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Abstract

We propose a method to remove objects such as peo-

ple and cars from multi-view urban image datasets, en-

abling free-viewpoint Image-Based Rendering (IBR) in

the edited scenes. Our method combines information

from multi-view 3D reconstruction with image inpainting

techniques, by formulating the problem as an optimiza-

tion of a global patch-based objective function. We use

IBR techniques to reproject information from neighboring

views, and 3D multi-view stereo reconstruction to per-

form multi-view coherent initialization for inpainting of

pixels not filled by reprojection. Our algorithm performs

multi-view consistent inpainting for color and 3D by

blending reprojections with patch-based image inpaint-

ing. We run our algorithm on casually captured datasets,

and Google Street View data, removing objects such as

cars, people and pillars, showing that our approach pro-

duces results of sufficient quality for free-viewpoint IBR

on “cleaned up” scenes, as well as IBR scene editing,

such as limited displacement of real objects.

1. Introduction

Recent progress of IBR algorithms [26, 17, 6] allows

free-viewpoint navigation in large regions of space. Com-

bined with the massive data-acquistion efforts such as

Google Street View or Microsoft Bing, IBR promises to

provide the sense of “being there” for almost any location

on the globe from within a web browser. However, a ma-

jor downside of IBR is that it relies on multi-view photo

datasets that must either be free of clutter (pedestrians,

cars, signposts etc.) at capture time or requires painstak-

ing editing to be usable for IBR. To edit a multi-view

dataset for IBR, changes in both color and depth must

be propagated to all views to keep the dataset consistent.

Because every photo shows the scene from a different

viewpoint, this propagation is challenging, especially

when viewpoints are far apart from each other, i.e., in

the wide-baseline case which is the focus of our work.

Single-image inpainting, e.g., [7, 14], does not solve this

problem because it does not ensure consistency between

views. Neither does video inpainting, e.g., [23, 16], be-

cause it requires dense data, for instance to compute

optical flow. Furthermore, inpainting for IBR must also

infer consistent depth so that parallax can be properly

rendered, which none of these techniques support.

In this paper, we propose a semi-automatic solution to

multi-view inpainting and editing for IBR. Our algorithm

takes a set of images and masks of content to remove,

and inpaints image, normal and depth content coherent

across views and consistent with the depth structure of

the scene. With our algorithm, one can easily remove

passers-by, cars, street signs, and other distractors that

typically clutter IBR datasets, enabling the rendering of

clean unobstructed views and even limited editing of the

scene such as moving isolated objects.

To complete holes left in an image by a removed ob-

ject, we use other views to “see” what is behind the

removed object via IBR reprojection, or when such infor-

mation is not available, e.g., a car big enough to hide a

portion of the scene in all views, we use patch synthesis.

Our first contribution is a unified approach to combine

reprojected content with inpainting, so that consistent

color, normals, and depth are produced across all views.

We carefully balance these two sources of information

so that inpainting progressively takes over reprojection

when multi-view data are less reliable, e.g., coming from

distant views or observed at grazing angle. Second, we

introduce a multi-view patch search and multi-view con-

sistent reconstruction method, taking into account the

inaccuracies of the approximate 3D reconstruction, while

exploiting the global 3D consistency it provides. We also

propose a multi-view consistent initialization step which

is an important element to the success of our approach.

Importantly, our inpainted multi-view datasets have

color and depth consistent with the global 3D reconstruc-

tion, allowing the use of the result for IBR. We show

two usage scenarios for our approach in Sec. 7.1 and
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in the accompanying video. The first uses object recog-

nition methods to remove classes of objects (e.g., cars,

pedestrians etc.). In the second we provide a multi-view

object removal interface to allow scene editing in a free-

viewpoint IBR setting.

2. Previous Work

Single Image Inpainting. Criminisi et al. [7] pro-

posed an inpainting algorithm which is able to retrieve

basic structures, by using a well-chosen filling order,

but works better with relatively small regions to in-

paint. PatchMatch [3] finds approximate nearest neighbor

matches between patches using random search. It can be

used for inpainting and achieves a speedup of several or-

ders of magnitude over previous work. Huang et al. [14]

used planar information to guide the search space for

patch matches, by estimating planar projection param-

eters and plane segmentation. In contrast, we leverage

3D information from multi-view reconstruction which

provides an additional source of data for the patch search

in our setting.

