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Figure 1: Procedural model sketching. Our interactive sketching tool allows the user to quickly and easily author procedural 3D building
models. The user only performs interactive sketching and our system automatically generates the procedural model and its parameters
yielding the sketched shape. Our system partitions the design process of a 3D model into sketching various object parts that together form
the overall model. a) The user sketches a few strokes of the current object type to specify the desired shape. For instance, (top row) the user
sketches the shape of the building mass. b) Using a deep-learning based method, the system finds which pre-defined grammar snippets yield
visually similar shapes and chooses the best one by default (red square). c) The selected snippets and their parameter values are merged
into a single grammar that represents the entire building. d) An offline rendering of variations of the procedural building model generated
automatically by changing the snippets and/or parameters that encode them.

Abstract

3D modeling remains a notoriously difficult task for novices de-
spite significant research effort to provide intuitive and automated
systems. We tackle this problem by combining the strengths of two
popular domains: sketch-based modeling and procedural model-
ing. On the one hand, sketch-based modeling exploits our ability to
draw but requires detailed, unambiguous drawings to achieve com-
plex models. On the other hand, procedural modeling automates the
creation of precise and detailed geometry but requires the tedious
definition and parameterization of procedural models. Our system
uses a collection of simple procedural grammars, called snippets, as
building blocks to turn sketches into realistic 3D models. We use a
machine learning approach to solve the inverse problem of finding
the procedural model that best explains a user sketch. We use non-
photorealistic rendering to generate artificial data for training con-
volutional neural networks capable of quickly recognizing the pro-
cedural rule intended by a sketch and estimating its parameters. We
integrate our algorithm in a coarse-to-fine urban modeling system
that allows users to create rich buildings by successively sketch-
ing the building mass, roof, facades, windows, and ornaments. A
user study shows that by using our approach non-expert users can
generate complex buildings in just a few minutes.

Keywords: Inverse Procedural Modeling, Sketching, Machine
Learning

Concepts: •Computing methodologies→ Computer graphics;
Shape modeling; •Theory of computation→ Computational ge-
ometry;

1 Introduction

Object design and modeling is a crucial skill in various areas of
entertainment, science, and engineering. Designers wish to create
custom objects, seek variations of existing models, and explore new
uncharted designs. However, designing geometric models is noto-
riously hard and unintuitive. It often requires extensive learning
that makes it difficult especially for novices. Although humans can
quickly draw and sketch in 2D and we are well-trained to do those
tasks since childhood, the transition to 3D is difficult for automated
processes.

Prior work has addressed the modeling problem from various direc-
tions. Sketch-based modeling [Olsen et al. 2009] exploits human
intuition and experience in drawing objects. Nevertheless, the qual-
ity of the 3D model depends on the sketching skills of the user, the
details added to the drawing, and the ability to resolve inherent am-
biguities of the sketching process. Another important and popular
direction is procedural modeling [Smelik et al. 2010; Vanegas et al.
2010] that has been successfully applied to the creation of detailed
and complex cities [Parish and Müller 2001], realistic and grow-
ing vegetation [Prusinkiewicz and Lindenmayer 2012], and other
objects [Ritchie et al. 2015]. However, procedural modeling is dif-
ficult to control and thus hard to use as an exploratory design tool
making it accessible only to experts.

Our approach is to use machine learning to seamlessly merge proce-
dural modeling and interactive sketching, thus enabling an interac-
tive design process leveraging both the intuitiveness, freedom, and
flexibility of sketching and the precision, exactness, and detail am-
plification [Smith 1984] of procedural modeling. The user does not
need to specify tedious procedural rules or rule parameters; instead,
they are recognized from the sketch automatically thus enabling un-
trained users to quickly create complex procedural models.



Consider a user who begins sketching a 3D model in 2D by using
a mouse or a digital pen on a tablet. Inspired by the way artists
draw the general structure before adding details [Loomis and Ross
2014], our approach allows the user to progressively add details by
sketching various object types (e.g., building mass, roof, windows)
from coarse to fine. Each object type is supported by multiple pre-
defined grammar snippets. The partitioning into object types is not
explicitly predetermined by our approach; rather it results from the
types associated with each of the provided snippets. The user can
select the next object type to sketch using gestures or via GUI but-
tons. For each object type, the user begins sketching a few strokes
until a match with a snippet is found.

In order to achieve interactivity, we use convolutional neural net-
works (CNNs) to identify the grammar snippet and snippet param-
eter values that best explain the current user sketch. The CNNs
are trained by generating many instances of each snippet and by
sampling its parameters and rendering them in a sketch style. We
employ a cascade of networks, where a first network recognizes the
snippet, while a second snippet-specific network estimates its pa-
rameters. At run-time, we feed the CNNs with the user sketch to
almost instantaneously recover the intended snippet and parameter
values.

