b; Prisacariu
& Reid, 2012) were based on a level set formulation and assumed a fixed 3D model and
assume a separation between the color models of the background and the object of interest.
To handle different types of 3D models, a common approach is to learn an embedding
into a lower dimensional space using kernel principal component analysis (Dambreville
et al., 2008a) or Gaussian process latent variable models (Prisacariu & Reid, 2011). Recent
methods take advantages of these dimensionality reduction approaches to estimate 3D
shape, 2D-3D pose and image segmentation (Sandhu et al., 2011; Prisacariu et al., 2012).
Although discussed in Prisacariu & Reid, results on multi-view data are not demonstrated,
and in their examples images have uniform color background which is not the case of
cluttered urban scenes. Relying on dimensionality reduction, the unique parts present in a
few models may disappear from the generic model. Our solution takes advantage of the
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diversity of models in the dataset and finds the closest one. It can also directly benefit from
any improvement in matching or any new instance added to the database.

In Computer Graphics applications, 3D models are fitted to images for various
applications such as image edition (Prasad & Fitzgibbon, 2006) or 3D modeling (Xu et al.,
2011). In all cases user input is required for 3D geometry alignment. Zheng et al. (2012)
rely on user interaction to help approximate underlying geometry with cuboids. A similar
approach is adopted in Chen et al. (2013) but the user has access to richer 3D components.
In Kholgade et al. (2014), the user selects a similar 3D model which is deformed to fit the
image according to user provided constraints. The main advantage of this method is its
ability to generate novel viewpoints of the object. The closest method related to our work
is the depth estimation method using 3D models by (Lee et al., 2015). Here the objective is
to help the 2D-3D conversion for images and videos. Using a model aligned with the input
image, depth is coherently in-painted. However the process relies heavily on manual user
interaction at all stages: model selection, initial constraints for pose estimation and image
segmentation for morphing.

In contrast, our approach provides a fully automatic pipeline for all these steps, leading
to a solution that is scalable and thus usable for IBR.

4.3 Overview

The goal of our approach is a high-quality mixed Image-Based Rendering algorithm for
urban scenes, by using stock 3D models to represent hard-to-reconstruct geometry such as
cars. To achieve this, we build on recent advances in object detection/recognition and the
ever growing 3D object databases. To avoid confusion we refer to the 3D mesh from the
shape database as the 3D object mesh and any geometry coming from reconstruction as the
reconstructed geometry.

Input. The input to our approach is a set of photographs of the scene. As in the previous
chapter, we obtain calibrated cameras and an approximate geometry of the scene (proxy)
using structure from motion (VisualSfM (Wu et al., 2011; Wu, 2013) and multi-view stereo
reconstruction CMPMVS (Jancosek & Pajdla, 2011); other alternatives could be used for
this step. We use the ShapeNet 3D object database (Chang et al., 2015) for the object
retrieval step.

Object Selection and Preprocessing. Object bounding boxes are obtained using a recent
detection algorithm (Gidaris & Komodakis, 2015). We use the 3D reconstructed geometry
to put the detections into correspondence ( Fig. 4.2.a). These images are used to find the
corresponding 3D model and its orientation with respect to the cameras (Fig. 4.2.c).

Object Alignment. After obtaining the 3D models, we place the object in the scene.
We use a multi-view approach taking advantage of the detection bounding boxes
(Section 4.5.1), the available geometry and silhouette matching (Section 4.5.2).
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(a) 3d Reconstruction

(b) R-CNN object detection

(c) Multi-view 2D-3D retrieval

(d) Alignment using 
silhouette and 3D constraints

(a) using selective rendering (b) using mixed rendering

1. Preprocessing

2. Rendering

(e) Alignment visualization

Figure 4.2: Overview. We propose a new method for Image-Based Rendering that takes advantage
of 3D model databases. During a fully automatic Preprocessing stage, (a) cameras are calibrated
and 3D reconstruction is estimated using multi-view stereo (Jancosek & Pajdla, 2011). Objects
of interest (here cars) are detected using R-CNN (Gidaris & Komodakis, 2015). These detections
are matched using viewing rays in cyan. (b) The corresponding images are used to query our
database of 3D objects, (c) which returns a 3D model and an orientation relative to the cameras.
(1.d) combining depth and silhouette cues in multi-view, (e) a better alignment of the object is
obtained. During Rendering, we generate the novel viewpoints illustrated by the blue camera (a).
The selective approach of the previous chapter (Ortiz-Cayon et al., 2015) exhibits strong artifacts
on the car (2.a). Using our current approach (2.b) we achieve good rendering quality for both the
car and the background.

Object Morphing and Rendering. After the alignment, the object mesh can still be
different from the actual object geometry. In this case, we use morphing based on
silhouettes to obtain a closer fit. Rendering is achieved by compositing background
rendering using our selective rendering (Ortiz-Cayon et al., 2015) and an ULR-like
(Buehler et al., 2001) rendering for the foreground. Results clearly demonstrate the
advantage of our approach (Fig. 4.2.2.b).
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4.4 Stock 3D Model from Multi-view Images

The first step of our system is to identify the regions in the input images containing the
objects of interest, then select the stock 3D model and finally create a model which is
suitable for further processing.

4.4.1 Multi-View Object Class Detection

We use the multi-region R-CNN (Gidaris & Komodakis, 2015) – one of the top-performing
detection algorithms. The original method treats each input image of the dataset
independently and produces candidate bounding boxes corresponding to the objects
requested (e.g., car, aeroplane, chair, etc.).

For each input view, we run the R-CNN, which provides a set of candidate 2D
bounding boxes (Fig. 4.3). To put these bounding boxes into correspondence we rely
both on appearance and geometry. We first cluster candidate regions based on appearance.
Candidates belonging to different color clusters should never be matched. For each pair of
object candidates – from different views – we compute the intersection of the viewing line
passing through the center of the 2D bounding boxes (Fig. 4.2.a). The largest 3D-point
clusters identify the objects in the scene and match 2D detections. After this step we have
a set of candidate objects with corresponding images from different viewpoints. Next we
use this data to find the corresponding stock models.

Figure 4.3: Object detection. Using the region aware detection algorithm (Gidaris & Komodakis,
2015) we obtain tight 2D bounding boxes of the objects of interest in the scene.

4.4.2 Multi-View 2D-3D Retrieval

We use the ShapeNet (Chang et al., 2015) database to find stock models using the 2D
bounding boxes from all views. Currently, ShapeNet has a rich collection of the class “car”
which we use to validate our approach. We downloaded approximately 5K car models from
this database and for each 3D model we rendered the object from 108 viewpoints of the
viewing sphere, with azimuth and elevation increasing 10 degrees in the range of [0, 360)
and [0, 30) respectively (see Fig. 4.4). This constitutes our database of 5K car models, each
associated to 108 views of the object.

We will now use the images obtained from the bounding boxes to query our object
database. Following Massa et al. (2015), we compare the images using the cosine
distance on pool4 features. We tested features of AlexNet (Krizhevsky et al., 2012a), VGG
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Figure 4.4: Example of Renderings. Four out of 108 views generated for one car model of the
ShapeNet database.

(Simonyan & Zisserman, 2014) as well as their adapted version using the framework of
Massa et al., which aims at bridging the domain gap between rendered 3D models and
photographs. As expected, we found that the retrieval using AlexNet features were of lower
quality than using the more powerful VGG features. More surprisingly, we also found that
the retrievals with adapted features were of lower quality, probably because the adaptation
layer of Massa et al. also destroys some image information.

Each query is matched with an image from the database. This gives both a 3D model
ID and an orientation with a matching score (of the object in the scene). Orientation is
expressed as azimuth-elevation angles (θ, φ) with respect to a camera viewing the object at
the origin. Because we have access to several views of the same car, we were able to further
refine the retrieval using this information. Interpreting the comparison score between CNN
features as a log probability, we compute a single score for each 3D model by simply
summing the maximum score for this model for each of the unoccluded view of the model.
Typical results of this step are shown in Fig. 4.5.

