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Simpli�
ation of Meshes with Digitized Radian
e

Kenneth Vanhoey � Basile Sauvage � Pierre Kraemer � Fr�ed�eri
 Larue �

Jean-Mi
hel Dis
hler

Abstra
t View-dependent surfa
e 
olor of virtual ob-

je
ts 
an be represented by outgoing radian
e of the

surfa
e. In this paper we ta
kle the pro
essing of out-

going radian
e stored as a vertex attribute of trian-

gle meshes. Data resulting from an a
quisition pro
ess


an be very large and 
omputationally intensive to ren-

der. We show that when redu
ing the global memory

footprint of su
h a
quired obje
ts, smartly redu
ing the

spatial resolution is an e�e
tive strategy for overall ap-

pearan
e preservation. Whereas state-of-the-art simpli-

�
ation pro
esses only 
onsider s
alar or ve
torial at-

tributes, we 
onversely 
onsider radian
e fun
tions de-

�ned on the surfa
e for whi
h we derive a metri
. For

this purpose, several tools are introdu
ed like 
oher-

ent radian
e fun
tion interpolation, gradient 
omputa-

tion, and distan
e measurements. Both syntheti
 and

a
quired examples illustrate the bene�t and the rele-

van
e of this radian
e-aware simpli�
ation pro
ess.

Keywords Digitized artifa
ts � Surfa
e light �eld �

Radian
e � Mesh simpli�
ation � Rendering

1 Introdu
tion

In the s
ope of digitization of 
ultural heritage, the de-

mand for high-�delity visualization is in
reasing. Com-

pared to usual 
olored surfa
es (using, e.g., textures,

vertex 
olors), surfa
e light �elds (SLF) improve ap-

pearan
e modeling: the 
olor depends not only on the

position on the surfa
e (spatial dimension) but also on
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the viewing dire
tion. This allows 
apture of, e.g., spe
-

ular highlights indu
ed by glossy obje
ts. Appli
ations

in
lude virtual museums, ar
hiving, and o�-site study.

A
quiring SLF is regularly made easier and more re-

liable by the development of a
quisition devi
es, treat-

ments, and re
onstru
tion algorithms [14,24℄. The mem-

ory load however still grows in proportion to the spa-

tial resolution multiplied by the dire
tional one. Mem-

ory limits for storage, transmission and rendering may

be pushed in various ways, using data 
ompression,

streaming, data redu
tion, and level-of-detail approa
hes.

In this proje
t, our a
quisition pro
ess [24℄ gener-

ates dense surfa
e meshes typi
ally 
omposed of hun-

dreds of thousands to millions of verti
es per obje
t

(spatial dimension). Compa
t representations of hemi-

spheri
al radian
e fun
tions (RF) stored on these ver-

ti
es still require dozens of 
oeÆ
ients per vertex (di-

re
tional dimension). Our main 
ontribution is a new

method for the redu
tion of this dense data that ex-

ploits a radian
e-aware metri
 for geometri
 mesh sim-

pli�
ation, as illustrated in Fig. 1. To our knowledge,

no other metri
 exists for su
h fun
tional data, thus we


ompare our results to state-of-the-art 
olor-aware sim-

pli�
ation. We show that redu
ing the spatial resolution

(our strategy) may better preserve the visual quality


ompared to redu
ing the dire
tional resolution.

Alternatively, one 
an store radian
e in texture maps

instead of on verti
es [2,25℄. However texture mapping,

�ltering, and mip-mapping raise several issues. First, a

parameterization has to be de�ned, whi
h, for 
omplex

obje
ts, implies to 
ut the texture into pie
es (
harts).

To avoid visible seams at 
hart boundaries and per-

mit mip-mapping, texel redundan
y and 
omplex data

stru
tures are often used [21℄. Se
ond, it is diÆ
ult to

adapt the resolution of the texture a

ording to spa-

tial variations unless they have been taken into a

ount

when building the parameterization. Conversely, mesh
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Fig. 1 Double dragon model with per-vertex radian
e attribute. Mesh simpli�
ation adapts to geometri
, 
olor, and spe
ular

features. RF are en
oded with polynomials of bi-degree 4 and respe
tively weigh 401MB, 13MB, 6MB and 3MB.

simpli�
ation is designed to adapt the spatial resolu-

tion, assuming that radian
e is stored on ea
h vertex.

Some previous te
hniques [2,25℄ address the prob-

lem of 
ompressing dire
tional information independent-

ly of spatial information. Our approa
h is 
omplemen-

tary sin
e it addresses spatial simpli�
ation of the data:

further dire
tional 
ompression remains 
ompatible.

