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Simpli�ation of Meshes with Digitized Radiane

Kenneth Vanhoey � Basile Sauvage � Pierre Kraemer � Fr�ed�eri Larue �

Jean-Mihel Dishler

Abstrat View-dependent surfae olor of virtual ob-

jets an be represented by outgoing radiane of the

surfae. In this paper we takle the proessing of out-

going radiane stored as a vertex attribute of trian-

gle meshes. Data resulting from an aquisition proess

an be very large and omputationally intensive to ren-

der. We show that when reduing the global memory

footprint of suh aquired objets, smartly reduing the

spatial resolution is an e�etive strategy for overall ap-

pearane preservation. Whereas state-of-the-art simpli-

�ation proesses only onsider salar or vetorial at-

tributes, we onversely onsider radiane funtions de-

�ned on the surfae for whih we derive a metri. For

this purpose, several tools are introdued like oher-

ent radiane funtion interpolation, gradient omputa-

tion, and distane measurements. Both syntheti and

aquired examples illustrate the bene�t and the rele-

vane of this radiane-aware simpli�ation proess.

Keywords Digitized artifats � Surfae light �eld �

Radiane � Mesh simpli�ation � Rendering

1 Introdution

In the sope of digitization of ultural heritage, the de-

mand for high-�delity visualization is inreasing. Com-

pared to usual olored surfaes (using, e.g., textures,

vertex olors), surfae light �elds (SLF) improve ap-

pearane modeling: the olor depends not only on the

position on the surfae (spatial dimension) but also on
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the viewing diretion. This allows apture of, e.g., spe-

ular highlights indued by glossy objets. Appliations

inlude virtual museums, arhiving, and o�-site study.

Aquiring SLF is regularly made easier and more re-

liable by the development of aquisition devies, treat-

ments, and reonstrution algorithms [14,24℄. The mem-

ory load however still grows in proportion to the spa-

tial resolution multiplied by the diretional one. Mem-

ory limits for storage, transmission and rendering may

be pushed in various ways, using data ompression,

streaming, data redution, and level-of-detail approahes.

In this projet, our aquisition proess [24℄ gener-

ates dense surfae meshes typially omposed of hun-

dreds of thousands to millions of verties per objet

(spatial dimension). Compat representations of hemi-

spherial radiane funtions (RF) stored on these ver-

ties still require dozens of oeÆients per vertex (di-

retional dimension). Our main ontribution is a new

method for the redution of this dense data that ex-

ploits a radiane-aware metri for geometri mesh sim-

pli�ation, as illustrated in Fig. 1. To our knowledge,

no other metri exists for suh funtional data, thus we

ompare our results to state-of-the-art olor-aware sim-

pli�ation. We show that reduing the spatial resolution

(our strategy) may better preserve the visual quality

ompared to reduing the diretional resolution.

Alternatively, one an store radiane in texture maps

instead of on verties [2,25℄. However texture mapping,

�ltering, and mip-mapping raise several issues. First, a

parameterization has to be de�ned, whih, for omplex

objets, implies to ut the texture into piees (harts).

To avoid visible seams at hart boundaries and per-

mit mip-mapping, texel redundany and omplex data

strutures are often used [21℄. Seond, it is diÆult to

adapt the resolution of the texture aording to spa-

tial variations unless they have been taken into aount

when building the parameterization. Conversely, mesh
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Fig. 1 Double dragon model with per-vertex radiane attribute. Mesh simpli�ation adapts to geometri, olor, and speular

features. RF are enoded with polynomials of bi-degree 4 and respetively weigh 401MB, 13MB, 6MB and 3MB.

simpli�ation is designed to adapt the spatial resolu-

tion, assuming that radiane is stored on eah vertex.

Some previous tehniques [2,25℄ address the prob-

lem of ompressing diretional information independent-

ly of spatial information. Our approah is omplemen-

tary sine it addresses spatial simpli�ation of the data:

further diretional ompression remains ompatible.

The key onept of our approah is to ombine a

well-known mesh-driven simpli�ation algorithm (i.e.,

iterative edge-ollapse [11℄) with a new metri de�ned

on radiane, that measures what will be atually ren-

dered. Therefore, RF are attahed to the verties of

an over-dense surfae mesh after aquisition and pre-

proessing. Our ontributions start by �rst determin-

ing a set of tools to do alulations with RF on the

surfae, inluding speular highlight-aware interpola-

tion, gradient omputation and distane measurement

(setion 3). Seond, we propose a method that simpli-

�es dense data while ensuring visual similarity w.r.t.

to the original. Therefore we de�ne a new metri on

RF that allows to evaluate the ost of an edge ol-

lapse operation (setion 4). Level-of-detail rendering is

then made possible by the use of progressive meshes:

the data is represented at multiple sales suh that it

an be adapted at runtime to the atual rendering on-

straints. Third, beause simpli�ed meshes an exhibit

large triangles that may over many pixels in sreen-

spae, we propose an improved rendering method in

order to preserve the light �eld highlights even in those

ases (setion 5). Compared to diretional redution,

the results show that radiane-aware spatial simpli�a-

tion well preserves aquired objets appearane. Com-

pared to olor-based metri, our method is also more

aurate in the preservation of the diretional features

of the objets (setion 6).

2 Related work

This work is related with two areas: i) view-dependent

olors, namely light �elds, and ii) mesh-driven level-of-

detail methods, in partiular mesh simpli�ation.