Figure 4.5: Model and orientation matching. The detection algorithm provides 2D bounding
boxes for the object. After cropping, the images are used to query the database. Right: the matched
rendering which provides both a 3D model and a rough orientation.
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4.5 Positioning the Mesh

We now have a mesh corresponding to each object identified in the images of our
multi-view dataset. The rendering with the highest matching score gives the orientation
of the model with respect to one camera. To place the mesh in the scene we follow
a multi-view strategy taking advantage of the detection information from all the views.
To achieve more precise alignment we use both reconstructed geometry and silhouette
matching. The final output is a set of rigid transformation parameters Λ corresponding to
scale, translation and rotation for each 3D model.

4.5.1 Initial Pose Estimation

Initial pose of each mesh is computed as follows. We perform the initial alignment
separately for rotation and then translation and scale. To orient the 3D model obtained
from the previous step (Section 4.4.2), we rely on the matched image with the highest
score from the database. We know the orientation of the 3D models with respect to the
corresponding virtual camera Cr, which we represent as rotation Rr. This rotation is not
sufficient to align the 3D model, since our database consists of images rendered with the
object at the center (Fig. 4.4) while in real world images the object can be present at
different locations (Fig. 4.3). To compensate for this, we compute the rotation matrix that
aligns the camera central axis ray with the viewing line passing through the center of the
detected bounding box. We compose all rotations and represent the orientation of the mesh
in a global coordinate system.

After setting a rough orientation, a first estimate of the car position is computed
as the point that minimizes the sum of squared distances to all rays cast through the
center of 2D bounding boxes. We define the transform parameters Λ ∈ {λ|tx, ty, tz, s}
where ti is the translation in the i-axis and s is the scale. We further improve this first
estimate of the transform parameters Λ by leveraging the 2D bounding boxes from object
detection (Fig. 4.6a). By minimizing the distance between detection bounding boxes and
the bounding boxes from 3D projection, we obtain a better initial estimate of the rigid
transform parameters Λ:

Λ∗ = arg min
Λ

n∑
i=1

dist(xi
1, d

i
1)2 + dist(xi

2, d
i
2)2 (4.1)

where {x1, x2} and {di
1, d

i
2} respectively define, for view i, the sets of upper left and

bottom right corners of the 2D bounding boxes of the object and the detection. The distance
function dist is defined as:

dist(x, xd) =

{
0 if x or xd on image border
||x − xd ||2 otherwise

(4.2)

For this optimization we only consider an edge of a bounding box if the edge is entirely
within the image (i.e., the car is not truncated at that side). We use gradient descent to
estimate these initial set of parameters Λ. We provide the full formulas for the partial
derivatives in Appendix B.
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(a)

3D reconstruction

(b)

Figure 4.6: (a) Constraints from detection 2D boxes: To have a better starting point for object
alignment, we use the constraints from the detection bounding boxes. The bounding box corners x1

and x2 of the mesh should match the corners d1 and d2 of the R-CNN detection box. (b) Constraints
from 3D reconstruction: For each camera, the line of view for object vertices v1 and v2 intersects
the available 3D reconstruction (in green; note that part of the car is missing) at 3D points v1

mvs and
v2

mvs. In this case, the constraint from v2
mvs is ignored.

4.5.2 Multi-View Alignment

After the initial pose estimation, the model is placed in the correct general region of the
3D scene. It now becomes possible to further improve the alignment of the 3D model
using contours and available 3D reconstruction. We continue to use Λ to indicate pose
parameters (rotation, translation and scale) but this time we include rotation quaternions
Λ ∈ {λ|tx, ty, tz, qx, qy, qz, qw, s}. We model the alignment step by solving the following
optimization problem:

Λ∗ = arg min
Λ

E(Λ) = E3D(Λ) + Eedge(Λ) (4.3)

The first term (E3D) corresponds to distance between the partial 3D reconstruction from
MVS and the mesh. The second term (Eedge) tries to align the silhouette of the mesh with
the corresponding edges in the images.

Constraints from partial 3D reconstruction. Multi-view stereo algorithms (Jancosek
& Pajdla, 2011; Goesele et al., 2007) provide a coarse 3D reconstruction of the object.
This reconstruction often contains inaccuracies and holes, typically in regions containing
windows or strongly reflective surfaces where depth estimation from stereo matching
algorithms is unreliable. Nevertheless existing 3D information should be used to align
the model. The initial pose of the matched 3D model provides a rough overall scale and
position of the object, allowing us to identify with some accuracy which parts of the 3D
reconstruction correspond to the model we wish to align.

We note Vi
visible the set of the visible 3D model vertices from camera i. When MVS

reconstruction is available, we associate to a vertex v its closest point vmvs on the line view.
E3D(Λ) is defined as:

E3D(Λ) =
n∑

i=1

∑

(v,vmvs)∈Ci

||v − vmvs||2 (4.4)



70 Chapter 4. Automatic 3D Model Alignment for Mixed Image-Based Rendering

(b)

(c)

Contours Color
Models

Figure 4.7: Constraints from silhouettes. (a) For a point p on the mesh contour we look for a
matching point along the lined defined by�n. A candidate matching point p′ is added as 2D constraint
if α < 15◦. (b) In certain situations, the mesh contour in pink can have two corresponding contour
points. In this case it is necessary to use color models (warm colors indicate high object probability).
(c) The resulting constraints help align the 3D mesh (in gray).

withCi the set of valid (v, vmvs) pairs obtained from view i. As illustrated in Figure 4.6b,
when the reconstruction is far from the model, it is unlikely that vmvs is part of the car and
it should not be considered. In our case we use 1/5 of the object length as the filtering
threshold. This is a common strategy in point cloud alignment literature (Rusinkiewicz &
Levoy, 2001).

Constraints on the silhouette. For silhouette matching we first need to identify relevant
contours in each image. We use the Canny filter (Canny, 1986) to detect edges in the
images. The output is an edge map only based on local color differences. Isola et al. (2014)
describe a method to estimate the statistical dissociation information on boundaries. We
use this information to filter the edge map and only keep edges likely to correspond to
object contours.

Once the contours in the image have been identified, the next step is to match points
from the object’s silhouette with edges detected in the image. If we consider p a point
on the silhouette and �n the normal to the silhouette at this point, we search for matching
candidates along the normal line passing by p. We keep the two closest edge points to
p as a matching candidate. This procedure can generate a large number of candidate
matches with potentially many outliers. We first use the normals as filtering criteria.
Let �∇(p′) be the color gradient at the image candidate pixel p′. If the angle difference
between the vectors �∇(p′) and �n is larger than 15◦, the candidate pixel p′ is discarded
(Fig. 4.7.(a)). This criterion is sufficient in many cases but certain situations require the
usage of color information (Fig. 4.7.(b)). Pixels inside and outside the model projection are
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used respectively to estimate a foreground and a background color model. Here, these color
models are histograms noted HF and HB. Fig. 4.7 shows the resulting object probability
for pixels (warm colors indicate high object probability). We use these models to help filter
incorrect matches by defining the color energy associated to a contour point p and a vector
~n as

Ecolor(p, n) =
∑

p∈Sint

−log(HF(Ip)) +
∑

p∈Sext

−log(HB(Ip)) (4.5)

Sint and Sext are set of points sampled along the line defined by ~n. They respectively
correspond to interior and exterior points. The defined energy is lower when interior and
exterior points respectively satisfy foreground and background color distributions. Any
silhouette match that results in an increase in contour energy is ignored. In essence, this is
similar to energy terms used in level set segmentation (Cremers et al., 2007).

We further enforce multi-view coherence by extending our filtering scheme. Each 2D
constraint is transformed into a 3D constraint by using the vertex depth value. These 3D
constraints are projected in all the other views, resulting in new 2D displacements. Views
where this displacement causes an increase in the appearance energy Ecolor, vote to drop
the constraint. We only keep the constraints for which a majority of views agrees. The
energy term from silhouette matching is defined as:

Eedge(Λ) =

n∑
i=1

∑
(p,p′)∈Mi

||p − p′||2 (4.6)

withMi the set of 2D matching points from silhouettes in view i.

Optimization. We solve the alignment problem of Eq. (4.3) using gradient descent. All
differentiations with respect to each pose parameter are provided in Appendix B.2.