The key 
on
ept of our approa
h is to 
ombine a

well-known mesh-driven simpli�
ation algorithm (i.e.,

iterative edge-
ollapse [11℄) with a new metri
 de�ned

on radian
e, that measures what will be a
tually ren-

dered. Therefore, RF are atta
hed to the verti
es of

an over-dense surfa
e mesh after a
quisition and pre-

pro
essing. Our 
ontributions start by �rst determin-

ing a set of tools to do 
al
ulations with RF on the

surfa
e, in
luding spe
ular highlight-aware interpola-

tion, gradient 
omputation and distan
e measurement

(se
tion 3). Se
ond, we propose a method that simpli-

�es dense data while ensuring visual similarity w.r.t.

to the original. Therefore we de�ne a new metri
 on

RF that allows to evaluate the 
ost of an edge 
ol-

lapse operation (se
tion 4). Level-of-detail rendering is

then made possible by the use of progressive meshes:

the data is represented at multiple s
ales su
h that it


an be adapted at runtime to the a
tual rendering 
on-

straints. Third, be
ause simpli�ed meshes 
an exhibit

large triangles that may 
over many pixels in s
reen-

spa
e, we propose an improved rendering method in

order to preserve the light �eld highlights even in those


ases (se
tion 5). Compared to dire
tional redu
tion,

the results show that radian
e-aware spatial simpli�
a-

tion well preserves a
quired obje
ts appearan
e. Com-

pared to 
olor-based metri
, our method is also more

a

urate in the preservation of the dire
tional features

of the obje
ts (se
tion 6).

2 Related work

This work is related with two areas: i) view-dependent


olors, namely light �elds, and ii) mesh-driven level-of-

detail methods, in parti
ular mesh simpli�
ation.

2.1 Surfa
e light �elds

Light �elds [10,17℄ de�ne the 
olor of a s
ene as a fun
-

tion of a 4D spa
e 
overing position and the viewing

dire
tion. Surfa
e light �elds map these data on the

surfa
e as a way to dis
ard ba
kground data and avoid

proje
tion and parallax errors, thus being more pre
ise.

It 
an be expressed by i) a 
ombination of eigen-ve
tors

by using fa
torization methods [5,20℄, or ii) indepen-

dent lo
alized 2D hemispheri
al RF [2,25℄. For keeping

lo
al 
ontrol in our algorithm, we use the latter.

Numerous fun
tion bases 
an be used to represent

2D RF in a data-driven a
quisition 
ontext. Non-linear

ones (e.g., [16℄) are pre
ise but may be diÆ
ult to ob-

tain or pro
ess [26℄. They are rather used for represent-

ing BRDF, i.e., 4D hemispheri
al fun
tions. For 2D,

linear 
ombinations of basis fun
tions are widely-used

for their simpli
ity and 
exibility. Commonpla
e are

spheri
al harmoni
s or wavelets [18,23℄, polynomials

[19℄, or lumispheres [25℄. Choosing the appropriate one

is left to the user: our algorithms are independent of

it. This 
hoi
e however in
uen
es both implementation


omplexity and 
omputation time.

2.2 Mesh simpli�
ation

Surfa
e mesh simpli�
ation has been given a lot of at-

tention. We are interested in methods 
onsidering ge-

ometry and aspe
t-des
ribing attributes (e.g., 
olor, tex-

ture) [3,4,7{9,11,12℄. Methods exploiting the unitary

edge 
ollapse operation (Fig. 3 and Fig. 5), as opposed

to vertex removal or triangle 
ollapse, are standard both

for ease of implementation and wide range of appli
a-

tions. Edges are iteratively 
ollapsed in in
reasing order

of damage they 
ause. Hereby, we de�ne a new measure

of this damage. Some metri
s allow to de�ne an optimal

embedding (i.e., that minimizes the metri
) for the ver-

tex resulting from a 
ollapse. Half-edge 
ollapse instead

de�nes the resulting vertex as one of its two prede
es-

sors. Our new metri
 
an be used with both variants.
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Metri
 on geometry. The quadri
 error metri
 (QEM)

is the most widely-used geometri
 error metri
 [7℄. It

eÆ
iently estimates the sum of squared distan
es w.r.t.

the planes de�ned by the triangles of the initial (dense)

mesh surrounding the verti
es pre
eding the 
ollapse.

A \memoryless" variant [12℄ 
omputes the QEM w.r.t.

the mesh immediately pre
eding the 
urrent 
ollapse

instead of the initial mesh. Our new metri
 is de�ned

as a 
ombination of a memoryless QEM with a (also

memoryless) radian
e measure.

Metri
 on s
alar or ve
torial attributes. Classi
al at-

tributes (e.g., normals, 
olors) are real-valued ve
tors

of some dimension m. A �rst strategy dire
tly extends

the QEM to R

3+m

by mixing up geometry and other

attributes [8℄. As 
onsidering su
h a mix is quite ar-

bitrary, the more re
ent alternatives use the QEM as

a geometry metri
 and add their spe
i�
 error to it.

In [12℄, a separate QEM is 
omputed in attribute spa
e

R

m

, and in [15℄, a metri
 is spe
i�
ally designed for

vertex 
olors. Both 
ombine this with the QEM for ge-

ometry. None of these te
hniques is dire
tly extensible

to fun
tional attributes.

Metri
 on radian
e attributes. To our knowledge, fun
-

tional attributes have not been 
onsidered before. The

RF we are dealing with en
ode a 
olor depending on the

viewing dire
tion. A 
onstant RF (di�use 
olor) is thus

equivalent to 
olor attributes. We 
ompare our radian
e

metri
 on su
h data in Fig. 9.