Video Completion. Wexler et al. [23] introduced a

method for video sequence completion using space-time

patches and a multi scale approach. Newson et al. [18]

improved this technique by using an accelerated spatio-

temporal search, and by introducing texture features to

the patch distance to correctly inpaint video textures.

Klose et al. [16] deal with a general sampling based algo-

rithm for processing applications of a scene’s video. The

technique first collects a very large set of input videos

pixels and then filters them iteratively before visually

converging. Other methods such as [11] considers video

inpainting as a labelling problem, but requires manual

tracking of the object to inpaint. Multi-view informa-

tion has been used to enhance low-resolution videos [4].

Video completion and enhancement methods provide im-

portant insight and can also be used as a methodological

framework for multi-view datasets; the algorithms are

nonetheless inherently different to ours since we assume

wide-baseline photographs as input.

IBR and Multi-Image methods. Fitzgibbon et al. [9]

use a patch-based approach for novel view synthesis in

IBR. In contrast to our wide baseline data, they treat

small-baseline datasets. In general IBR methods are de-

signed to fill small holes due to depth disocclusions, and

do not always adapt well to the more general inpainting

problem we address.

Graph-cuts have been used when mixing images from

different sources [1]; our approach is different in that we

use multi-view reprojection and the associated confidence

as a guide for patch-based inpainting. The shift-map algo-

rithm [21] also uses graph-cut for hole filling, where the

labels are image locations, while we will operate on color

directly. Darabi et al. [8] extended the patch space search

by adding rotated, re-scaled and photometrically trans-

formed patches. Multiple images were used, but only as

additional sources yielding good quality inpainting.

There has beeen some work using multiple views to

remove objects from images. Whyte et al. [24] replace

a user-defined target region from a query image using

internet photographs of the same scene. Using homogra-

phies and photometric registrations, the method is able

to blend the information from the entire dataset to syn-

thesize encouraging results. Hays and Efros [12] use

a large database of internet photos for image comple-

tion. The method is however inherently single-image and

would not necessarily produce consistent results over a

multi-view dataset. There has been plenty of work on

RGB-D completion, including attempts to inpaint depth,

typically restricted to stereo pairs [13]. In contrast, we

target casual, wide-baseline capture, often with a mobile

phone camera.

In recent work, developed concurrently with ours,

Baek et al. [2] proposed a multi-view inpainting method

jointly inpainting depth and color. This technique and

ours share the same strategy of using depth and repro-

jected data to guide inpainting, but their scopes differ

in major ways. Baek’s technique is about image edit-

ing, and reconstructs per-image depth maps to handle

occlusions, e.g., for inserting an object behind another

one. Such depth maps are not sufficient for image-based

rendering because they do not provide a consistent 3D

representation shared across the images, which is needed

for free viewpoint navigation. Our approach specifically

addresses this scenario and generates such a global 3D

representation.

3. Unified Multi-View Coherent Inpainting

Algorithm

Our input is a multi-view set of images Ii of a scene,

and a set of corresponding masks Mi which cover the

parts of the images we want to remove. Masks are either

automatically extracted axis-aligned bounding rectan-

gles or regions created with a user-assisted process; we

describe mask creation in Sect. 7.1. Our goal is to re-

construct images Ii in which the image content in the

mask is removed and replaced by plausible content. We

introduce a multi-view inpainting algorithm which builds

on IBR and a patch-based algorithm [23], using Patch-

Match [3] for search, guided by the multi-view data. A
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Figure 1. (a) 3D reconstruction from multi-view input image dataset (b) Input images above, input masks below (c) Result of

reprojection and mincut, remaining black pixels will be filled through patch-based inpainting (d) Inpainted result.

naive approach would be to first reproject as much data

as possible from the other views, and use inpainting to fill

in the remaining holes where data is missing. However,

this simple strategy ignores that not all reprojected data

are equally accurate. For instance, data observed at graz-

ing angle are degraded because of foreshortening, and in

practice, the 3D reconstruction and camera calibration

are not perfect and data coming from distant views are

less likely to be accurate.