The final output is a single generated grammar composed of an as-
sembly of grammar snippets collectively representing the sketched
3D model. The user can render the procedurally-generated model
at any moment in one of a variety of rendering styles (e.g., sketch-
style rendering, ambient occlusion, or shaded and textured render-
ing). Further, the result is not limited to a single instantiation of a
model. Rather, we exploit the procedural nature of our system to
create variations that are inspired by the originally-sketched object.

We demonstrate our approach in the context of urban modeling.
Nonetheless, our system is applicable to other modeling domains
as well. Our approach does not make any particular assumptions
about the 3D model except assuming it can be decomposed into a
set of object types and a set of pre-defined snippets per type.

Our main contributions include
• combining sketching and procedural modeling for designing

complex 3D models without having to explicitly sketch all
details and without having to write the underlying procedural
grammars, and

• using a cascade of CNNs that enables interactive classifica-
tion of partial sketches to one of multiple possible grammar
snippets and estimating their parameters.

2 Previous work

Our work relates to research in sketch-based modeling, example-
based modeling, and forward and inverse procedural modeling.
Sketching attempts to make 3D modeling as direct and intuitive as
drawing [Olsen et al. 2009]. However, recovering a 3D model from
a 2D drawing is fundamentally ill-posed because strokes do not pro-
vide depth information. Early approaches made this problem well-
posed by assuming that the lines in the drawing obey specific geo-
metric constraints in 3D, or by using a well-defined set of gestures
to specify one of a set of primitive shapes (e.g., [Zeleznik et al.
1996]). For smooth shapes, the lines can be assumed to denote con-
tours and silhouettes [Igarashi et al. 1999], while for polyhedrons
geometric relationships such as parallelism, orthogonality and pla-
narity can be detected and imposed [Lipson and Shpitalni 1996], or
even learned from line-renderings of 3D models [Lipson and Shpi-
talni 2000]. Unfortunately, such assumptions only hold for a limited
family of shapes. Recent methods allow the creation of complex
freeform shapes by exploiting geometric constraints present in pro-
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Figure 2: System Pipeline. Our system consists of offline train-
ing and interactive online sketching. During training, a set of pre-
defined grammar snippets are used to generate a large number
of training images. Training and validation datasets are used to
train the CNNs. During runtime, the pre-trained CNNs are used
to find the best snippets and parameter values that match the cur-
rent sketch. Then, the grammar parser generates an instance of the
entire 3D model.

fessional design drawings, such as polyhedral scaffolds [Schmidt
et al. 2009] and cross-section lines [Xu et al. 2014]. Interactive
systems also rely on axis-aligned planes and other transient sur-
faces such as 3D canvases to support 3D strokes [Bae et al. 2008;
Zheng et al. 2016]. Since all the above methods derive constraints
from the drawn lines, they require relatively accurate drawings as
input. In addition, these methods only reconstruct what is drawn,
which means that users have to draw very detailed sketches to ob-
tain detailed 3D models. In contrast, our system relies on procedu-
ral grammars as a strong prior to regularize inaccurate and ambigu-
ous sketches as well as to suggest intricate details from a handful of
lines.

Our approach is closer to example-based methods, which recon-
struct drawings by fitting parts from a database of 3D models. The
database can be composed of generic parameterized shapes such
as cubes, cones and cylinders [Xue et al. 2012; Shtof et al. 2013],
or detailed 3D models from a particular domain, such as furniture
and vehicles [Xie et al. 2013] or building parts [Chen et al. 2008b].
Similarly to our offline pre-training, Xie et al. [2013] and Eitz et al.
[2012] pre-compute non-photorealistic renderings of the 3D models
to perform shape retrieval during sketching. The expressiveness of
these systems greatly depends on the size of the 3D model database.
On the one hand, while generic shapes can be represented com-
pactly with a few parameters, many basic shapes need to be com-
bined to create complex models. On the other hand, large databases
of detailed 3D models are expensive to collect and store, and the
resulting model is not editable. We offer a middle-ground between
these two extremes by matching drawings to procedural grammars,
which are compact and editable. Moreover, we do not match a com-
plete model but progressively match parts which are then combined
into the final model. This has the additional benefit of needing a
relatively small database yet our approach is capable of generating
a large variety of detailed 3D models.

Procedural modeling offers an effective way of generating com-
plex, parameterized 3D models [Wonka et al. 2003; Müller et al.
2006; Smelik et al. 2014]. Among procedural models, grammar-
based models are commonly used in urban modeling and vegeta-
tion. Procedural systems can quickly generate many 3D models
with wide variation by either changing the grammar or by vary-
ing its attributes. However, creating a grammar requires program-
ming expertise and domain knowledge to be able to write compact
rules, and setting the parameters of a grammar is non-trivial be-



cause of the intricate relationship between the procedural parame-
ters and the output. To address this issue, Lipp et al. [2008] intro-
duce a visual editor akin to standard 3D modeling software, allow-
ing direct editing of architectural models by selecting and dragging
procedural components. Several sketch-based systems have also
been proposed for specific domains, such as trees [Ijiri et al. 2006],
terrains [Smelik et al. 2010], and roads [Applegate et al. 2012;
Chen et al. 2008a]. However, these methods rely on application-
dependent heuristics rather than on a generic sketch-recognition al-
gorithm like ours.