Typical outputs of initial pose described in Section 4.5.1 and in the fine alignment
Section 4.5.2 are shown in Fig. 4.8. These two steps are not sufficient, since the mesh of
the model is not exactly the same as the model in the input photos as we saw in Fig. 4.8.
This happens due to inaccuracies at the retrieval step or just because the appropriate model
may be missing from the database. A subsequent morphing step (in Section 4.6.2) will be
required to accurately fit the model in the images; however high-quality alignment using a
rigid transformation is indispensable for the success of morphing and finally high-quality
IBR.

4.6 Automatic Geometry Morphing and Rendering

We now have a well aligned 3D model in our scene. However, due to the inevitable
differences between 3D models retrieved and the 3D object observed, the 3D mesh needs
to be adapted to fit the object in the images as best as possible. This happens due to several
reasons:
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Figure 4.8: Positioning the mesh. Upper row: Initial alignment for two views; Bottom row:
fine-grain alignment.

• Inaccuracies at retrieval step.

• Inaccuracies at the alignment step.

• Inaccuracies of the 3D model.

• Or simply, because objects such as cars exist in various options and the appropriate
model might be missing in the database, or the specific instance of the object may
have small differences such as different accessories etc.

A key element of our approach is that we automate this morphing process using the 2D
silhouette matching obtained in the previous step, contrary to previous methods based on
manual user interaction (Kholgade et al., 2014).

4.6.1 Mesh simplification

Mesh deformation techniques, such as the As Rigid As Possible (ARAP) morphing
(Sorkine & Alexa, 2007), require high quality manifold meshes. Unfortunately, meshes
available in ShapeNet and other large databases are unsuitable for such transformations.
They often present poor quality due to their diverse and “casually modelled” origin,
often containing duplicate vertices and faces, self-intersecting polygons, disconnected
components which are generally unsuitable for further geometry processing.
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We tried different methods to repair the meshes, including re-sampling the hull of the
meshes with points and using screened Poisson reconstruction with the software Graphite4

While the resulting meshes are reasonable, the final mesh is not guaranteed to be manifold
and small holes due to details in the 3D modeled mesh remained which create problems
during rendering. An example of this kind of mesh is presented in Fig. 4.9(b). As
a reasonable compromise, we opted for the semi-convex hull representation (Guney &
Geiger, 2015) (see Fig. 4.9(c)). This method preserves the shell of the objects, and outputs
a manifold mesh suitable for further processing while keeping desired properties as a
side-effect.

(a) Original mesh (b) Re-sampled mesh (c) Semi-convex hull

Figure 4.9: Mesh simplification. (a) Retrieved mesh from ShapeNet. (b) Re-sampled mesh with
Graphite. (c) Semi-convex hull mesh of Guney & Geiger (2015).

4.6.2 Morphing

To deform the mesh, we obtain 3D constraints on vertices from 2D silhouette matching.
For every silhouette point p matched with an edge point p′ in the image, we obtain the new
position of the mesh vertex vi projecting on p. This new position, vi

M, is located along the
viewing line of p′ at the same depth as vi. We enforce a smooth deformation of the rest of
mesh using the As-Rigid-As-Possible surface deformation framework (Sorkine & Alexa,
2007) available in libigl5 (Jacobson et al., 2016).

4.6.3 Rendering

The rendering proceeds in three passes. The first pass renders the background environment
using the mask generated by the previous process. We use our previous implementation of
selective rendering (Ortiz-Cayon et al., 2015) to render this layer, and modify the shader
to discard all pixels on the objects which have geometry using the mask. We see this layer
in Fig. 4.13(left), which is the result of blending the four closest views. The second pass
performs a ULR-like rendering of the car using the aligned and morphed geometry (figure
middle). Specifically we used deferred shading to render the depth and normals of the 3D
model, look up the color in the closest images and use the ULR blending weights (Buehler

4http://alice.loria.fr/software/graphite/doc/html
5https://github.com/libigl/libigl
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Figure 4.10: Mesh morphing. Because the selected 3D mesh may not correspond exactly to
the model in the images, a deformation step is necessary. We use silhouette matching to define
constraints on vertices: red points indicate original positions and white points target positions. A
multi-view filtering step (see text for details) is necessary to remove remaining outliers (indicated
in green). After morphing, the mesh better fits the images and can be used for rendering.

et al., 2001) to synthesize the final color on the object. Finally we blend background and
object layers directly on the GPU to produce the final result (figure right).

4.7 Results and Comparisons

We evaluate our method on 5 scenes. We use the scenes YellowHouse-12 and Street-10
from Chaurasia et al. (2013) that contain cars. We also propose the new scenes
HotelBruges-19, Bosquet-16 and Street2-26. Results of our real-time rendering are shown
in Fig. 4.2, Fig. 4.13 and 4.14. but are best appreciated in the accompanying video,
available here: https://team.inria.fr/graphdeco/publications.

Comparisons. We compare our method with previous rendering algorithms (Buehler
et al., 2001; Ortiz-Cayon et al., 2015). Fig. 4.14 shows the result of rendering for each
algorithm, at a novel viewpoint far from the input cameras. ULR (Buehler et al., 2001)
relies entirely on the available geometry and errors in the reconstruction are particularly
visible (one can also notice the black regions where no 3D data exist). Our previous
selective approach using superpixels, performs better on the background in general. It
compensates a little for errors in the geometry (1st row), but starts to show strong artifacts
as we move closer to the reconstructed background (3rd and 4th row). Just using the initial
pose of the stock model may improve the rendering when no 3D data is available (row 3)
but results are blurry and artifacts are created around edges. Our approach outperforms
other rendering algorithms and it is able to compensate for the errors in the geometry.
Thanks to alignment and morphing, the renderings around contours look natural and much
fewer artifacts are visible. It now possible to move closer to objects in the scene contrary
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(a) (b) (c)

Figure 4.11: Full Mesh Fitting (a) Using 2D detection bounding boxes, an initial transformation
of the 3D model is computed. (b) Using available 3D reconstruction and constraints from silhouette
matching, a fine grain alignment of the model is estimated. (c) Because the 3D model does not
always correspond to the images, deforming the mesh is necessary. Red points indicate mesh
vertices to be displaced. White points indicate their target position.

to previous methods. To show the importance of the alignment step, we also compare with
rendering based on initial pose of the 3D model in Fig. 4.15.

As we explained in previous chapter, we attempt to quantitatively validate our results
with image quality metrics following a leave-one-out procedure but comparing only
cropped images (with bounding boxes from detection). Although this time we always
obtain higher index of quality, the differences are insignificant with respect to the values
obtained with ULR and Selective. We could not conclude anything with this measure
since as see in Fig. 4.16, the error is spread through the image, making it hard to reach
any meaningful conclusion. Again, we concluded that these metrics are not suited for
Image-based rendering evaluation.

4.8 Conclusions

In this chapter, we introduced a new mixed Image-Based Rendering algorithm that builds
on recent advances in object detection and recognition to augment IBR scenes with explicit
geometry. We propose an entirely automatic pipeline that starts from object detection in
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(a)           (b)

Figure 4.12: Detail of mesh morphing. (a) Detail before morphing. (b) After morphing we obtain
a better alignment of the 3D model.

Figure 4.13: Mixed-rendering. Left: Background layer. Middle: Foreground object. Right: Final
novel view.

images, then accurately places the object in the scene using a multi-view approach taking
advantage of available geometry and silhouettes. As the stock 3D model may not exactly
correspond, the 3D mesh is morphed to better fit the images. Our results demonstrate that
we obtain improved rendering quality even when moving away from the input cameras.

For the moment only car 3D model databases are rich enough to be used in our context,
but our method is generic and can be directly applied on other object categories and we
would like to test our approach with other classes. We see our approach as a first step in a
more general trend, in which traditional 3D models will be combined with image-based
techniques to greatly simplify 3D content creation and interactive display. This is a
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ULR Selection   Ours 

Figure 4.14: Comparisons. Rendering of novel viewpoints on Bosquet-16, YellowHouse-12,
HotelBruges-19 Street-10 and Street2-26 datasets (from top to bottom). The rendering methods are,
from left to right, ULR (Buehler et al., 2001), Selection (Ortiz-Cayon et al., 2015), Ours without
alignment, Ours after alignment.

promising direction as more and more 3D models are available. Additionally, we would
like to incorporate the semantic knowledge of new databases as ObjectNet3D (Xiang et al.,
2016) to render retrieved objects bases on their material properties.
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Ours (no alignment) Ours (with alignment)

Figure 4.15: Comparisons with and without alignment. (a)Ours without alignment. (b) Ours
after alignment.