Progressive meshes [11℄ reverse edge 
ollapses by ver-

tex splits. They represent triangle meshes at di�erent

resolutions. In the present paper we show progressive

meshes with radian
e attribute.

3 Cal
ulations on radian
e fun
tions

Surfa
e light �elds L(p; !) de�ne for every point p on

the surfa
e the outgoing radian
e. This is a fun
tion

that asso
iates a 
olor to any viewing dire
tion !. It

represents the light emitted from p into dire
tion !.

The domain for ! is the hemisphere of visible dire
tions,

i.e., 
entered on n, the normal to the surfa
e at p.

In our setting, the surfa
e is a triangle mesh de�ned

by its 
onne
tivity and its positions p

i

and normals n

i

at verti
es v

i

. The embedding is linear: a point with

bary
entri
 
oordinates (�

1

; �

2

; �

3

) in a triangle t =

(v

1

; v

2

; v

3

) is embedded at p = �

1

p

1

+�

2

p

2

+�

3

p

3

. The

normal is also assumed to be linearly interpolated (up

to normalization), whi
h is a 
ommon approximation

for rendering. A radian
e fun
tion L(p

i

; !) is de�ned

at ea
h vertex.

In this se
tion, we de�ne tools to 
al
ulate on radi-

an
e fun
tions over the surfa
e. They will be used to

design a new metri
 for simpli�
ation (se
tion 4) and

to de�ne improved rendering formulas (se
tion 5). First,

we de�ne formulas for RF re
e
ted around the lo
al sur-

fa
e normal (se
tion 3.1), as they exhibit higher spatial


oheren
e [25℄. Se
ond, we derive triangle interpolation

(se
tion 3.2), whi
h de�nes L at any p on the surfa
e

(spatial 
ontinuity). Third, we derive triangle extrap-

olation (se
tion 3.4), whi
h de�nes RF o� the initial

surfa
e, whi
h is useful sin
e edge 
ollapses 
hange the

geometry. The latter exploits a gradient of the RF on

the surfa
e (spatial derivative) whi
h we �rst present in

se
tion 3.3. Finally we propose distan
e measurements

between two RF (se
tion 3.5) so as to serve our metri
.

3.1 Re
e
ted representation

Let L(p; !) be a RF de�ned on the hemisphere oriented

with normal n. We apply the re
e
tion R

n

with respe
t

to n in order to get

e

L(p; !) = L(p; R

n

!) whi
h we 
all

re
e
ted radian
e fun
tion (r-RF). This idea improves

the spatial 
oheren
e for a large 
lass of 
ommon ma-

terials. It has indeed been used eÆ
iently for 
ompa
t

BRDF representation [22℄, image-based rendering by

pre-�ltered environment mapping [1℄, and 
ompression

of SLF [25℄. We apply it for 
oherent interpolation and

improved rendering quality.

The motivation is that the re
e
ted

e

L tend to 
hange

less than L when p varies, i.e., over the surfa
e. Fig. 2

illustrates this on a simple example: suppose two fun
-

tions L(p

1

; �) and L(p

2

; �) (middle) were re
onstru
ted

from a similar material (say, a Phong-like re
e
tan
e

model) and a point light sour
e. They then exhibit spe
-

ular peaks around the ideal re
e
tion dire
tion. Sin
e

the surfa
e normals n

1

and n

2

diverge, L(p

1

; �) and

L(p

2

; �) di�er a lot. In 
ontrast,

e

L(p

1

; �) and

e

L(p

2

; �)

(bottom) are similar be
ause the peaks are aligned with

the lighting dire
tion.

This holds for 
omplex lighting environments (e.g.,

many lights) resulting in 
omplex outgoing radian
e

fun
tions, provided that the 
ommon lighting environ-

ment is at in�nite distan
e. Inter-re
e
tions and auto-

o

lusions violate this 
ondition in general, but it is

respe
ted lo
ally when 
omparing nearby points on the

surfa
e: re
e
tion lo
ally in
reases the 
oheren
e. This

is very important in our 
ontext be
ause edge 
ollapse

(se
tion 4) is a lo
al pro
ess for simplifying preferably

homogeneous regions, and rendering (se
tion 5) lo
ally

interpolates RF in triangles. As a result, a region with

homogeneous material and similar lo
al environment

results in homogeneous r-RF over the region.
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Fig. 2 Interpolation at point p of two radian
e fun
tions

L(p

1

; �) and L(p

2

; �). Fun
tions at verti
es p

1

and p

2

are

derived from a point light sour
e at in�nite distan
e and a

Phong-like re
e
tan
e model. i) Ea
h fun
tion is re
e
ted

w.r.t. its own normal. ii) Linear interpolation is performed

(bottom). iii) The result is re
e
ted w.r.t. the interpolated

normal n. Naive interpolation on non-re
e
ted fun
tions

(dashed line) would be mu
h less 
oherent.