Inverse procedural modeling estimates the parameters of proce-
dural models by minimizing an objective function defined by the
user input and the parameter values. Monte Carlo Markov Chain
(MCMC) [Talton et al. 2011; Vanegas et al. 2012; Stava et al.
2014] and Sequential Monte Carlo (SMC) [Ritchie et al. 2015] are
so far the most promising solutions to explore the large parame-
ter space and find near-optimal parameter values. However, these
iterative sampling algorithms require many steps to converge, pre-
venting their use in an interactive context. Recently, Emilien et
al. [2015] learned localized procedural models from examples and
reused them for sketching virtual worlds. However, their approach
is suited for stochastic models and fails to represent structure and
its repetition. We exploit recent advances in machine learning to
perform inverse procedural modeling at runtime without the cost of
iterative optimization. This approach is inspired by recent work on
informed samplers that rely on discriminative inference to acceler-
ate MCMC for computer vision tasks [Jampani et al. 2015].

Our machine learning approach achieves high accuracy in a fraction
of the time required by standard MCMC, opening the door to inter-
active application of inverse procedural modeling. Our approach is
enabled by the strength of CNNs. CNN is a type of artificial neu-
ral network and has been applied to many areas, such as recogniz-
ing hand-written characters [Lecun et al. 1998], image classifica-
tion [Krizhevsky et al. 2012], single-image depth estimation [Eigen
et al. 2014], and cross-domain image matching [Bell and Bala
2015]. CNN has also been applied to 3D shape retrieval [Wang
et al. 2015], which significantly improves the accuracy compared
to a feature-based approach [Eitz et al. 2012].

3 Overview

We provide an overview of our offline training and online sketch-
ing phases (Figure 2). The input to our system is a collection of
pre-defined grammar snippets (Figure 3). During an interactive de-
sign session, the user draws partial or complete sketches which are
automatically matched and completed with procedurally-generated
content. The final output is a complete 3D model and the corre-
sponding generated grammar.

Snippets: To provide design flexibility, our system supports mul-
tiple grammar snippets for each object type of the sketching pro-
cess. One usual partitioning of buildings into object types is to pro-
vide snippets for different building shapes (i.e., building masses),
roofs, window styles, ledges, and other facade ornaments (Fig-
ure 3). These snippets are arbitrarily combined during sketching
thus enabling the construction of a wide variety of building models.

Training: As a preprocess, our system trains a collection of CNNs.
The snippets are fed to a data generator which then generates a large
number of variations by randomly sampling the snippet’s parameter
values. The rendered images for each variation are then used to train
two types of CNNs: one type for snippet recognition and the other
type for snippet-specific parameter estimation.

Sketching: Online sketching is done via a mouse or 3D pen. The
designer may interactively draw a new sketch on an empty canvas or

a) Building  mass

b) Roof

d) Ledge

c) Window

Figure 3: Example Snippets and Object Types. As opposed to
a standard 3D model, each snippet contains parameters defining
a range of potentially generated geometry. Further, each snippet
is associated with an object type. The set of shapes in each row
are example outputs generated by randomly selecting snippets and
parameter values.

use a lasso to select a region (e.g., a face) where to anchor the next
sketched part. For a new sketch, the anchored region corresponds to
the ground plane and the object type defaults to an agreed upon first
object type. In all other cases, the object type depends on the label
specified in the snippet for the selected anchor region. Nonetheless,
the object type to sketch can be explicitly expressed by the designer.
As the user sketches, the system uses the snippet recognition CNN
to match the sketch to an instance of a particular snippet type and
then uses that snippet’s parameter estimation CNN to recover its
parameter values. The procedurally-generated model is visualized
in one of a variety of rendering styles. At any time the generated
grammar of the entire 3D model can be output.

4 Representation

Without loss of generality, our system implements the grammar
snippets and the generated grammar as XML-based split grammars.
While our current implementation makes use of split grammars
(i.e., as used by [Wonka et al. 2003] and [Müller et al. 2006]), the
approach does not depend on the exact grammar type.

4.1 Split Grammar

Our system uses split grammars to represent each snippet as well as
the entire model. The i’th snippet is defined as Gi = {α, τ, η, ρ}
where α is the axiom, τ is the set of terminal symbols, η is a set of
non-terminals, and ρ is a set of rewriting rules using the terminals
and non-terminals. Moreover, each snippet is labeled with an object
type and the axiom α is named Start. The snippet may also contain
one or more object-type labeled non-terminals (Figure 4).