(a) Original mesh (b) Semi-convex hull

Figure 4.16: Visual Difference Predictor map. Example of prediction maps using VDP (Mantiuk
et al., 2011) in our cropped rendered images.
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In Chapter 3 and Chapter 4 we presented Image-Based Rendering methods that can
generate plausible views under imprecise geometry. We expect better rendering quality
as the reconstruction completeness and accuracy improves. An ideal IBR method should
also be capable to adapt to different levels of reconstruction quality, and still perform well
if only a poor geometric proxy is available. An interesting question is to ask what is the
level of precision required for geometric reconstruction to still allow rendering of plausible
views? The answer is unclear because:

1. Rendering methods are complex. Their artifacts are hard to analyze.

2. We have not completely understood the human vision process and we miss good
perceptual models.

IBR methods presented in this thesis as well as state of the art methods use heuristics
to minimize target functions, achieving excellent results. So far we have used the
reconstruction process as a black box system, without explicitly measuring uncertainty
introduced in the final rendering. Being aware of depth uncertainty would allow us to
define rendering strategies and possibly improve depth for IBR.

In this chapter we attempt to improve IBR by identifying erroneous depth with
a classification task formulated as a feature-based energy (in Section 5.2) and with a
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learning-based energy (in Section 5.3). In the former, we try to identify areas labeling
them based in a energy using classic descriptor-based approach. In the latter, we train a
deep network to learn to predict corrections of depth maps. We present partial results of
both approaches which give us a first insight on how to obtain better geometry for IBR.

5.1 Introduction

We reviewed recent multi-view stereo reconstruction algorithms at a very high level in
Section 2.2.1. With around 20 images of the scene viewed in Fig. 5.1a, Jancosek & Pajdla's
method gives us the best proxy we have been able to obtain from tests with publicly
available solutions (seen in Fig. 5.1b). We use mesh-based surface representation of the
geometry which generally offers fewer outliers compared to point clouds representations.
Projecting the proxy onto input cameras produces the depth maps we use for rendering (see
Fig. 5.1c).

Given this scene's complexity, the results of these state of the art computer vision
methods are impressive. Nevertheless those are far from being perfect. Inaccuracies
on the proxy introduce rendering artifacts. Defining how imprecise geometry degrades
rendering quality is a complex task. Pujades et al. model uncertainty of the geometry by
back-projecting – into 3D space – feature points uncertainties of the matching algorithm.
The estimated uncertainty weights the “minimal angular deviation” criteria of ULR in their
optimization.

For real-time rendering application, we can informally describe this uncertainty of
depth maps as three main classes. “Holes” (black regions in Fig. 5.1c) are the most evident
and trivial to identify. Chaurasia et al. proposed an iterative algorithm to synthesize view
depending depth base on the appearance of neighboring regions with depth. This procedure
produces front-facing depth good enough when we move the nearby input cameras but
rendering artifacts appear when we move far. When displaying in stereo or at slanted
planes (like the ground floor in Fig. 5.2(b)), we clearly see the “billboard-like” nature of
the synthesized depth.

Another kind of problem harder to identify, happens in regions with inaccurate depth
as in Fig. 5.1d. We get depth information everywhere, but actually, it is too far from what
it should be. It could be either extra geometry – thus some fake geometry occludes the
background – or missing parts of objects – and thus it takes depth of the background.
Rendering artifacts of this kind of error can be seen in Fig. 5.2(b).

Our goal is to reduce the rendering artifacts due to inaccurate view dependent or
multi-view reconstruction. We target complex environments, typically outdoors urban
content, in which a lot of depth cannot be reconstructed. Indoors scenes pose specific
challenges (Hedman et al., 2016), but in principle the solutions we propose here could be
extended to interiors.

A frequently used approach to solve this kind of problem is measuring the evidence
with hand-crafted descriptors (data term) and formulating an energy with some prior
observations to regularize the solution (smoothness term). We follow this approach in
Section 5.2. Although we have control over the feature, it is difficult to define meaningful
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descriptors for the task. Deep Learning has proved to be effective for this kind of tasks. The
challenge consist in gathering a massive amount of data for training and in establishing an
appropriate network architecture for the problem. In Section 5.3 we explain the procedure
to create our training data and the proposed network architecture.

5.2 Descriptor-based Approach

In this section we present an attempt to identify problems of depth maps for IBR, using a
descriptor to measure the evidence of inaccurate geometric information in our input views.
In particular, different regions of depth maps generated from MVS proxies can be classified
into: Reliable (reconstructed), Unreliable (missing occluder or extra occluder) and No
geometry (no depth). Next, we describe some observations of these regions to understand
the their characteristics:

Reliable depth - reconstructed. Surfaces with texture and Lambertian properties,
visible in two or more views. Photo-consistent properties of this type of region can be

(a) (b)

(c) (d)

Figure 5.1: Problems of MVS reconstruction. (a) One input image. (b) Reconstructed proxy seen
from (a). Proxy’'s holes in red. (c) Depth map extracted from (b). (d) Example of two kind of
inaccuracies of the reconstruction: Geometry of the upper path of the pole is missing while the base
has inexistent geometry.
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(a) (b)

Figure 5.2: Rendering artifacts produced by erroneous geometry. (a) Top view with input
cameras in blue and novel camera in red. (b) Image from the novel camera in (a): Visible rendering
artifacts around the vertical poles and in the ground floor from another novel camera far from inputs.

verified by re-projecting depth into other views.

Unreliable of class 1: missing occluder. Rarely, an object in the reconstruction scene
is completely missing. Thus, image regions containing unreconstructed objects, but with a
reconstructed background, belong to this category

Unreliable of class 2: extra occluder. This case happens when the reconstruction
algorithm hallucinates geometry (and thus depth), which does not exist in the real world. In
the reconstruction algorithms we tested this often occurs around vegetation or in-between
thin repetitive structures (like fences). Usually the parts that subtend the extra geometry
are well reconstructed.

No geometry. Regions where no reconstructed geometry is projected. In recent
reconstruction algorithms, regions with noisy texture (clutter) or with repetitive patterns
are less problematic for reconstruction. The real challenge remain regions that change
their appearance drastically from one view to another or simply do not have matching
pairs (e.g. at the border of a photograph).

Trivially, any region of the depth maps without depth will be labeled with
“no-geometry”. But for the other two types of regions, which tools do we have to measure
these observed properties? For “missing occluder” one could measure the “objectness” of
regions and verify that depth of regions that belong to the same object should not change
quickly. This is hard to measure in our setups where there is no single object which is the
center of attention but we move freely in the scene. Instead, we can reason on visibility,
considering that the background should not be visible by the view which is missing the
occluder, as we will propose in Eq. (5.3).

“Reliable depth” can be measured via photo-consistency. For this task we use the
Daisy descriptor proposed by Tola et al. (2010), inspired by SIFT and GLOH descriptors.
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Daisy was efficiently computed at each pixel (two orders of magnitude faster than SIFT)
It has been specifically designed for dense wide-baseline stereo matching, handling
occlusions correctly and presenting desirable robust properties to perspective distortions,
lighting changes and rotations. We also expect that low photo-consistency indicates “extra
occluder”.

5.2.1 Descriptor for Geometry Labeling

For each of our M input images Im associated with camera Cm and depth map Zm, we
can obtain Daisy descriptor maps Dm. Given this map, the Daisy descriptor at a pixel
coordinate xi of Im is equal to:

Dm(xi) = Dm(Xi) = [h1, ..., hQ] (5.1)

Where Xi is the 3D point that projects to location xi with the projection matrix of Cm.
Dm(xi) is a feature vector with a set of Q normalized oriented histograms hq – centered
around the point of interest at different levels and considering regions of different sizes.
For a pixel xi in view m we obtain the matching pixel in view n, projecting Xi onto camera
Cn and thus a matching descriptorDn(Xi).