3.1. Multi­View Input Data

Our typical input consists of 20–40 photos of a scene,

with approximately 1.5–2m distance between shots. The

images are then calibrated using Structure from Mo-

tion [25], and 3D reconstruction; we use CMPMVS [15].

This first step gives us an approximate mesh and cali-

brated cameras. Normals and 3D positions are provided

approximately by the mesh, but regions not covered by

the geometry remain. Several methods exist to propagate

depth and/or normals in images; We extend the method

of Chaurasia et al. [6] which propagates depth using over-

segmentation to also propagate normals; these are precise

enough to guide the patch matching process.

3.2. Problem Formulation

Considering an image Ii that we are inpainting, we ob-

tain data from the other images Ij (j ✘ i) by reprojecting

them into the mask Mi using the 3D reconstruction and

camera calibration. In many cases, not all pixels in Mi

are covered by the reprojected pixels; these correspond

to the black pixels in Fig. 1(c) and Fig. 2(left). We write

Mr
i the pixel coordinates in Mi which have a valid re-

projection; Ir denotes the resulting image. We illustrate

an example of M, Mr and Ir in Fig. 2.

The pixels in Mr contain information from other

views with varying accuracy. Where this information

is reliable, we guide the patch synthesis to produce pixels

similar to those in Mr by defining the following energy

Figure 2. Left: A crop of an input image showing the mask

M as a dark region. Right: The resulting image Ir from

reprojection into M. The non-black pixels within the box are

the region M
r .

for an input image Ii with a mask Mi:

E♣Ii⑤Miq ✏
➳

pPMi

α♣Ir♣pq ✁ Ii♣pqq
2�

♣1✁ αq ♣Ecol♣tp, sqq � E3D♣pqq (1)

where tp, sq are the coordinates of a target and a source

patch respectively, centered at pixel p and q respectively.

The term Ecol is an extended patch difference measure

which we explain in the following section, and E3D im-

poses multi-view coherence (Sec. 6).

3.3. Algorithm

We minimize the energy in two steps: initialization,

followed by iterative coarse-to-fine PatchMatch and vot-

ing. We alternate two EM steps for multi-view inpainting,

PatchMatch and voting similar to Wexler et al. [23]

For the initialization, we first use 3D information to

reproject other images into the current view (Sec. 4) and

then perform a coarse initialization for the remaining

unfilled pixels in a multi-view coherent manner (Sec. 5).

The first term is the squared distance of the reprojected

image Ir with the inpainting results Ii.

The second term is the patch difference measure [23]:

Ecol♣tj , sjq ✏ D ♣W ♣tjq,W ♣sjqq (2)

where W ♣tjq is the N ✂ N patch centered at a pixel j

and W ♣sjq its associated nearest neighbor. The distance

D is the sum of squared differences (SSD) of an eight-

dimensional vector using the RGB values of W ♣sjq and
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W ♣tjq, the normals, and the gradient-based texture fea-

tures of [18]. Normals and texture features are scaled

using λN ✏ 0.5, and λTF ✏ 0.75 respectively.

We use several images of the multi-view dataset as

sources for matching and present an algorithm to enforce

multi-view consistency during initialization and voting.

We encourage multi-view consistency through the term

E3D; (described in Sec. 6) and through a careful initial-

ization which we will describe in Sec. 5.

Since the reprojection term and the multi-view patch

synthesis terms are quadratic, the optimal solution is a

linear blend of the patch synthesis result and Ir with al-

pha as the mixing coefficient. Specifically our algorithm

blends the inpainted image Ii with the reprojected image

Ir using the α weight for iteration t:

Ii Ð α♣Irq � ♣1✁ αqIi (3)

The new image Ii is then used in the next iteration of

randomized PatchMatch, ensuring that the first term and

the overall function E♣Ii⑤Miq are minimized.

We summarize our approach in Algorithm 1. It is im-

portant to note that to achieve multi-view consistency all

steps are done together for all the images being inpainted.