4.2 Snippet Combination

Every time the user draws new strokes, a best fitting snippet is rec-
ognized and added to the grammar representing the 3D model. At
this moment, the non-terminal of the current anchor is replaced by
the recognized snippet and its automatically determined parame-
ters. For example, when the name of the selected anchor non-
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Section 4.

<!-- grammar for a building mass -->
<param building_height=“20”/>
<rule name=“Start”>

<extrude height=“building_height”/>
<comp>

<top name=“TopFace”/>   <!-- roof -->
<side name=“Façade”/>   <!–- façade -->
<bottom name=“Base”/>

</comp>
</rule>

Figure: Each grammar has one axiom named “Start” and 
contains one or more nonterminals. Some of the nonterminals
will be used by the other stages as their starting shape. In the 
above example, “TopFace” will be used by the roof stage, and 
“Façade” will be used by the façade stage.

Figure 4: Snippet Grammar. Each snippet has an axiom named
Start and contains one or more non-terminals that can be rewritten
by procedural rules (i.e., replaced by other snippets). In this exam-
ple, TopFace will be used by a roof-type snippet, and Facade will
be used by a facade-type snippet.

<!-- grammar for a building mass -->
<param building_height=“20”/>
<rule name=“Start”>

<extrude height=“building_height”/>
<comp>

<top name=“TopFace”/>
<side name=“Façade”/>
<bottom name=“Base”/>

</comp>
</rule>

<!-– grammar for a roof -->
<param roof_slope=“50”/>
<rule name=“TopFace”>   

<!-- originally was “Start” -->
<roofGable slope=“roof_slope”/>

</rule>

Figure 5: Grammar Combination. When a snippet is recognized,
the name of its starting axiom is modified to the name of the non-
terminal to which the snippet is anchored. In this way, multiple
snippets can be linked into one generated grammar for the entire
3D model.

terminal is TopFace and the user sketches a grammar for a roof,
the axiom of a copy of the snippet grammar is modified to TopFace
(Figure 5). Also, the object type of this axiom is set accordingly
so that the system knows that the added snippet is for a roof in the
generated grammar. Afterwards, the derivation tree [Müller et al.
2006] is regenerated producing a new instance of the 3D model.

5 Training

Our system trains one CNN per object type to recognize snippets
and one CNN per pre-defined snippet to estimate parameters. The
training process is performed once as a preprocess and during run-
time the trained CNNs are loaded and used.

5.1 Convolutional Neural Networks

CNNs can be used for both recognition/classification prob-
lems [Krizhevsky et al. 2012; Abdel-Hamid et al. 2014], in which
the output is the probability distribution of discrete values for each
category, and regression problems [Pfister et al. 2015], in which
the output are continuous valued parameters. Even though it may
require a one-time several hours preprocess, once the network is
trained, the aforementioned problems can be solved almost instan-
taneously. Thus, it is suitable for interactive usage (Figure 6).

a) b) c)

d) e) f)

Figure 6: CNN Training. An example set of objects generated by
our building mass snippet for CNN training. The objects were ren-
dered as sketches to optimize the CNN for human-drawn strokes.
For other object types, we generated the training images in a simi-
lar manner.

Table 1: Recognition CNNs. We compared the accuracy after
20,000 iterations of recognition CNN training using pretrained
weights as initial weights and training from scratch. The former
training approach improves the accuracy on our dataset.

Training using the Training from
pretrained weights scratch

Building mass 0.99 0.92
Roof 0.98 0.90

Window 0.98 0.87
Ledge 0.95 0.86

5.2 Training Process

For the recognition CNNs, we use the BVLC AlexNet architec-
ture [Krizhevsky et al. 2012] starting from the weights obtained
from the Caffe Model Zoo [Jia et al. 2014]. The initial weights are
obtained by training with hundreds of thousands of images so as
to learn to discriminate the features [Russakovsky et al. 2015]. We
fine-tune the networks by using our training images so as to op-
timize the classifiers to achieve high accuracy on our recognition
application (Table 1).

For each parameter estimation CNN, we use a modified architecture
with three convolutional layers followed by two fully connected
layers. Finding the best network architecture is still an open prob-
lem especially for regression problems. In practice, deeper con-
volutional networks can extract more features but are more diffi-
cult to train. We use three convolutional layers that achieved sat-
isfactory results. Since there are no pre-trained weights for this
network, we train CNNs from scratch, which requires many more
iterations to converge (Figure 7). We use normalized parameter
values as input for the CNNs. The j’th parameter has a value
vj ∈ [vmin, vmax] and the normalized value is computed based on
this range by vj−vmin

vmax−vmin
.

Note that the output of the first CNN type is a probability distribu-
tion of the snippet types, whereas the outputs of the second CNN
types are normalized parameter values.