The distance di
m→n between matched points can be computed as the mean χ2 error

between histograms1 of Dm(Xi) and Dn(Xi). We define the descriptor for Geometry
labeling of the pixel xi in Im (Eq. (5.2)) and its complement (Eq. (5.3)) as:

di =

|N|∑
n∈N

wndi
m→n (5.2)

d∗i =

|N|−1∑
n∈(N\m′)

wndi
m′→n (5.3)

where N is the set of views where xi is visible – according to the proxy. The weights
wn are the cosine distances (dot product of normalized vectors) between rays from Xi to
Cm and to Cn. It penalizes matches between slanted views. The spatially closest view to
m is denoted by m′. The intuition of Eq. (5.3) is that excluding the reference view, we
can measure the error between descriptors of other views that see the point of evaluation.
Thus if other views generate a small error d∗i with respect to di, probably Cm is missing
something and the other views see the background correctly reconstructed. Maps of di and
d∗i computed for the Fig. 5.1a can be seen in Fig. 5.3.

5.2.2 MRF Energy to identify Problematic Regions

To classify depth map regions into the afore mentioned classes we can define the problem
as a multi-label MRF optimization on a regular grid (each pixel is a node). To each node xi

we assign a label li ∈ {0, 1, 2, 3} which represents reconstructed, missing occluder, extra

1 To account for occlusion contours, we only consider pairs of histograms with approximate depth.
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(a) (b)

Figure 5.3: Maps of descriptors for Geometry labeling. (a) Map of di per pixel. (b) Difference
between di and d∗i accentuates the missing regions

occluder and no geometry respectively. We need to find the optimal labeling L∗ that
minimizes the following energy with multi-view (mv) and single view (sv) regularization:

∑

xi∈Im

Edata(xi, li) + λ1

∑

(xi,x j)∈N sv

Esmooth−sv(xi, x j, li, l j) + λ2

∑

(xi,x j)∈Nmv

Esmooth−mv(xi, x j, li, l j)

(5.4)
The data term attempts to measure the properties previously discussed. Concretely:

Edata(xi, li) =


∞, if xi has no depth and li � 3

e
ρ(xi)−1
σ , otherwise

(5.5)

The constant σ (between 0.0 and 1.0) indicates a threshold for variability of
photo-consistency and the function ρ measures photo-consistency according to the label
as:

ρ(xi) =



di, if li = 0

d∗i, if li = 1

σ, if li = 2

(5.6)

The pair-wise terms Esmooth−sv and Esmooth−mv regularize the energy considering the
4-connected neighborsN sv in single and the 2-closest correspondencesNmv in multi-view
respectively. Penalizing the color difference between neighboring nodes as:

Esmooth−sv(xi, x j, li, l j) =


wz(xi, x j)e−γ1 ||Is

m(xi)−Is
m(x j)||2 , if li � l j

0, otherwise
(5.7)

where wz(xi, x j) depends on the difference of depths at xi and xi as: e−γ2 ||Zm(xi)−Zm(x j)||2 .
γ1 and γ2 are constant relative to the relevance of depth and color. Is

m(xi) is the mean color
of the superpixel where xi belongs to. In this way, we use SLIC (Achanta et al., 2012)
oversegmentation as a soft constraint to guide the label boundaries towards image edges,
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(a) (b)

Figure 5.4: Labeling for two input views of the test scene. Regions saturated in red correspond
to label l3. Saturated in green correspond to label l1. Original colored pixels correspond to label
l0. Any pixel was labeled with l2. (a) A correct labeling: missing parts are detected on the top of
the poles, around the tree and the branches of the plant. (b) The consistency is kept on branches of
plant, but labeling is been incorrectly projected from (a).

instead of defining the MRF on superpixel nodes. While this could be efficient in terms
of computations, some superpixels do not necessarily follow occlusion contours and thus,
a superpixel might be “partially reconstructed”. Esmooth−mv is defined as Eq. (5.7) without
considering wz. We downscale input views to a quarter of the original (downscaled to
600 × 450 pixels) to reduce computational complexity of the MRF solution.

5.2.3 Results and Conclusions of Descriptor-based Approach

We solve Eq. (5.4) with standard Graph Cut minimization (Boykov et al., 2001). The
optimized labeling for two input views is shown in Fig. 5.4. Overall, the results were not
conclusive. We can explain that with two main reasons. Firstly, the descriptors presented in
Eq. (5.2) and Eq. (5.3) might not discriminate correctly between labels and particularly, for
the label l2 (“extra occluder”) which is very hard to model correctly. Secondly, the choice
of optimization method, which might not be appropriate. Graph Cut may not be suitable for
this kind of problem because is biased to produce small contours since it finds the minimum
cut. This means that Graph Cut is most probably not suited to produce isolated and thin
segments presented in complex street images. As a result, we decided to turn the solution
of the problem as a learning-based system which we describe next.

5.3 Learning-based Approach

Recent years have seen the emergence of several learning-based methods to improve
geometric reconstruction. Reynolds et al. (2011) presented a supervised learning method
to estimate geometric inaccuracies – in the form of confidence – of reconstructions with
Time-of-Flight cameras. They train a classifier (Random Forest regressors) and as ground
truth, they used real-world data, acquired with laser scanners. We can not apply their
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classifiers to multi-view stereo reconstructions because artifacts of MVS proxies (described
in Section 5.1) are visibly different errors to those produced by Time-of-Flight cameras.

Convolutional Neural Networks (CNNs) have become a very popular supervised
learning technique in years. CNNs have been very successful in solving classification
and detection tasks (e.g. Krizhevsky et al. 2012b). Deep network architectures have
been extended to solve segmentation, pose estimation, stereo depth and surface normal
estimation (Eigen et al., 2014; Eigen & Fergus, 2015). Broadly speaking, implementing a
solution based on deep learning requires computational power, training and validation data
and a network architecture. Computational resources and the amount of initial data are
the main limitations when implementing such systems. The first one is less of a problem
with the availability of deep learning libraries optimized for GPUs processing (e.g. Caffe2,
Torch3, and Theano4 ) and architectures for training with distributed resources allows to
train deep networks in a matter of hours.

In spite of an impressive growth of publicly available data for training and testing,
we did not find suitable databases for our task. Most databases, with depth information,
involve Kinect-like captures which themselves do not capture the kind of thin structures
we target. Creating databases with meaningful and reliable data to generalize the learning
problem is probably what takes the largest amount of time when setting up deep learning
systems. Instead of capturing the ground truth depth with laser scanners the option we
choose is to generate synthetic data. Renderings have been used before for classification
and other vision tasks (e.g. Aubry et al. 2014a and Rematas et al. 2014) but usually those
do not require high quality realistic imagery.

In this section, we explain the procedure to create our training data (discussed in
Section 5.3.1), a network architecture (in Section 5.3.2) and the training procedure (in
Section 5.3.3). Specifically we need to generate high definition photo-realistic images with
ground truth depth that “look similar" to the scenes we capture for IBR. For each scene
we use a small subset (15-30) of the synthetic images to run a MVS reconstruction and
obtain approximate depth maps from IBR (see Fig. 5.5). Then we train a network in order
to find patterns between the input color images, approximate depth and ground truth depth.
Building training data from realistic synthetic renderings is a non trivial task and it is a
major element of our work.

5.3.1 Datasets Generation

Our goal is to produce high-definition natural looking images with ground truth depth.
We need to get accurate geometry and lighting details. With the availability of highly
detailed hand-crafted models5 or procedurally generated vegetation6, and combined with
Mitsuba7 (implementing physically-based rendering algorithms, e.g. path-tracing), we

2caffe.berkleyvision.org
3torch.ch
4deeplearning.net/software/theano
5www.evermotion.org
6xfrog.com
7www.mitsuba-renderer.org/
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can produce extremely high quality renderings with complex effects and ground truth for
different graphics components:, geometry, materials and lighting.

As a proof of concept, we started working only with four scenes (see Fig. 5.6) in
3DS-Max format with VRay8 materials. These scenes were built by professional artists who
create these assets for commercial purposes. The quality of the geometry and materials is
very high, and includes complex shade trees to give realistic appearance to the rendered
images. We can augment this data and generate a lot of variability if we manipulate the
scene configuration, materials and lights.