4. Reprojection Initialization

We use image-based rendering (IBR) to reproject from

different images of the input dataset to the target image

I . Methods using oversegmentation provide high-quality

results [26, 1, 19]; however they are not specifically de-

signed for inpainting. Such methods often assume that

the missing data for a novel view is in the nearby input

cameras, which is not always the case in our context. We

adapt existing techniques [25, 22, 15, 19] by reproject-

ing several other input images that provide pixels in Mi,

thus completing the empty region as much as possible

(Fig. 2(right)). The quality of the reprojection degrades

rapidly with distance between cameras, creating a trade-

off between missing content and low quality reprojection

depending on the number of images reprojected.

4.1. Reprojection with Mincut

Naive reconstruction of such reprojections (such as

median or mean) does not provide satisfactory results,

and IBR blending methods [5, 6] typically sacrifice qual-

ity for speed. We propose a solution based on a Markov

Random Field (MRF) to choose between the input im-

ages, by considering – the pixels of – each reprojected

image as a label, similar to [24].

We have a label ℓ for each possible source image

(camera) and we seek a value ℓp for each pixel p. We first

Algorithm 1: Global inpainting algorithm

Input: Multiview dataset with 3D reconstruction

and binary masks

Result: Inpainted multiview dataset

for each image Ii and mask Mi in the dataset do

for each other image j ✘ i in the dataset do

Re-project into view Ii for pixels PMi ;

Ir
i = min-cut over reprojections Mi ;

for All images Ii in the dataset do
Initialize colors, normals, depth and

Nearest-Neighbor Field (NNF) at coarsest

scale ;

for ScaleResolution = coarsest to finest do

repeat

for All images Ii in the dataset do
Reconstruct image Ii from NNFs with

multi-view coherent voting;

Blend image Ii with reprojection Ir
i ;

for All images Ii in the dataset do

Find NNFs with Patchmatch ;

until convergence;

if ScaleResolution ✘ finest then

Upscale NNF ;

else

for All images Ii in the dataset do
Reconstruct image Ii from NNFs and

blend with reprojection Ir
i ;

create median image of all reprojections, and following

[24], we set unary V1♣p, ℓpq for a pixel p associated to

a label ℓp as the squared difference to the median. We

ignore pixels belonging to the mask for any input image,

by setting V1♣p, ℓpq ✏ �✽. Any target pixel with all

labels equal �✽ will be completed later by inpainting.

Images reprojected from other views do not always

provide reliable information, notably when taken in direc-

tions far from the target view. We decrease the probability

of a reprojected view with the angle between cameras as

follows:

V2♣p, ℓpq ✏
�
⑤γℓp,I ⑤ � 1

✟2
✁ 1 (4)

where γℓp,j is the angle between the cameras ℓp and j.

The energy minimum is zero when the cameras align,

and increases with the camera separation. We use a de-

creasing function of camera angle to allow almost linear

falloff when approaching zero, and include a gradient
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term [24], to preserve image structure:

W1♣p, q, ℓp, ℓqq ✏ ⑥Iℓp♣pq ✁ Iℓp♣qq⑥ � ⑥Iℓq ♣pq ✁ Iℓq ♣qq⑥

� λ♣⑥∇Iℓp♣pq ✁∇Iℓp♣qq⑥

� ⑥∇Iℓq ♣pq ✁∇Iℓq ♣qq⑥q (5)

where ∇Ij♣pq is the gradient in RGB space associated

to pixel p in image j. The colors and gradient have

bidirectional terms so they match in the two cameras ℓp
and ℓq , and weight λ is a positive parameter, set to 10 in

all our examples.

The global cost function we minimize with the MRF

is thus (dropping dependence on ℓp for clarity):

E♣Lq ✏
➳
pPP

♣V1♣pq � V2♣pqq �
➳

♣p,qqPN

W1♣p, qq (6)

where L is the labeling of pixels to inpaint P . The region

is expanded by a few pixels using dilation to achieve

a coherent visual transition between the target region

and the rest of the image. N is the set of all pairs of

neighboring pixels in P . The α value used in Eq. 1 is

the residual energy value of the min-cut algorithm for

each pixel, since it is based on the separation between

cameras, which are a strong indication of high quality

reprojection.