Figure 7: Parameter Estimation CNN. Training for parameter es-
timation requires a large number of iterations to converge because
no initial pre-trained weights are used.

...
<param roof_slope=“20”/>
...
<rule name=“TopFace”>   

<roofGable slope=“roof_slope”/>
</rule>

...
<param roof_slope=“50”/>
...
<rule name=“TopFace”>   

<roofGable slope=“roof_slope”/>
</rule>

...
<param panel_height=“0.1”/>
...
<rule name=“RoofPanel”>

<extrude height=“panel_height ”/>
</rule>

...
<param panel_height=“1”/>
...
<rule name=“RoofPanel”>

<extrude height=“panel_height ”/>
</rule>

b)

a) Grammar

Grammar

Figure 8: Grammar Editing. We also enable the user to directly
change the parameter values, such as a) the slope of the roof, and
b) the height of the extrusion of roof panels.

5.3 Data Generation

Our preprocessing tool generates a large number of training im-
ages (over 40,000 images for the first object type to sketch, build-
ing mass, and around 7,000 images for other object types) for each
snippet by randomly changing its parameter values. In an early
version of our system, we trained the network with multiple view-
points. However, we found in practice that most people use a pre-
defined vantage point, such as a three quarter view. Thus, in order
to reduce the complexity of snippet recognition and parameter esti-
mation, our system fixes the viewing orientation and position of the
sketched objects. We consider the XY plane to be the ground plane
in the world coordinate system, θ be the rotation angle around X
axis, and φ be the rotation angle around Z axis. Our system enables
specifying the viewing orientation for each object type (e.g., for
building mass and roof, θ = 30◦ and φ = 45◦; for ledge, θ = 0◦,
φ = ρ− 72◦; for other object types θ = 0◦, φ = ρ, where ρ is the
Z rotation such that the anchor plane is perpendicular to the camera
view direction). The viewing position is fixed such that the pro-
jection of the center of the bounding box of the anchored region is

a) b) c)

Figure 9: Rendering Styles. Our tool provides several rendering
options, a) screen space ambient occlusion (SSAO), b) sketch lines,
c) sketch lines + hatching texture.
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a) b) c)

d) e) f)

g) h) i)

Figure 10: Example Sketching Sequence. Our system allows the
user to intuitively create a 3D model. We show snapshots of the
sketching sequence of a building. See main text and video for more
details.

located at the center of the drawing canvas. Note that for the agreed-
upon first object type to sketch (e.g., building masses), the system
considers the ground plane as the anchor. Since the anchor can be
any shape at any location on the ground plane, the preprocessing
tool for training changes the originating position of the snippet on
the ground plane to a sampling of potential positions.

6 Sketching

At run-time, our system uses the pre-trained CNNs to recognize
which snippet is being partially sketched. Moreover, additional
tools are provided to support object repetition, to generate a vari-
ety of similar 3D models, to render using one of several styles, and
to provide standard move/resize/copy/paste/delete/undo editing op-
erations.

6.1 Recognition and Parameter Estimation

During sketching, the snippet with the highest probability is se-
lected, and then the system performs snippet parameter estimation.
When the user selects an anchor-region for the next sketch, the sys-
tem automatically alters the viewpoint (Section 5.3) so that the user
sketch is best aligned to the training images. Our system resizes the



user sketch to the same resolution as the training images and the
recognition CNN produces a normalized probability distribution of
the snippet types.

Afterwards, the system resizes the user sketch to the training im-
age resolution for the parameter estimation CNN of the recognized
snippet type, and the parameter estimation CNN outputs the nor-
malized parameter values. As an extra step of refinement, the sys-
tem also uses a few iterations (i.e., 10 in our current implementa-
tion) of a MCMC engine to further improve the parameter values.
We use a single thread and Metropolis-Hastings algorithm to accept
or reject randomly-generated state change proposals. Sketch-style
rendering is used to generate a 2D image Iprop, and state change
proposal score sprop is computed based on the user sketch Isketch
by

sprop = exp
(
−‖D(Iprop)−D(Isketch)‖F

)
(1)

where D(∗) denotes distance transform and ‖∗‖F denotes Frobe-
nius norm.

Once the parameter values are estimated, the system inserts or re-
places the new snippet into the generated grammar (Section 4.2)
and executes the derivation to update the 3D model.

6.2 Repetition Management

In some cases, the user may want to apply an object type repetitively
(e.g., a row of windows, stack of floors). Instead of sketching the
object many times or making extensive use of copy and paste, we
provide a quick mechanism to subdivide the anchor region, sketch
an object type, and generate repetitions. Our tool infers the intended
horizontal or vertical 1D repetitive application from just a few user-
drawn line segments. Two examples of currently supported pat-
terns are 1) (A)∗ that evenly splits the anchor into multiple anchors
(or faces) of the same shape and 2) (AB)∗A that splits the anchor
into shapes A with shape B in between (e.g., shape B might be a
thin separator between shape A’s). Both A and B correspond to
non-terminals of different object type labels than the anchor region.
Note that our system does not require any additional action from
the user to select the repetition mode; it is automatically selected
when drawing facades and floors.