To use these scene many components of our pipeline require some practical solutions
developed in our research group9. In particular we need to deal with the problems
of exporting materials from V-ray to Mitsuba, compatibility between models, different
coordinates systems and automation of camera generation. Additionally the elevated
cost of physically-based rendering thousands of images, requires high-end computation
resources. We chose to use the Inria compute cluster for this task.

8www.chaosgroup.com/
9The various components of our system were created by G. Kopanas, S. Bangaru and A. Djelouah.

(a) (b)

(c) (d)

Figure 5.5: Depth maps generated from geometry. (a) Ground truth geometry. (b) Reconstructed
geometry aligned with the ground truth geometry. (c) Depth map extracted from (a). (d) Depth map
extracted from (b).
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HD Photo-realistic Images and Ground Truth Depth. We developed a plug-in for
3DS-Max which allows the creation of hundreds of cameras and allows the export of
scenes to Mitsuba. The process of creating the cameras for a scene only requires two
splines (origin and target) used to randomly sample position and orientation of cameras.
The plug-in exports the scene geometry and materials to the Mitsuba format which we use
in the cluster to generate our synthetic data: RGB images and ground truth depth. Using
path tracing in Mitsuba, we render about 600 images of resolution 1600 × 1200 for each
of our 4 scenes. Computing global illumination for our scenes takes around 2.5 hours per
image on a single machine with 16GB RAM Intel-i7 with 12-cores running at 3.20GHz.
On the cluster it took less thank two week to render all this data. An example of rendered
view and ground truth depth is shown in Fig. 5.7b and Fig. 5.7c respectively.

Reconstructed Depth. We select a subset of each dataset (15 to 30 images) in similar
paths to those that were used in previous chapters for IBR captures. We use CMPMVS
(Jancosek & Pajdla, 2011) to reconstruct the scene proxy. This proxy and the ground truth
geometry are not in the same coordinate system. We use an automatic alignment tool to
align both the proxy and the ground truth geometry, by using the 3D point information
available for each camera from the SfM step. Specifically, for each point reconstructed
in each camera, we know the 3D point corresponding to the pixel in the SfM coordinate
system, and we can find the 3D position of the same pixel in the original synthetic image.

Figure 5.6: Four scenes used to generate the training data. The scenes present highly detailed
geometry and include complex effects that “look similar” to the scenes we capture for Image-based
rendering.
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(a) (b)

(c) (d)

Figure 5.7: Image patches for training. (a) View of one of our scenes with virtual cameras in
blue. (b) Difference between ground truth and reconstructed depth. (c) Ground truth depth. (d)
Reconstructed depth.

We use these matches as constraints to build a linear system and solved with an iterated
least squares solver which provides high quality alignment. Once this is done, we obtain
depth maps as the one in Fig. 5.7d.

5.3.2 Network Architecture

Our task is to learn the mapping between reconstructed depth and an ideal depth guided
by color. In principle this task is easier than learning depth only from color. Considering
we want good precision, we base our architecture on that developed by Eigen & Fergus
(2015), with the only variation that we have an initial approximate depth. They presented a
multi-scale architecture to learn coarse features and progressively refine the prediction to a
higher resolution. The first coarse layer is equivalent to AlexNet (Krizhevsky et al., 2012b)
since it has been designed to discriminate elements in the image. This give us meaningful
localized descriptors using only image content. We concatenate our depth at the second
and third scale to learn the relations between image content and depth. We use soft-max to
compute our loss between the prediction and ground truth depth.
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Figure 5.8: Network architecture. We use a three scale architecture from Eigen & Fergus (2015)
with the small variation that we feed the the second and third scale of the network with our
approximate depth maps obtained from MVS. For detail of the layer, refer to Eigen & Fergus 2015.

5.3.3 Network Training

(a) (b) (c) (d)

Figure 5.9: Image patches for training. (a) Color image. (b) Reconstructed depth. (c) Ground
truth depth. (d) Difference between ground truth and reconstructed depth.

The training happens in two phases. In the first phase we train the scale 1 (over
AlexNet) and scale 2 with low resolution patches of depth (64 × 64 pixels). In the second
phase we train the scale 3 to learn refinement of depth maps. Beforehand, we create
databases in format HDF5 of patches of images (Fig. 5.9(a)), depth (Fig. 5.9(b)) and ground
truth depth (Fig. 5.9(c)). Each patch of the size 256×256 pixels is created from overlapping
regions of our full resolution rendered views. To avoid over-fitting, we augment our data
creating patches from three different level of the views: at full resolution, half and a quarter
size of the original images from where we create 60, 20 and 4 patches respectively. Our
database contains about 180k of patches for each type of data. We randomly take 15% of
the patches for validation. Depth is quantized in 255 levels and with a label for absence of
depth.



5.3. Learning-based Approach 91

(a) (b) (c)

Figure 5.10: Learning curves. Upper row: Training of phase 1. Lower row: Training of phase
2. (a) Train loss vs number of iterations ×500. (b) Test loss vs number of iterations ×500. (c)
Accuracy on the validation database vs number of iterations ×500.

5.3.4 Results

We have run initial experiments with the data and network described above. In Fig. 5.10
we show the graphs of the loss function value with number of iterations for both the first
and the second training phases. In Fig. 5.11 we show the result of depth prediction for four
images of the validation dataset. Even though these preliminary results are not conclusive,
there are some encouraging traits in the results. In particular, the fist two rows where the
MVS depth maps was not available and for thin structures of the last two rows has been
recovered (as can be seen in the umbrella's pole, the plans and lamp).
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(a) (b) (c) (d)

Figure 5.11: Example of depth prediction in our validation set. (a) Color image. (b) Ground
truth depth. (c) Reconstructed depth. (d) Predicted depth.

5.4 Conclusions and Further Work

In this chapter we have discussed two strategies to address the difficult problem of obtaining
accurate depth which is aligned with image contours, in the presence of large reconstruction
errors such as those existing in MVS reconstructions of outdoors scenes. We first presented
a hand-crafted feature based approach, which despite some encouraging indications does
not succeed in the goal of providing high-quality depth. We then present initial steps of
a learning-based system which uses realistic synthetic data to create high-quality training
data for depth estimation. Since recording high quality depth for use as ground truth of
natural environments is a challenge itself, we discussed the data generation system for
ground truth data and the initial network architecture used for training and depth estimation.

Also, we would like to investigate loss functions which are more meaningful for
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view synthesis by combining our powerful ground truth depth information with a quality
measure on the rendering itself. Recent work along similar lines has been proposed by
Godard et al. (2016) and Kalantari et al. (2016). Godard et al. use stereo pairs to learn to
predict each other and do not actually need ground truth depth. Their loss function enforces
consistency between disparity pairs, implying good quality depth. While Kalantari et al.
use Light Field images and use a two step procedure to first estimate disparity and then use
a loss function based on the quality of re-projection. The data already existing in the light
field provides the required ground truth, thus optimizing for the quality of the the resulting
image rather than the depth. A promising future direction for our approach would be to use
a similar loss function, but to combine it with the high quality ground truth depth we have
at our disposal, especially for thin structures and hard-to-reconstruct objects.

Even though our experiments are incomplete, we believe that such learning approaches
based on synthetic data hold great promise for the future.
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The goal of the thesis was to develop solutions that allow IBR to become more usable,
making it possible to adopt this approach in much wider settings. To achieve this goal we
presented several novel solutions to improve speed and quality of Image-based Rendering
under incomplete and inaccurate geometric information. Specifically, we investigated three
research directions to address these issues.

6.1 Contributions

At the beginning of this thesis work, the highest-quality free-viewpoint IBR algorithm for
outdoors scenes involved expensive warp operations on superpixels Chaurasia et al. (2013),
making the method too expensive for many uses, e.g., on mobile platforms. To address
this problem we developed and implement an approach based on Bayesian principles. We
model the rendering quality, the rendering process and the validity of the assumptions
of a set of IBR algorithms. Our method improves the quality/speed trade-off of the
input algorithms, selecting the best rendering algorithm for each region (represented by
a superpixel segment) in a preprocessing step. At runtime our selective IBR uses this
choice to achieve significant speedup at equivalent or better quality compared to previous
algorithms.