3.2 Interpolation

Interpolation 
onsists in deriving a RF at any position

p in a triangle t from known RF at verti
es p

1

, p

2

and p

3

. As presented in Fig. 2, we de�ne the r-RF at

p = �

1

p

1

+ �

2

p

2

+ �

3

p

3

through linear interpolation:

e

L

t

(p; !) = �

1

e

L(p

1

; !) + �

2

e

L(p

2

; !) + �

3

e

L(p

3

; !) (1)

whi
h formally de�nes a RF interpolation by

L

t

(p; !) = �

1

L(p

1

; R

n

1

R

n

!)

+ �

2

L(p

2

; R

n

2

R

n

!) + �

3

L(p

3

; R

n

3

R

n

!) (2)

This pro
edure tends to preserve spe
ular peaks be-


ause it essentially interpolates fun
tions of ! while

naive interpolation (Fig. 2, middle, dashed line) would

interpolate 
olors at �xed !.

3.3 Gradient

If one �xes the viewing dire
tion ! then equation (1)

amounts to simple linear interpolation of 
olors over

the triangle t. Thus for �xed !, the gradient w.r.t. p of

e

L

t

is 
onstant over t. Di�erentiation on the surfa
e [6℄

leads to

r

p

e

L

t

(!) = J(J

T

J)

�1

"

e

L(p

2

; !)�

e

L(p

1

; !)

e

L(p

3

; !)�

e

L(p

1

; !)

#

(3)

where J =

�

p

2

� p

1

;p

3

� p

1

�

. Note that r

p

e

L

t

is a

fun
tion de�ned over the hemisphere. It should be a

Ja
obian matrix but we 
onsider the 
olor 
hannels sep-

arately (see se
tion 7), so we 
ompute one ve
tor per


hannel.

3.4 Extrapolation

By using the gradient, equation (1) 
an be rewritten as

e

L

t

(p; !) =

e

L(p

1

; !) +r

p

e

L

t

(!) � (p� p

1

) (4)

Although the gradient lies in the triangle's plane and

was designed to 
ompute interpolation, this formula a
-

tually de�nes its extension to 
ompute it for p that

does not lie in the triangle, not even in the plane. Con-

versely to the straightforward equation (1), formula-

tion (4) provides extrapolation by extending

e

L

t

to 3D

with 
onstant gradient on the whole plane and a (spa-

tially) 
onstant (dire
tional) 
olor in the normal dire
-

tion. We exploit this in se
tion 4.

3.5 Distan
e measurements

We de�ne the distan
e between radian
e fun
tions by

d (L(p

1

; �); L(p

2

; �)) =










e

L(p

1

; �)�

e

L(p

2

; �)










L

2

(
)

(5)

where

kL(p; �)k

L

2

(
)

=

�

1

2�

Z

!2


L(p; !)

2

d!

�

1=2

(6)

is the L

2

-norm for square integrable fun
tions on the

hemisphere 
. The 
hoi
e of 
 will be dis
ussed in

se
tion 4.1.

This measure, whi
h integrates r-RF rather than

RF, has several advantages:

{ It is 
onsistent with the above interpolation pro
e-

dure: the average of L(p

1

; �) and L(p

2

; �) minimizes

the sum of squared distan
es to L(p

1

; �) and L(p

2

; �).

{ Distan
e between di�use RF (i.e., 
onstant fun
-

tions) redu
es to distan
e between simple 
olors.

{ kL(p; �)k

L

2

(
)

= k

e

L(p; �)k

L

2

(
)

sin
e they are de-

�ned on the same hemisphere.
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4 Mesh simpli�
ation

Amesh is de�ned by its 
onne
tivity and its embedding,

whi
h is generally a set of attributes atta
hed to the

verti
es. Mesh simpli�
ation based on edge 
ollapse [11℄

essentially 
onsists in two stages:

1. build a priority queue of all 
ollapsible edges;

2. until the mesh is simpli�ed enough, 
ollapse the �rst

edge and update the queue.

This algorithm is grounded on a priority 
riterion (for

the edges) and an embedding strategy (for the vertex

resulting from a 
ollapse), whi
h must both take into

a

ount all the attributes. We �rst present our radian
e

error metri
 in the 
ontext of half-edge 
ollapse and

then extend it to general edge 
ollapse.

4.1 Radian
e error metri
 for half-edge 
ollapse

Half-edge 
ollapse is represented in Fig. 3: the edge v

0

v

1

is 
ollapsed onto v

1

. We de�ne the radian
e error 
aused

by the 
ollapse as a per
eived di�eren
e power of light

emitted by the surfa
e. Indeed, sin
e L is a luminous


ux (lumen) per unit solid angle and per unit surfa
e

area, the error E de�ned as follows has squared lumen

for theoreti
 dimension.

E =

X

t

Area(t) d

2

�

L(p

0

; !); L

t

(p

0

; !)

�

(7)

where the distan
e is de�ned by equation (5), extrapo-

lation is de�ned by equation (4), and the sum runs over

the post-
ollapse modi�ed triangles (Fig. 3 right).

This equation 
an be understood as follows. Ea
h

�nal triangle t = (v

1

; v

2

; v

3

) 
ontributes to the error in

proportion to its area multiplied by the 
hange of RF


aused by the 
ollapse. The 
hange of RF is measured

by the squared distan
e between the RF at position p

0

before and after 
ollapse. The RF at p

0

is L before


ollapse and is extrapolated from the triangle t by L

t

after 
ollapse. Sin
e the distan
e is measured at point

p

0

, the hemisphere for integration is 
hosen to be 


0

.