6.3 Design Variability

Since our end result is a grammar, we can exploit procedural mod-
eling not just to create one model but to create a wide variation of
buildings that are inspired by the original sketch. This is akin to
the notion of concept drawing used in sketching to explore a de-
sign space: an artist draws subtle variations to an initial sketch and
then potentially a more attractive option than the initial sketch is
discovered [Eissen and Steur 2009]. We support two approaches to
provide variability: manual swap of snippets (for complete control;
Figure 8) and stochastic snippet/parameter replacement. For the
latter option, we use a similarity value between snippets (provided
as input) to define the probability of the swaps. Moreover, we ran-
domly explore parameter value changes to create more variability.
We show results in Section 7 and Figure 16.

6.4 Rendering and Editing Tools

Our system provides several rendering and editing tools. The 3D
model can be rendered using sketch style, screen space ambient
occlusion (SSAO), pen-and-ink style, or shaded texture-mapping
(Figure 9). In addition, our framework supports selecting, moving,
resizing, deleting, copying and pasting subsets of the entire model
as well as an undo function. For example, when the user selects a

Figure 11: Final Model Previewing. Our tool allows the user
to see the final expected model at any moment even if the user has
not selected a grammar for some stages. The system uses a default
grammar for those stages and generates a complete building model.
The user can optionally stop modeling if the result is satisfactory.
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a) Building mass

b) Roof

c) Window

d) Ledge

Figure 12: Objects Generated from Snippets. Our approach uses
CNN to find the most appropriate snippet and its parameter values.
We show a few sketches for four different object types.

building mass, control points appear on its top and side faces, and
the user can resize it by moving the control points.

7 Results and discussion

We implemented our system on an i7-based PC Workstation with
24GB of memory and NVidia GTX980 graphics card. Our tool was
implemented in C++ using OpenGL/GLSL and supports mouse and
tablet input. We used the Caffe library [Jia et al. 2014] as the frame-
work to train the CNNs using the GPU and to recognize snippets
and estimate snippet parameters during run-time.

The pre-trained CNNs and all the snippets are loaded at system
startup. Our implementation includes 4 object types and 26 snip-
pets, which results in 30 CNNs in total. We used images of res-
olution 256x256 for training the recognition CNNs and we used
lower resolution 128x128 images to decrease the size of the input
data and increase the batch size for the parameter estimation CNNs.
We trained the recognition CNNs for 20,000 iterations using the
pre-trained network as initial weights [Krizhevsky et al. 2012] and
trained the parameter estimation CNNs for 80,000 iterations each.
Every 10,000 iterations of training took around 30 minutes on our
computer. Note that once trained, we can use these trained CNNs
to recognize and estimate the parameters within 400ms.
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Figure 13: Example Buildings. Some of the buildings generated by our tool: Paris-style buildings (a and b), complex shape of buildings (c,
d, e, f, g, j, and k), and skyscrapers (h and i). The creation time was around 5 minutes for each building.

7.1 Sketching Examples

Example sketches are shown in Figure 1, Figures 10-14 and the
accompanying video. In Figure 10a, the user draws a sketch of a
building mass. After selecting the top face of the generated build-
ing mass using the lasso tool (Figure 10b), the user draws a sketch
of a roof (Figure 10c). The user selects a facade (Figure 10d) to
subdivide it into a repeating arrangement of floors (Figure 10e).
Similarly, the user selects a floor to subdivide it into walls and win-
dows (Figure 10f). Then, the user selects one of the windows and
sketches more details of the window (Figure 10g). Lastly the user
sketches a ledge (Figure 10h). Further, the user can select color
and texture that will be a part of the output grammar (Figure 10i).
Also, the user can choose to preview a final expected model at any
moment (Figure 11). In this building, the system has filled-in the
details using the default snippets for the object types the user has
not yet selected.

Figure 12 shows some examples of the object geometry generated
by our tool for several exemplary object types. Notice how well our
system can estimate parameter values. Figure 13 shows examples
of buildings generated by our tool, including Paris-style buildings,
skyscrapers, and complex shaped buildings. As a mean of evalua-
tion, we used our system to reproduce a random set of buildings by
using the 40 first ”office” images from ImageNet and Flickr. We
provide the full set of results as supplemental materials, and show
a subset of representative ones in Figure 14. It took 5-15 minutes
to create each of the buildings. Note that we managed to capture
the overall shape and look of most buildings, although some de-
tails differ when they cannot be expressed by the snippets we’ve
included in our current implementation (highlighted by red arrows
in Figure 14).