Color harmonization. Since the photographs come

from a multi-view dataset, the same object observed from

different viewpoints may appear with different colors,

due to slight non-diffuse materials or subtle changes in

lighting between shots. To avoid these artifacts, we use

Poisson image compositing [20] after the mincut.

5. Coarse Initialization

Given the reprojected images Ir, we need to initial-

ize the color, depth and normal values for the remaining

unfilled pixels, e.g., black pixels Fig. 2 (right). This

step is critical for the overall success of the inpainting

process. Sophisticated methods such as the Onion Peel

approach [18] produce plausible results, but hinder multi-

view coherence since they “push” the solution to different

local minima for each input image. Instead, we interpo-

late information from the valid boundary pixels of the

masks (i.e., containing information from the original im-

age or reprojection) in a scanline fashion, which works

well for the street-view scenarios we consider here; we

discuss a possible generalization in Sec. 8.

In many cases, masks of different objects overlap in

some views (e.g., a slanted view of a line of cars in a

street). Interpolating over the entire merged mask tends

Figure 3. Left: 2D boundary of Mr

i in image i in red. Middle:

Corresponding 3D bounding box. Right: Several bounding

boxes combined together representing the car object.

to overblur the result. To avoid this, we introduce the

notion of “object being removed”, restricting the effect of

interpolation to semantically similar regions. This is nat-

ural in our context, since masks are either automatically

extracted, in which case they correspond to an object

class (“car”, “pedestrian” etc.) or are created by our user-

assisted approach, in which case objects are typically

being removed (see Sect. 7.1).

To define objects, we take a 2D boundary of each 2D

connected component of the mask in each image (shown

in red Fig.3, left). We then create the 3D bounding box

(white in the figure) of the corresponding 3D points con-

tained within the 2D boundary (i.e., reprojected points

that have depth). For each pair of 3D bounding boxes

A and B we compute wAB ✏ max

✁
V ♣A❳Bq
V ♣Aq ,

V ♣A❳Bq
V ♣Bq

✠

and connect them if wAB → wlimit where wlimit ✏ 0.6.

These connected components are the objects subse-

quently used in initialization. For each scanline asso-

ciated to the 2D boundary (Fig. 3(left)) we find the list

of pixels on the left and right sides which have color,

normals and depth available. For each scanline we lin-

early interpolate color, normal and 3D points between

the two endpoints if their depths are available. If one

endpoint does not have reliable depth, we propagate the

color and normal of the other endpoint to the border of

the image. Depth is considered reliable if it comes from

the reconstructed mesh rather than the depth propagation

step (Sec. 3.1). For 3D, we use the plane defined at the

existing endpoint by its normal and propagate this across

the scanline. To avoid excessive blurring, we introduce

a heuristic to encourage vertical structures as detailed in

the supplemental material.

Figure 4. Top view, Ir after reprojection. Lower row: intial-

ization with multi view coherence. The reference view is in the

middle. The different features are coherent across the views.

If we initialize each image separately, the result can
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be very different in each view, whatever the initializa-

tion method used. To enforce multi-view coherence, we

choose a reference view which will serve as a guide for all

other views of the same object. For each object, we find

a reference view by selecting the view with the largest

number of scanlines with both left and right samples

available, providing the largest amount of information.

We reproject the lines of the reference view into all other

views containing the object and for each pixel of a ref-

erence scanline. We copy the color and normal values

into the target image and replace the initialization values.

For depth, we use the correponding 3D point from the

reference and reproject it into the current view. The effect

of multi-view coherent initialization is shown in Fig. 4.

6. Multi-View Coherent Inpainting

Given multi-view coherent initialization, we can now

proceed with our multi-view inpainting to minimize Eq. 1.

Both the PatchMatch search step and the voting of Algo-

rithm 1 will use multi-view information. It is important

to balanace the tradeoff of imposing multi-view coher-

ence, especially for IBR, and to avoid blurring which can

happen to slight inaccuracies in the reprojection and the

geometry used. We thus first need to define the neighbors

of a given image to ensure multi-view coherence.