Fig. 3 Half-edge 
ollapse of v

0

v

1

onto v

1

. The point p

0

(po-

sition of the vertex v

0

before 
ollapse) is generally o� the

surfa
e after 
ollapse.

4.2 Coheren
e with di�use 
olor

To understand the relevan
e of E in terms of 
olor, 
on-

sider purely di�use materials: equation (5) still applies

and the distan
e redu
es to an error between 
olors. As

a 
onsequen
e, E is the squared 
olor error times the

impa
ted area. Fig. 4 illustrates typi
al situations: the

triangle t in red 
ontributes to the error if its extrap-

olated 
olor L

t

(ba
kground) di�ers from the original


olor, i.e., before the 
ollapse. This is the 
ase of p

00

0

,

as opposed to p

0

and p

0

0

whi
h perfe
tly mat
h L

t

. E

is a good measure of visible 
olor 
hanges be
ause the

gradient links 
olor and geometry: the 
ontribution at

p

00

0

is positive although its original 
olor is the same

as p

1

, while the 
ontribution at p

0

0

vanishes although

its original 
olor di�ers from that of p

1

.

Our metri
 
an then be 
ompared to previous er-

rors for 
olor attributes [8,12,15℄. It 
ombines all the

following advantages:

{ Neither lo
al parameterization nor proje
tion is needed.

{ It 
an be extended to fun
tional attributes like ra-

dian
e.

{ The 
ombination with 
ommon quadrati
 geometri


errors is invariant under s
aling (see se
tion 4.4).

In the results se
tion (Fig. 9), we show 
ompetitive re-

sults 
ompared to a state-of-the-art metri
 on 
olors.

4.3 Embedding and metri
 for edge 
ollapse

Compared to half-edge 
ollapse the more general edge


ollapse 
ase requires an embedding strategy for all at-

tributes (p, n and L) of the vertex resulting from the


ollapse. We used the optimal position p as proposed

in [7℄. However, in order to de�ne the normal n, we

Fig. 4 Illustration of the 
ontribution of a single triangle

t (red) to the error of the 
ollapse of v

0

v

1

onto v

1

(equa-

tion (7)). The shaded ba
kground represents its extrapolated


olor L

t

while dots p

0

, p

0

0

and p

00

0

represent 3 possible

positions and original 
olors (i.e., at v

0

before 
ollapse, see

Fig. 3). The 
olor error between a dot and the ba
kground is

measured by d

2

in equation (7).
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Fig. 5 Edge 
ollapse.

don't use the extended QEM [8℄ be
ause mixing nor-

mals and geometry is somehow arbitrary. Instead we

proje
t p onto the edge p

0

p

1

and then linearly interpo-

late between n

1

and n

2

a

ordingly. The re
e
ted radi-

an
e

e

L(p; !) is interpolated in the same way, by restri
t-

ing equation (1) to one dimension along the edge. Unlike

half-edge 
ollapse, an expli
it expression of

e

L(p; !) is

required here. Thus a rotation-invariant spheri
al basis

is needed (see se
tion 6).

Finally, the RF error is 
omputed by summing equa-

tion (7) applied on
e for p

0

over the triangles depi
ted

in blue in Fig. 5 and on
e for p

1

over the triangles de-

pi
ted in green.

4.4 Combination with geometri
 error

To be e�e
tive, simpli�
ation must 
onsider all the at-

tributes. We therefore linearly 
ombine E with the mem-

oryless variant of the standard QEM [12℄ be
ause our

radian
e metri
 is also memoryless. Like the QEM, our

metri
 has quadrati
 growth in the mesh size, so the

balan
e between both does not depend on the geomet-

ri
 s
aling. Still, the balan
e depends on the mesh den-

sity and on the 
olor spa
e en
oding. In our examples,

the radian
e error is very low be
ause 
olor 
hanges are

gradual and spe
ular e�e
ts impa
t only part of the

hemisphere. So we empiri
ally weighted 1% geometry

and 99% radian
e on all our examples.

4.5 Progressive meshes

Considering we have at our disposal an edge 
ollapse

metri
 and an embedding strategy, one 
an build pro-

gressive meshes with radian
e attributes. A key ap-

pli
ation here is level-of-detail rendering. It 
onsists

in adapting the resolution to the rendering 
onditions

(viewpoint, memory and time resour
es, s
reen-spa
e

resolution). The issue is to dynami
ally adapt the res-

olution in su
h a way that 
ollapses and splits are not

per
eptible. Stati
 pi
tures are therefore not suited for

illustrating this, espe
ially sin
e radian
e is visible when

the viewpoint 
hanges. The a

ompanying video (On-

line Resour
e 2) shows that this appli
ation is e�e
tive.

5 Rendering

Eventually, the obje
t is rendered. In se
tion 4, we de-

termined a metri
 that 
onsiders interpolation of r-RF

within ea
h triangle. In this se
tion, we de�ne how to

render a

ordingly and visually show why this interpo-

lation is important.