Table 2: Training Performance and Computation Time. The table
shows the training performance and computation time for recogni-
tion and parameter estimation of the various models and snippets
shown in this paper. The high accuracy and the relatively small
root mean squared error (RMSE) show that our approach can find
an appropriate grammar and parameter values precisely within a
very short time.

Recognition Parameter estimation
Accuracy Time [ms] RMSE Time [ms]

Mass 0.99 25.1 0.03 305
Roof 0.98 25.2 0.06 318

Window 0.98 25.4 0.09 329
Ledge 0.95 25.6 0.08 304

7.2 Performance and Comparison

In this section, we show training performance, compute time, and
system comparisons. Table 2 shows the training performance and
computation time for recognition and parameter estimation of the
various models and snippets shown in this paper. The total train-
ing accuracy averages to 97.5% and the recognition plus parameter
estimation time is about 340ms.

We compared our approach to MCMC, the de-facto approach for
inverse procedural modeling (Figure 15). In this experiment, our
approach can precisely find the parameter values within 320ms,
whereas MCMC cannot find a good estimate in such a short time.
Also, note that we used only one grammar for MCMC in order
to skip finding the best grammar among others. The ”CNN only”
approach already produces very accurate results, but we add a
few MCMC steps in order to further improve parameter estima-
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Figure 14: Expressivity. We have created 40 buildings using the
images from ImageNet and Flickr as inspiration. Only a subset of
buildings is shown here. Please refer to the supplemental materials
for all the created buildings and the source images. The red arrows
highlight some building features and shapes not well supported by
our currently implemented set of snippets, such as non-axis aligned
shapes (4 and 10), certain window shapes (5), and irregular facade
patterns (6 and 7).
Photo Credits: 8) c© Jennifer C., 9) c© rjp, and 10) c©Alper Çuğun.

tion while remaining fast enough for interactive use. While the
improvement is subtle, it can be noticed on the second column in
Figure 15, for example. Another naive approach for parameter esti-
mation would be to generate a very large number of training images
by changing parameter values and find the best match image given
a user sketch. However, this approach can only choose the best
one from a discrete set of options. In contrast, our approach can
estimate continuous values.

To improve accuracy, we experimented with several rendering
strategies for use in training: 1) sketch style rendering, 2) blurry
rendering, and 3) incomplete renderings (e.g., some edges re-
moved). For the first option, we implemented our custom rendering
algorithm. In a first pass, it renders an image by using a standard
line rendering algorithm. In a second pass, it detects edges by Ed-
lines [Akinlar and Topal 2011], and replaces them by predefined
polylines that imitate hand-drawn lines. For the second option, we
use Gaussian filtering with σ =image size x 0.02. For the third
option, we use a similar algorithm to the first one but remove half
of the detected edges. Our experiments showed that sketch style
rendering achieved the best accuracy (Table 3).
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Figure 15: MCMC Comparison. Our approach uses both CNN
and 10 iterations of MCMC-based refinement to yield much better
parameter estimation than MCMC alone. Even if the MCMC itera-
tions are removed from our approach, CNN still yields much better
accuracy as compared to MCMC and in a fraction of the time. The
time, RMSE, and standard deviation for each grammar are the av-
eraged values of ten executions.

Table 3: Comparison of accuracy with different rendering op-
tions. We experimented with several rendering options to generate
training images. Our sketchy rendering achieved the best accuracy
in recognizing parts of human-drawn sketches.

Building mass Roof Window Ledge
Sketchy rendering 0.94 0.83 0.89 0.75

Blurred image 0.59 0.46 0.37 0.38
Missing edges 0.75 0.50 0.41 0.50

7.3 Model Variation

Since the output of our tool is always a consistent grammar, the user
can easily produce a wide variety of geometry by changing snippets
and snippet parameter values. Figure 16 shows some of the auto-
matically generated buildings after the user completes the design
sessions. A user-provided probability density function based on
the visual similarity between grammar snippets is used to change
grammars, while the parameter values are randomly selected. In
this example, we manually defined a similarity value between dif-
ferent snippets of the same object type. Then, when so desired the
designer can use this function to randomly select an alternative rule;
upon selection the system then performs parameter estimation.

7.4 Robustness

Our system tolerates significant sketch inaccuracy and incomplete-
ness and always generates a valid procedural model. Figure 17a
shows examples of how our system is able to find the correct gram-
mar snippet despite of inaccurate sketches and different sketching
styles. Note that if the user draws a novel shape, i.e., a shape that
has not been introduced in our grammar snippet set, the CNN will
select the closest shape expressible by the available snippets (Fig-
ure 17b).
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Figure: Our stage-based modeling process also allows the interchange of grammars for each stage. After the user completes 
designing a grammar (leftmost images), our system generates a wide variety of geometry by changing grammars of each stage based 
on the probability density function that were manually defined and randomly changing parameter values within a predefined range.