6.1. Defining Multi­View Coherent Neighbors

In street-side datasets, a given object is typically

viewed by several input cameras. A simple nearest neigh-

bor approach to define neighbors is insufficient since,

if we consider a 2-neighborhood graph, disjoint graph

cliques might be formed. Instead we use a minimum span-

ning tree approach on a graph connecting input views

sharing objects with a low-weight edge or a path of low-

weight edges.

Each node of the graph corresponds to an input view,

with an edge between each pair of views. Consider the

pair of views i and j; we intersect all bounding boxes of

connected regions to be inpainted (see Sec. 5), and the

weight wij is:

wij ✏
dij➦

♣A,BqPBij

V ♣A❳Bq
(7)

where dij is the distance between the two cameras i and j,

and Bij is the set of pairs of 3D bounding boxes induced

by the camera i and j and V is the volume. The idea is to

enforce the consistency between views that are close to

each other and that share the maximum inpainted content.

We then find the minimum spanning tree of the graph.

We traverse this tree from each node in order of smallest

edge weight until we have K neighbors for each node.

We use K ✏ 2 for computational efficiency unless

stated otherwise.

6.2. Multi­View Search and Coherent Voting

For a given image i, the search step to create the NNF

in Algorithm 1 uses the image itself and its K neigbhors.

The nearest neighbor of a patch is defined as the closest

match amongst the matches in the three images.

Multi-view voting is expressed as the term E3D in

Eq. 1 and is given as follows:

E3D♣pq ✏
➳
qPSp

⑤⑤Icp♣pq ✁ Icq ♣qq⑤⑤
2 (8)

where pixel p is from camera cp and Sp is the set of pixels

q from cameras cq such that q belongs to the mask of cq
and reprojects into p. This reprojection is performed

using the current depth estimation inside the hole.

We synthesize new 3D points which correspond to

inpainted pixels with color in each view. The E3D en-

courages the newly inpainted pixels corresponding to the

same 3D point to have the same color.

We use the coarse 3D reconstruction and the inpainted

depth to achieve multi-view coherence for voting. For

a given pixel i from camera ci, we look for patches that

overlap this pixel and are centered at tj , and their associ-

ated nearest neigbhor in the source sj gives us a list of

color candidates.

For multi-view consistency, we reproject the pixel in

its neighboring views cj . We then also look for patches

in view cj that overlap the reprojected pixel and we add

the color associated to their nearest neighbor in the list

of candidates. The final color is obtained by filtering all

these candidates with the following weights:

wj ✏ e
✁

⑤⑤D♣tj ,sjq⑤⑤2

2σ2

i ✂ e
✁s⑤⑤dci,cj

⑤⑤2 ✂Q♣tjq. (9)

Following [18], the first term favors source patches

that are similar to their associated target patches. The pa-

rameter σi is defined at the 75th percentile of all distance

⑤⑤D♣ti, sjq⑤⑤. The second term gives more importance to

closer views. The parameter s is the number of scales

from the coarsest scale to the current scale. The idea is to

reduce the influence of the multiview coherence as the up-

scaling occurs to avoid blurring at the finest scales. The

quality term Q is a measure of how the nearest neighbor

field is constant and in the same image. This is inspired

by a similar approach previously used to improve single-

image inpainting [8]. It is defined for a pixel target ti as

one plus the number of “high quality” neighbors tj such
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Figure 5. Above: Result without MV coherence; note missing

blocks on the pavement for left image. Below: Result with MV

coherence.

that ti✁ tj ✏ si✁ sj , where the neighors are taken from

a 4-neighborhood around ti.

Multi-view coherence has a significant effect on the

results. As can be seen in Fig. 5, without coherence two

different images of the dataset can have very different

inpainted content. Using our approach, similar structures

are created in the same position, which is central for

good-quality IBR.

7. Results and Comparisons

We tested our results on seven multi-view datasets.

Two are previously available [6] (e.g., Fig. 7 middle set),

four were shot using a cellphone camera in a casual cap-

ture setting, (supplemental, Fig. 7 top, 8) and one is from

a Google Street View data (Fig. 7 last dataset), which is

extremely challenging since the baseline between panora-

mas is very large, causing SfM to often fail. Details of

Google dataset processing are given in supplemental.