A straightforward te
hnique for shading triangles

with RF de�ned on their verti
es 
onsists in evaluating

the RF on these verti
es within the vertex shader and

then interpolating resulting 
olors at fragment level,

i.e., within the triangle. This approa
h works well when

triangle meshes are extremely dense w.r.t. the view-

point, i.e., a triangle 
overs only a few pixels in s
reen-

spa
e. Conversely, when 
onsidering simpli�ed meshes,

triangles 
an be large in s
reen-spa
e. This te
hnique

then tends to sweep out spe
ular highlights, as shown

in Fig. 6. One 
an noti
e that this is equivalent to per

fragment naive interpolation of RF (Fig. 2, dashed line).

It generates artifa
ts analogous to those of Gouraud-

shading with vanishing highlights inside the triangles.

Rendering quality 
an signi�
antly bene�t from the

RF interpolation proposed in se
tion 3.2. In pra
ti
e,

the re
e
ted fun
tions

e

L are stored and transferred to

the GPU. The r-RF evaluation is now done in the frag-

Fig. 6 Toy example generalizing Fig. 2: four radian
e fun
-

tions are stored on a four-vertex plane. Their normals diverge

and the fun
tions represent a di�use + spe
ular behavior (i.e.,

a Phong-like BRDF). Left (naive interpolation): the spe
ular

highlight fades out at some angles. Right (equation (8)): the

spe
ular highlight is well interpolated.
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ment shader as follows:

L

t

(p; !) = �

1

e

L(p

1

; R

n

!)

+ �

2

e

L(p

2

; R

n

!) + �

3

e

L(p

3

; R

n

!) (8)

whi
h is a
tually equation (2) with r-RF on the right-

hand side. The improvement of this r-RF interpolation

over naive RF interpolation is analogous to the well-

known improvement of Phong shading over Gouraud

shading, but applied to stored RF. Fig. 6 shows a quad

(2 triangles) with divergent normals: equation (8) pre-

vents the spe
ular peak to fade out inside the quad.

To evaluate equation 8 at fragment level, implemen-

tation needs to be adapted. The following data is re-

quired for ea
h fragment:

{ the interpolated position p and normal n;

{ bary
entri
 
oordinates �

1

, �

2

and �

3

;

{ all three r-RF of its triangle (

e

L at p

1

, p

2

and p

3

).

To obtain the three r-RF per fragment, they are du-

pli
ated on the provoking vertex of the triangle in the

geometry shader and exported as 
at output attributes.

We a
tually dupli
ate only referen
es to the r-RF whi
h

are stored in arrays.

Note that swit
hing from per-vertex to per-fragment

evaluation impa
ts performan
e. It moves the 
omplex-

ity from O(visible verti
es) to O(obje
t-
overed s
reen-

spa
e pixels). This implies that rendering speed in
rea-

ses when visualizing the obje
t from a distan
e. Con-

versely, rendering speed de
reases when visualizing a

simpli�ed mesh, i.e., when triangles 
over many pix-

els. It is however in the latter 
ase that visual qual-

ity is improved by per-fragment evaluation. So even-

tually, the user 
an see the 
hoi
e of per-vertex versus

per-fragment evaluation as a trade-o� between, respe
-

tively, rendering speed and quality.

6 Results

Basis fun
tions. We experimented with two linear bases.

First, a spa
e of polynomials [19℄ that represent hemi-

spheri
al fun
tions by orthogonal proje
tion on the tan-

gent plane. These fun
tions must be expressed in a lo
al

frame and the spa
e is invariant under rotation around

the normal. For all �gures but Fig. 7 we used a poly-

nomial basis (PB) of bi-degree d = 4 whi
h require

(d+1)(d+2)

2

= 15 
oeÆ
ients per 
hannel and a rotation

(from global to lo
al frame). We also experimented with

spheri
al harmoni
s [18℄ whi
h represent fun
tions on

the entire sphere. They 
an be expressed either in a lo-


al or a global frame and the spa
e is invariant under

any rotation. Although fun
tions are en
oded on the en-

tire sphere, they 
ontain relevant information only for

PSfrag repla
ements

607MB 152MB 149MB

188MB 47MB 44MB

0 Max

Fig. 7 The original (left) is redu
ed by mesh simpli�
ation

(middle) and degree redu
tion (right). Memory redu
tion is

similar. All obje
ts use spheri
al harmoni
s in global frame.

Elephant, respe
tively: d = 6 & 1M verti
es, d = 6 & 250K

verti
es, d = 2 & 1M verti
es. Mask, respe
tively: d = 8 &

193K verti
es, d = 8 & 48K verti
es, d = 3 & 192K verti
es.

the visible hemisphere, so it is 
ompliant with the 
om-

putations of previous subse
tions. We show spheri
al

harmoni
s (SH) of degree d = 2; 3; 6 and 8 expressed in

global frame (Fig. 7), whi
h require (d+1)

2

= 9; 16; 49

and 81 
oeÆ
ients per 
olor 
hannel, respe
tively.

We emphasize that our algorithms do not depend

on the basis 
hosen, neither on the basis degree, nor

on the frame. We argue that the 
hoi
e should be left

to the �nal user a

ording to the appli
ation needs.