Figure 16: Variability. Our system can automatically change snippets and snippet parameters to yield model variation. After the user
completes a design (leftmost images), our system generates a wide variety of geometry by changing snippets using a probability density
function and by randomly changing parameter values within a predefined range.

a) b)

Figure 17: Robustness to sketch inaccuracy and style. a) Our
system can find the best grammar snippet and its parameter values
despite inaccurate sketches and different sketching styles. b) If the
user draws a shape that is not covered by a snippet, the CNN will
select the closest shape expressible by the available snippets.

7.5 User Experience

We had a group of eight users aged from 25 to 34 evaluate our
system. All of them are graduate students who received technical
education, but they all reported limited knowledge of 3D modeling
tools and basic drawing skills. Each participant followed a sim-
ple tutorial about our system, which took them around 10 minutes
to complete. They then had to reproduce two target buildings us-
ing our system, without any time limit. The two targets were both
in a Parisian style, but contained subtle differences of mass, roof,
windows and ledge to assess user’s ability to specify different de-
tails. Figure 18 shows the quantitative evaluation of our tool. For
each of two target buildings, it shows the number of clicks, the cre-
ation time, and the number of rules in the generated grammar which
is an indication of generated building complexity. All participants
successfully created buildings that look similar to the targets in a
very short time (Figure 19). We also asked some participants to
create some original buildings after showing them inspirational ex-
amples (Figure 20). On a Likert scale from 1 (strongly disagree)
to 5 (strongly agree), five participants strongly agreed and three
agreed that our system allowed them to achieve the buildings they
wanted. They also all agreed that the system interpreted well the
shapes they drew. Finally, several participants suggested areas of
improvement. In particular, some participants had limited skills

26

Target building #clicks Creation 
time [min] #rules

38.5

42

6.7

6.2

94

72

Figure 18: Quantitative evaluation. All the subjects could suc-
cessfully create a building that looks very close to the target in less
than 7 minutes. The number of rules in the output grammar indi-
cates its complexity

in perspective drawing and suggested the use of more traditional
front/top/side views to sketch the building mass. It is important to
note that even for those who are not good at sketching, our sys-
tem interpreted their intended shapes and enabled the participants
to achieve the desired output.

7.6 Limitations

Our proposed method cannot recover the procedural grammar from
an existing sketch. Although our coarse-to-find sketching workflow
reflects the way people draw complex objects, the sketching pro-
cedure requires the user to mentally decompose a target building.
Also, the output variability is limited to that provided by the gram-
mar snippets currently implemented in the system. One option to
ameliorate the highlighted differences of Figure 14 is to increase the
number of supported snippets. While this may increase the range of
buildings features and shapes that can be supported, it will eventu-
ally also decrease the CNN’s accuracy in recognizing which snippet
is currently being sketched. Also, for some irregular shapes using
procedural modeling might not be suitable – in those cases, it might
be preferable to integrate non-procedural modeling methods such as
example-based and/or pure sketch-based methodologies.
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a)

b)

Figure 19: User trial output. We show the buildings created by
the users for each of the two target buildings in Figure 18.

8 Conclusions and Future Work

We have presented a procedural modeling sketching system that
enables a novice user to create a grammar and a corresponding 3D
geometry quickly and easily, without the need of writing procedu-
ral rules. We achieve interactive sketching of complex grammars by
both decomposing the creation process of hierarchical models into
coarse-to-fine stages, and by leveraging modern machine-learning
algorithms to recognize grammar snippets and estimate their pa-
rameters in less than a second. The results indicate that our ap-
proach easily and efficiently creates a complex grammar of a de-
sired building shape even for people who do not have any knowl-
edge of procedural modeling grammars.

As future work, we will pursue several items. Currently, our sys-
tem requires grammar snippets as input. In the future, we would
like to automatically partition large grammar definitions into a suit-
able set of grammar snippets. Also, our system currently uses a
fixed-view for sketching. Supporting arbitrary viewpoints signif-
icantly increases the complexity of data generation for training,
while reducing the accuracy of snippet recognition and parameter
estimation. Nevertheless, recent work on CNN-based viewpoint
estimation suggests that such an ability is within reach [Su et al.
2015]. Finally, our current machine-learning approach requires a
significant amount of memory (e.g., up to few hundred MB per net-
work). We implemented our system using standard deep CNNs
using Caffe and have not experimented with the performance of
shallower CNNs to find the best tradeoff between memory and ac-
curacy. Another possible solution would be to use a single CNN for
all object types, which saves memory but might sacrifice accuracy.
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Figure. The output geometry in the second user test.

Figure 20: Original buildings. We asked some of the partici-
pants to create more complex buildings after showing them exam-
ples. These imaginary buildings were sketched in less than 15 min-
utes.
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