A recurring problem in IBR algorithms is rendering of shiny objects. Even though
solving the general problem is very hard, we observed that the recent availability of models
for certain classes of objects (such as cars), opens an opportunity to exploit existing 3D
models to improve the quality of IBR. We thus introduced a new mixed Image-Based
Rendering algorithm that builds on recent advances in object detection and recognition.
Our system automatically augments IBR scenes with explicit geometry of a semantic class
present in the images. The geometry is obtained from publicly available databases of 3D
CAD models. As a test case, we use the class “car” which is often present in street views
and which are usually poorly reconstructed due the transparency and reflectivity of such
objects. Our pipeline starts by detecting the object of interests and then accurately places
the object in the scene using a multi-view approach taking advantage of available geometry
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Figure 6.1: Our Selective rendering running on a mobile device. Left: Screen-shots of some
demos of IBR scenes. Right: IBR scene running on a mobile device.

and silhouettes. Since the retrieved CAD model might not be the exactly the same as the
actual captured object by our photographs, the 3D mesh is morphed to better fit the images
contours. Our results demonstrate that we obtain improved rendering quality even when
moving away from the input cameras.

Another significant problem in IBR for outdoors scenes is the inaccuracy of the 3D
reconstruction using SfM and different MVS methods. Specifically, such methods often
miss some parts of the geometry, or create incorrect additional geometry in other places.
We reported initial experiments addressing these issues, first based on a hand-crafted
descriptor and then based on the use of realistic synthetic data to train a deep network
for accurate depth prediction.

6.2 Research Impact and Applications

We addressed the problems of IBR in three different projects. The results of Chapter 3
were presented at the International Conference on 3D Vision (3DV) 2015 (oral) and those
of Chapter 4 at 3DV 2016 (oral). The research reported in Chapter 5 is still preliminary, but
shows much promise, in particular in the possible use of synthetic data for deep learning.

This thesis was funded by the EU project CR-PLAY (www.cr-play.eu), which was
coordinated by a game developer company (Testaluna/Miniclip) and included the TU
Darmstadt who provided an SfM and MVS solution. The results developed in this thesis
had significant direct impact in the evolution and success of the project. The increase in
rendering speed provided by the solution of Chapter 3 was critical in allowing the rendering
algorithm to be used on mobile platforms, via a Unity3D port of our approach developed
together with the game-developer partners of the project.

Two different prototypes games were developed using IBR technologies (in Fig. 6.2).
The first one, name SilverArrow is a first-person-shotting game where an archer attempts
to hit targets on a scene. The movement of the character is also restricted to avoid having
the camera go outside the capture field. The background of the scene is rendered with our
Selective Rendering. The second prototype is a street basketball game. The game-play
happens in multiple urban scenarios give the ease capture of Image-based Modeled assets.
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(a) (b)

Figure 6.2: CR-PLAY IBR prototypes games. (a) Silver Arrow. (b) IBR Basketball

(a) (b)

Figure 6.3: Some prototypes games developed during the CR-PLAY workshop. (a) Survive the
weekend. (b) Rising car.

To engage game developers with the Image-based Rendering technology CR-PLAY
organized a workshop in Patras that required the development of game prototypes through
the whole process (capture, reconstruct, edit-and-play). More than 10 game developers
participated creating prototypes games with image-based content and rendering. The game
developers were able to use the system, including SfM and MVS reconstruction provided
by TUD, and our selective IBR prepFig. 6.3. The quality and speed of the rendering was
highly commended by the users, who all stated that they would like to be able to use the
algorithms commercially.

6.3 Future Directions

The results we presented have advanced both the speed and the quality of IBR algorithms,
and have also had impact in an applied setting. The ideas we have explored in this thesis
open numerous possible future research directions. We list a few of these in what follows.
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Using 3D models for improved IBR. The algorithm we presented in Chapter 4 is
generic and can be directly applied on other object categories. We would like to test our
approach with other classes, however the effectiveness of such solutions will depend on the
availability of a sufficient large and diverse number of models for the given category.

We see our approach as a first step in a more general trend, in which traditional 3D
models will be combined with image-based techniques to greatly simplify 3D content
creation and interactive display. Additionally, we would like to incorporate the semantic
knowledge of new databases as ObjectNet3D (Xiang et al., 2016) to render retrieved objects
based, for example, on their material properties.

Reflections in IBR. In order to render new viewpoints, current IBR techniques use
approximate geometry to warp and blend colors from close viewpoints. They assume the
scene materials are diffuse so geometry colors are independent of the viewpoint, which
fails in the case of specular surfaces such as windows. Dealing with reflections in an IBR
context requires being able to identify what are the diffuse and the specular color layers in
the input images. Importantly, it requires a method to correctly warp the specular layers
since their associated geometry is not available and since the normals of the reflective
surfaces are not reliable. Our solution for placing an exact synthetic model to replace such
objects could potentially allow the use of these high quality models to develop accurate
solutions for reflective surface IBR.

IBR for Head-Mounted Displays (HMD). The improved quality and speed of our IBR
algorithms has opened the possibility of their use in an HMD setting. In the context of
CR-PLAY, and initial demonstrator using our IBR algorithm was created for an HMD.
While the potential of such solutions was clear from the prototype, many problems need
to be solved before this solution can be widely used. In particular, we need to improve
poor depth perception in IBR for HMDs by alleviating the card-boarding effect and also to
improve comfort by reducing visual fatigue. These can be done by matching the capturing,
projection and display geometry, managing the Vergence - Accommodation conflict and
rendering a Depth-of-Field effect consistent with the scene. Another interesting idea is to
render content appropriately in order to match eye adaptation to light by properly rendering
High Dynamic Range captures in IBR for HMDs. The increase in speed and quality
resulting from the algorithms in this thesis are prerequisite for this type of future work.



Appendix A

Floor Plane Estimation

The floor in outdoors scenes is a particularly difficult case for reconstruction with MVS
algorithms due to the fact that it is texture-less and the grazing angle of capture. We could
augment urban scene reconstruction fitting a plane to the floor π f loor. We developed a first
solution to this problem. With RANSAC we estimate principal planes in the point cloud.
In Fig. A.1(b) we observe clusters of colors, corresponding to the main planes of the
scene Fig. A.1(a). To select which of the planes represents the floor, we can simply define
a heuristic based on location of planes in the images or use more elaborated machinery
such as the Geometric Context proposed by Hoiem et al. (2005) where we can recover the
surface layout. In Fig. A.1(c) we can see the detected ground surface in saturated green.
With this we can select the 3D samples that generate the floor plane and extend it as in
Fig.A.1(c).

Now, the problem consist to assign superpixels to the floor plane (floor label). We
attempted to do so by casting the labeling problem as a MRF over the superpixels S i

(see Eq.A.1). For each superpixel with MVS points, we fit a local plane following the
procedure described in Section 3.3.2 and Section 3.3.2.1. The term Eg encourages to
assign the floor label to superpixels with a similar orientation to π f loor. We initialize global
appearance model for the floor based on a Gaussian mixture model with the color of the
superpixels with MVS points used to estimate π f loor. The term Ea encourages superpixels
to be assigned to the floor if they have a similar appearance. Sometimes the appearance
of the floor cannot be separated from the poles or background. We add the term Ep to
regularize the solution with user scribbles. The user sparsely defines regions that should
belong to the floor and elsewhere regions. We solve this with graph cut and propagate the
results to other input images (see Fig. A.2).∑

Eg(S i, li) +
∑

Ea(S i, li) +
∑

Ep(S i, li) (A.1)
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(a) (b)

(c) (d)

Figure A.1: 3D floor plane estimation. (a) One of the input images of the scene. (b) Clusters of 3D
points that belongs to different planes. (c) Geometric context layout (Hoiem et al., 2005). Saturated
in green is the ground floor, other planes in red. Vertical arrows represent a vertical surface while
horizontal arrows represent a surface facing either left or right. Circles are porous regions like
vegetation. (d) Recovered and extended floor plane.
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(a) (b)

(c)

Figure A.2: Assign superpixels to the floor plane. Contours of superpixels with no depth marked.
(a) Automatic results leave some superpixels of the sidewalk out of the floor plane but also mark
some vertical poles as floor. (b) After one iteration, we can refine the result with strokes. (c) With
two iterations we completely separate the floor from other elements. We propagate this result to the
other input views.