Simpli�
ation results only slightly di�er a

ording to

the basis (see Online Resour
e 1). Equations (1) to (8)

apply whatever the basis and the frame. However, for

hemispheri
al fun
tions, (1) to (4) 
an be 
omputed for

a �xed ! only be
ause it requires rotations around arbi-

trary ve
tors. On the 
ontrary, rotation-invariant spher-

i
al fun
tions allow for an expli
it expression of the re-

sults in the basis. In other words, equations on fun
tions

translate into equations on 
oeÆ
ients. A global frame

is not mandatory: it makes most 
omputations simpler,

ex
ept re
e
tion whi
h is trivial in a lo
al frame.

Spatial versus dire
tional data redu
tion. Fig. 7 shows

that, to save memory, it may be bene�
ial to simplify
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Fig. 8 Original data (top row) exhibits di�use strips on spe
-

ular material. Compared to radian
e error (bottom), 
olor

error (middle) fails to preserve spe
ular features. Simpli�
a-

tion to 50% is pro
essed through half-edge 
ollapse. The 
olor

error is extended QEM [8℄ applied to the RF's average 
olor.

the mesh (spatial resolution) rather than to redu
e the

degree of the basis (dire
tional resolution). On su
h

glossy obje
ts, preserving spe
ular highlights is essen-

tial for per
eiving the material and the geometry, as

be
omes 
lear on animated obje
ts in the a

ompany-

ing video (Online Resour
e 2). The 
olored errors em-

phasize that simpli�
ation tends to remove �ne details

s
attered on the surfa
e, while degree redu
tion tends

to produ
e large errors on the highlights.

Comparison to 
olor metri
s. With existing te
hniques,

the best one 
an do is to use 
olor metri
s applied on

per-vertex di�use (i.e., non-dire
tional) 
olor. Fig. 8 il-

lustrates the need for improvement over the latter on

a syntheti
 example. Slight simpli�
ation is performed

on a sphere alternating di�use and spe
ular materials

(top). It shows that straightforward usage of a 
olor

metri
 is unable to dete
t and preserve spe
ular fea-

tures, while our radian
e metri
 does (bottom).

To show a fair 
omparison of our metri
 w.r.t. state

of the art methods we 
ompare it with 
olor metri
s

when applied on the di�use 
olor 
omponent of our ob-

je
ts. In this 
ase, our metri
 redu
es to a 
olor distan
e

(see se
tion 4.2). The lower pair of Fig. 9 illustrates

this on the mask forehead. Simpli�
ation at 25% still

preserves �ne wood veins; at 1:5%, only pronoun
ed

features are preserved. Our metri
 applied on the full

radian
e (top row) does not deteriorate the results 
om-

pared to 
olor metri
s. Both our radian
e metri
 (top)

and its appli
ation on di�use 
olor (middle) 
ompete

with the extended QEM (bottom) on this material hav-

ing predominant non-dire
tional 
olor features. Note

PSfrag repla
ements

E

x

t

.
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Q
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M

+

d

i

�

.

Q

E

M

+

r

a

d

.

Original

193k vert.

+ wireframe25%(48k) 1:5%(3k)

Fig. 9 The mask forehead exhibits few geometry or re
e
-

tion but strong 
olor features. Our metri
 on radian
e (top)

and its appli
ation to di�use 
olors only (middle) amount

to similar results, and they 
ompete with QEM extended to


olors (bottom) [8℄, even for severe simpli�
ation. Note how

well the triangles adapt to the features (right 
olumn). RF are

en
oded with PB(d = 4) and respe
tively 
onsume 42MB,

10MB and 0:7MB of memory.

how the resulting triangles follow the 
olor features at

high simpli�
ation ratios (right 
olumn).

The mask fa
e in 
ontrast has a quite uniform 
olor

and few geometry but high spe
ular e�e
ts, as shown

by di�erent viewpoints in Fig. 10. In su
h 
ase the ra-

dian
e metri
 (middle) improves over the metri
 on dif-

fuse 
olors (bottom): the triangles on the eyebrow and

the eyelid are mu
h better adapted to the features.

Finally, we drove tests on another large and 
omplex

a
quired dataset (double dragon, 921k verti
es, Fig. 1)

whi
h 
ombines geometry, 
olor, and dire
tional fea-

tures. It resists to severe simpli�
ation and the di�er-

ent types of features have been preserved. A good bal-

an
e between them is ensured by the geometry-radian
e


ombination des
ribed in se
tion 4.4.

Edge vs. half-edge 
ollapse. In se
tion 4, we dis
ussed

two embedding strategies: edge 
ollapse and half-edge


ollapse. Fig. 7 shows edge-
ollapse whereas Fig. 9 and

Fig. 10 show half-edge 
ollapse. There are no signi�
ant

di�eren
es between results: half-edge 
ollapse generates

more elongated triangles while edge 
ollapse may mix


olors. This did not result in issues on our examples so

one or the other 
an be used safely.