7.1. Usage Scenarios

We show two applications of our approach, one using

a semi automatic method to remove specific classes of

objects, the other introducing an interactive multi-view

editor for IBR.

Semi-automatic Object Removal. We use the auto-

matic object recognition approach of Gidaris et al. [10],

for the classes “car”, “people” and “motorbike”, and we

use the bounding boxes with the highest scores. This

method works well in general; we increase the size of

the bounding boxes to avoid missed regions and for some

datasets we had to correct for manually missed regions

(a few minutes per dataset).

These bounding boxes are used as masks for our multi-

view inpainting. we use the inpainted images and the

synthesized depth and run SLIC oversegmentation and

additional depth synthesis [6] for remaining unrecon-

structed regions if required. We can now run IBR on the

scene with the objects removed.

Editing Multi-View Captures for IBR. Another ap-

plication of our approach is to not only remove objects

in an IBR scene, but also to be able to move them. This

enables – albeit limited – editing of multi-view captures

with free-viewpoint IBR for the first time.

To do this, we built an interactive selection tool for

multi-view datasets. We use an oversegmentation which

allows selection of fine details to create good quality

masks. The user can create variable width strokes on

the object to select and segment it. We use multi-view

stereo patches to reproject the strokes onto segments

in the other views. The user can then cycle through

views and complete or correct the segmentation, with

little effort. We show an example of such a session in the

accompanying video.

Figure 6. Left: input image. Right: novel view with the pillar

extracted and moved, revealing content behind it. Our method

allows such editing in a free-viewpoint IBR setting.

Once the object is segmented, we either use the re-

sulting masks or combine them with masks from the

automated approach. We extract the part of the image

from the original image and render with a two-pass ap-

proach: first we render the background, and then render

the extracted object, allowing us to edit the IBR scene, as

seen in Fig. 6 and the video.

7.2. Comparisons

All comparisons were run by the authors of the previous

papers. We compare with two single-image methods:

PatchMatch (using content-aware fill in Adobe Photo-

shop) and the method of Huan et al. [14]. Single image

methods have difficulty with large regions to inpaint,

even when attempting to deduce information on planes

as in [14]. We compare to two multi-view methods. The

method of [24] produces good results in many regions,

but is not multi-view consistent and is not designed for

large regions with no reprojection. Even though the

graphcut energy is infinity in masked regions, the method

sometimes copies information from masked regions in

other views or leaves the region black. The method of

7



Figure 7. First 2 rows: results from one of our datasets. Middle

2 rows: the Yellowhouse datasets from [6]. Lower 2 rows:

dataset reconstructed from Google StreetView. Input image

above and and the resulting inpainting below for all cases.

[2] progressively builds multi-view information by suc-

cessively visiting images. The results are of compara-

ble visual quality to ours, but multi-view consistency is

sometimes lost (Fig. 8). While depth information can be

consistent across neighboring views (Fig. 9 (mid-right),

it is not consistent at more distant viewpoints (left). The

depth in this method is not globally consistent and lacks

detail: e.g., the difference in depth between floor and wall

in Fig. 9(left) is minimal. Given the lack of global depth

consistency and detail, this solution cannot be used for

IBR. While our synthesized depth is not perfect, it is suf-

ficient for use with IBR as seen in the video (http://

team.inria.fr/graphdeco/publications).

8. Conclusions and Discussion

Our results still suffer from some residual bluriness,

that is hard to remove without breaking multi-view co-

herence, given the inaccuracies of the 3D reconstruction.

Initialization could be improved using the 3D reconstruc-

tion to propagate structures in any direction, instead of
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Figure 8. Comparison with methods. We achieve much better

image quality than all single-image inpainting techniques (rows

1-3). Compared to [2] which is multi-view, we see in the red

boxes that our result has better multi-view consistency.
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Figure 9. Comparison of depth of [2]; note incorrect depth

on pavement (top left). Lack of global consistency and depth

detail renders this method unsuitable for IBR.

the current horizontal interpolation on scanlines. Analyz-

ing the 2D boundary of the reprojected region to identify

directional structures could also improve results.

In conclusion, we demonstrated a multi-view consis-

tent inpainting algorithm that for the first time enables

editing of IBR scenes in a free-viewpoint setting.
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