Appendix B

Derivatives for Automatic Pose
Estimation

B.1 Derivatives for Initial Pose Estimation

In Chapter 4, we presented a solution to the problem of setting an initial translation and
scale. This can be represented as an energy minimization problem:

Λ∗ = arg min
Λ

Einit_align(Λ) =

n∑
i=1

dist(xi
1, d

i
1)2 + dist(xi

2, d
i
2)2 (B.1)

where {x1, x2} and {di
1, d

i
2} respectively define, for view i, the sets of upper left and

bottom right corners of the 2D bounding boxes of the object and the detection. The distance
function dist is defined as

dist(x, xd) =

{
0 if x or xd on the image border
||x − xd ||2 otherwise

(B.2)

We use gradient descent to estimate these initial set of parameters Λ ∈ {λ|tx, ty, tz, s}

∂Einit_align

∂λ
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i=1

2(xi
1 − di

1)
∂xi

1

∂λ
+ 2(xi

2 − di
2)
∂xi

2
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An example of derivative term:

∂xi

∂λ
=
∂xi

∂x
∂x
∂λ

+
∂xi

∂y
∂y
∂λ

(B.4)

Remark that xi depends on the (x, y) position. Thus ∂xi

∂x and ∂xi

∂y are equal to 1. In section

B.3 we develop the term ∂x
∂λ and by extension ∂y

∂λ .

B.2 Derivatives for Multi-View Alignment

We follow the same strategy as related work in model alignment Dambreville et al. (2008b);
Prisacariu & Reid (2012) where the derivatives of contour points are estimated using 3D
points projecting on the contours. We use both closest and farthest 3D points for the
following optimization problem:

Λ∗ = arg min
Λ

E f ine_align(Λ) (B.5)
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Figure B.1: Constraints from detection of 2D boxes. To have a better starting point for object
alignment, we use the constraints from the detection bounding boxes. The bounding box corners x1

and x2 of the mesh should match the corners d1 and d2 of the R-CNN detection box.

Where:

E f ine_align(Λ) = E3D(Λ) + Eedge(Λ) (B.6)

E3D(Λ) =
n∑

i=1

∑

(v,vmvs)∈Ci

||v − vmvs||2 (B.7)

Eedge(Λ) =
n∑

i=1

∑

(p,p′)∈Mi

||p − p′||2 (B.8)

Ci is the set of valid (v, vmvs) pairs obtained from view i. The setMi contains the 2D
matching points (p, p′) from silhouettes in view i. To solve equation B.5 we use gradient
descent to estimate the set of parameters Λ ∈ {λ|tx, ty, tz, qx, qy, qz, qw, s}:

∂E f ine_align

∂λ
=
∂E3D

∂λ
+
∂Eedge

∂λ
(B.9)

∂E3D

∂λ
= 2

n∑
i=1

∑

(v,vmvs)∈Ci

(v − vmvs) ·
(
∂X
∂λ
,
∂Y
∂λ
,
∂Z
∂λ

)

∂Eedge

∂λ
= 2

n∑
i=1

∑

(p,p′)∈Mi

(p − p′) ·
(
∂x
∂λ
,
∂y
∂λ

)

Derivatives
(
∂X
∂λ ,
∂Y
∂λ ,
∂Z
∂λ

)
r can be found in Table B.1 and derivatives

(
∂x
∂λ ,
∂y
∂λ

)
can be

found in section B.3
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B.3 Common Derivatives

In this section we present derivatives common to B.1 and B.2. Derivatives of 2D image
projections with respect to pose parameters:

∂x
∂λ

=
∂x
∂X

∂X
∂λ

+
∂x
∂Y

∂Y
∂λ

+
∂x
∂Z

∂Z
∂λ

(B.10)

∂y
∂λ

=
∂y
∂X

∂X
∂λ

+
∂y
∂Y

∂Y
∂λ

+
∂y
∂Z

∂Z
∂λ

(B.11)

We can obtain a 3D point position in homogenious coordinates W = (X,Y,Z, 1)T from
(X0,Y0,Z0) applying transformations (translation t, rotation R, scale s) given by the pose
parameters Λ (see equation B.12). (X0,Y0,Z0) represents the initial position of a 3D point
of the mesh.

W =


X
Y
Z
1

 = sR


X0

Y0

Z0

1

 + t (B.12)

Where

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


We can relate W to the 2D point (x, y) in image coordinates using the camera P as:[

x y 1
]T

= P ·WT (B.13)

Where P =
[

P1 P2 P3
]T

and Pi =
[

pi1 pi2 pi3 pi4
]

. Thus x and y in terms
of (X,Y,Z) are:

x =
P1 ·W
P3 ·W

y =
P2 ·W
P3 ·W

(B.14)

We derive equations B.14 w.r.t. X, Y and Z to obtain some of the terms of equations
B.10 and B.11:

∂x
∂X

=
p11P3 ·W − p31P1 ·W

(P3 ·W)2

∂x
∂Y

=
p12P3 ·W − p32P1 ·W

(P3 ·W)2

∂x
∂Z

=
p13P3 ·W − p33P1 ·W

(P3 ·W)2

∂y
∂X

=
p21P3 ·W − p31P2 ·W

(P3 ·W)2
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λ ∂X
∂λ

∂Y
∂λ

∂Z
∂λ

tx 1 0 0
ty 0 1 0
tz 0 0 1
qx 2qyY0 + 2qzZ0 2qyX0−4qxY0−2qwZ0 2qzX0 + 2qwY0−4qxZ0

qy 2qxY0−4qyX0 + 2qwZ0 2qxX0 + 2qzZ0 2qzY0−2qwX0−4qyZ0

qz 2qxZ0−2qwY0−4qzX0 2qwX0−4qxY0 + 2qyZ0 2qxX0 + 2qyY0

qw 2qyZ0−2qzY0 2qzX0−2qxZ0 2qxY0−2qyX0

s r11X0 + r12Y0 + r13Z0 r21X0 + r22Y0 + r23Z0 r31X0 + r32Y0 + r33Z0

Table B.1: Derivatives of 3D point position with respect to pose parameters.

∂y
∂Y

=
p22P3 ·W − p32P2 ·W

(P3 ·W)2

∂y
∂Z

=
p33P3 ·W − p33P2 ·W

(P3 ·W)2

Other derivatives of equations are presented in Table B.1.



Appendix C

Luminance Harmonization

At render time, IBR algorithms directly use content from multiple images to render novel
views. However, color consistency is not always guarantee during the acquisition of images
even when efforts are made to block the camera exposure parameters. This inconsistency
produces blending artifacts. We implement an image harmonization procedure that consists
in simply applying a global transformation Mi from the input image Ii color space to an
output image Ĩi in a median color space Ĩi = Mi Ii

The median color space Yi is built with the multi-view color information of the
reconstructed points in Ii. The parameters of Mi are found by solving Xi in the linear
system Yi = AiXi, where Ai contains the color of reconstructed pixels in Ii. This operation
is performed independently for each color channel, resulting in the new set of images Ĩi

which have harmonized colors. We then use Ĩi as input images instead of Ii for the IBR
algorithm, avoiding significant visual artefacts related to blending of inconsistent colors.

In the Fig.C.1 we see an example of the application of the harmonization approach,
and the case of the red pixel and the differences between the two views before and after
harmonization. In the original dataset, differences in RGB values were up to 14 color levels
(average 11), while after harmonization, the maximum difference is 7 and the average is
5.6: we have reduced the difference by half. Even though the effect is subtle in the image
shown above, the difference becomes much clearer during rendering where these image are
blended. This can clearly be seen below, where we see that the severe artefacts in the sky
on the right are greatly diminished after harmonization. The current method is restricted
to a single transformation for the entire image, which has proven sufficient in some cases,
but may need to be refined in more difficult cases. For these a per-region (e.g., superpixel)
approach may be appropriate, followed by a filtering step (i.e., bi-lateral filtering), similar
to the approach developed in Okura et al. (2015).
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Figure C.1: Example of color harmonization.
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