7 Te
hni
al details

Color 
hannels. Besides RGB, we tested CIELUV and

CIELAB 
olor spa
es be
ause they are per
eptually

uniform. Sin
e we observed only minor di�eren
es (see
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Fig. 10 Simpli�
ation of the mask model (original on top

row) using our radian
e metri
 (middle) and its restri
tion

to di�use 
olor (bottom). Di�erent viewpoints and 
lose-ups

show important light re
e
tions on the fa
e. The radian
e

metri
 better preserves important visual features (e.g., eye-

brow, eyelid). See 
aption of Fig. 9 for model details.

Online Resour
e 3), we worked in RGB endowed with

the 2-norm. This norm has the advantage that the 3


olor 
hannels 
an be treated separately in equation (7).

Numeri
al integration of errors. The 
omputation of

errors (equation (7)) requires to integrate a mix of fun
-

tions over a hemisphere. Deriving a 
losed form would

be tedious, if even possible. When using polynomials,

this is due to lo
al frame alignments and domain in-

terse
tions. When using spheri
al harmoni
s, it is due

to the arbitrary orientation of the integration domain.

Therefore we perform numeri
al integration using Lebe-

dev quadrature on the sphere.

Time 
omplexity. Simpli�
ations typi
ally take a few

hours for our a
quired data. The 
omplexity is�(N(logN+

BP )) where N is the number of verti
es, B the num-

ber of basis fun
tions, and P the number of integra-

tion points. The numeri
al integration (BP ) a
tually

dominates the priority queue update (logN). Thus the

algorithm is suitable and s
alable for an o�line pro
ess.

Data a
quisition and re
onstru
tion. The double dragon

(Fig. 1), the mask (Fig. 9 and Fig. 10) and the elephant

(Fig. 7) are a
quisitions of real obje
ts. Geometry is

a
quired with a 3D-s
anner operating with stru
tured

light. It generates point 
louds whi
h are approximated

by a triangle mesh using the Poisson surfa
e re
on-

stru
tion algorithm [13℄. Radian
e fun
tions are �tted

on photographs that are taken with a hand-held high-

resolution 
amera and proje
ted onto the mesh [24℄.

The radian
e fun
tions atta
hed to the plane and the

spheres (Fig. 6 and 8 and a

ompanying video in On-

line Resour
e 2) are �tted on virtually a
quired pho-

tographs of a syntheti
 s
ene 
hara
terized by point

light sour
es and BRDF.

Ex
eeding hemispheres. RF may have to be evaluated

outside of their hemisphere of de�nition. This happens

i) during simpli�
ation when 
omparing RF with di�er-

ent normals, or ii) during visualization when a vertex is

visible from under its tangent plane. To solve this prob-

lem, 
olors of the hemisphere's border are prolonged on

the opposite hemisphere. This avoids popping artifa
ts

during rendering (ex
ept at the opposite pole, whi
h is

never visible in pra
ti
e).

8 Con
lusion

In this paper, we treated the problem of the mem-

ory load of digitized surfa
e light �elds represented by

radian
e fun
tions stored as attributes on mesh ver-

ti
es. This load 
an be problemati
 for visualization and

streaming. We �rst derived interpolation and gradient

formulas as well as a distan
e measure for RF. Then,

we de�ned a �rst RF-aware metri
 that we exploit in a

mesh simpli�
ation algorithm. Our metri
 has proven

to be a true added value w.r.t. existing te
hniques (i.e.,

adaptations from metri
s on 
olors) in terms of qual-

ity when dire
tional features are present. When the RF

are di�use, our algorithm redu
es to a 
olor metri
 and


ompetes with the state of the art.

As a result, the user now has a new 
hoi
e to redu
e

the memory load: besides redu
ing the dire
tional res-

olution (lowering the degree of RF fun
tions), we pro-

vided an algorithm for redu
ing the spatial resolution

while preserving geometri
 and dire
tional features. We

have shown that this may be preferable for higher over-

all realism. We point out that 
ompression strategies

for the set of RF [2,25℄ 
an be applied as a subsequent


omplementary stage in the pro
essing pipeline.

As a 
omplementary 
ontribution, we de�ned how

to improve rendering quality for lo
al RF by determin-

ing smart interpolation of re
e
ted RF. We have also

shown that progressive meshes 
onstitutes an e�e
tive

appli
ation for level-of-detail rendering.

Based on our interpolation and distan
e measure,

we think of dealing with RF stored in textures, in-


luding �ltering and mip-mapping. One severe issue is

the management of parameterization boundaries. An-

other problem for mip-mapping is the expli
it averag-

ing of several RF if hemispheri
al fun
tions are 
hosen.
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A more a

urate view-dependent �ltering also requires

a

ounting for geometry-related masking e�e
ts.

We would also like to push the 
omparison further.

Indeed, under a rendering perspe
tive, simpli�
ation


an be 
ompared to 
ompression te
hniques. However,

whereas the memory load 
an be measured obje
tively,

the visual quality is more subje
tive. To this end we


onsider that a per
eptual study would be helpful.

Finally, another prospe
t is advan
ed signal pro-


essing on the mesh. Indeed, interpolation and gradient


omputations essentially provide spatial 
ontinuity for

SLF. Investigating further di�erentiation on the surfa
e


ould lead to pro
essing through di�erential equations.
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