2.1 Surfae light �elds

Light �elds [10,17℄ de�ne the olor of a sene as a fun-

tion of a 4D spae overing position and the viewing

diretion. Surfae light �elds map these data on the

surfae as a way to disard bakground data and avoid

projetion and parallax errors, thus being more preise.

It an be expressed by i) a ombination of eigen-vetors

by using fatorization methods [5,20℄, or ii) indepen-

dent loalized 2D hemispherial RF [2,25℄. For keeping

loal ontrol in our algorithm, we use the latter.

Numerous funtion bases an be used to represent

2D RF in a data-driven aquisition ontext. Non-linear

ones (e.g., [16℄) are preise but may be diÆult to ob-

tain or proess [26℄. They are rather used for represent-

ing BRDF, i.e., 4D hemispherial funtions. For 2D,

linear ombinations of basis funtions are widely-used

for their simpliity and exibility. Commonplae are

spherial harmonis or wavelets [18,23℄, polynomials

[19℄, or lumispheres [25℄. Choosing the appropriate one

is left to the user: our algorithms are independent of

it. This hoie however inuenes both implementation

omplexity and omputation time.

2.2 Mesh simpli�ation

Surfae mesh simpli�ation has been given a lot of at-

tention. We are interested in methods onsidering ge-

ometry and aspet-desribing attributes (e.g., olor, tex-

ture) [3,4,7{9,11,12℄. Methods exploiting the unitary

edge ollapse operation (Fig. 3 and Fig. 5), as opposed

to vertex removal or triangle ollapse, are standard both

for ease of implementation and wide range of applia-

tions. Edges are iteratively ollapsed in inreasing order

of damage they ause. Hereby, we de�ne a new measure

of this damage. Some metris allow to de�ne an optimal

embedding (i.e., that minimizes the metri) for the ver-

tex resulting from a ollapse. Half-edge ollapse instead

de�nes the resulting vertex as one of its two predees-

sors. Our new metri an be used with both variants.
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Metri on geometry. The quadri error metri (QEM)

is the most widely-used geometri error metri [7℄. It

eÆiently estimates the sum of squared distanes w.r.t.

the planes de�ned by the triangles of the initial (dense)

mesh surrounding the verties preeding the ollapse.

A \memoryless" variant [12℄ omputes the QEM w.r.t.

the mesh immediately preeding the urrent ollapse

instead of the initial mesh. Our new metri is de�ned

as a ombination of a memoryless QEM with a (also

memoryless) radiane measure.

Metri on salar or vetorial attributes. Classial at-

tributes (e.g., normals, olors) are real-valued vetors

of some dimension m. A �rst strategy diretly extends

the QEM to R

3+m

by mixing up geometry and other

attributes [8℄. As onsidering suh a mix is quite ar-

bitrary, the more reent alternatives use the QEM as

a geometry metri and add their spei� error to it.

In [12℄, a separate QEM is omputed in attribute spae

R

m

, and in [15℄, a metri is spei�ally designed for

vertex olors. Both ombine this with the QEM for ge-

ometry. None of these tehniques is diretly extensible

to funtional attributes.

Metri on radiane attributes. To our knowledge, fun-

tional attributes have not been onsidered before. The

RF we are dealing with enode a olor depending on the

viewing diretion. A onstant RF (di�use olor) is thus

equivalent to olor attributes. We ompare our radiane

metri on suh data in Fig. 9.

Progressive meshes [11℄ reverse edge ollapses by ver-

tex splits. They represent triangle meshes at di�erent

resolutions. In the present paper we show progressive

meshes with radiane attribute.

3 Calulations on radiane funtions

Surfae light �elds L(p; !) de�ne for every point p on

the surfae the outgoing radiane. This is a funtion

that assoiates a olor to any viewing diretion !. It

represents the light emitted from p into diretion !.

The domain for ! is the hemisphere of visible diretions,

i.e., entered on n, the normal to the surfae at p.

In our setting, the surfae is a triangle mesh de�ned

by its onnetivity and its positions p

i

and normals n

i

at verties v

i

. The embedding is linear: a point with

baryentri oordinates (�

1

; �

2

; �

3

) in a triangle t =

(v

1

; v

2

; v

3

) is embedded at p = �

1

p

1

+�

2

p

2

+�

3

p

3

. The

normal is also assumed to be linearly interpolated (up

to normalization), whih is a ommon approximation

for rendering. A radiane funtion L(p

i

; !) is de�ned

at eah vertex.

In this setion, we de�ne tools to alulate on radi-

ane funtions over the surfae. They will be used to

design a new metri for simpli�ation (setion 4) and

to de�ne improved rendering formulas (setion 5). First,

we de�ne formulas for RF reeted around the loal sur-

fae normal (setion 3.1), as they exhibit higher spatial

oherene [25℄. Seond, we derive triangle interpolation

(setion 3.2), whih de�nes L at any p on the surfae

(spatial ontinuity). Third, we derive triangle extrap-

olation (setion 3.4), whih de�nes RF o� the initial

surfae, whih is useful sine edge ollapses hange the

geometry. The latter exploits a gradient of the RF on

the surfae (spatial derivative) whih we �rst present in

setion 3.3. Finally we propose distane measurements

between two RF (setion 3.5) so as to serve our metri.

3.1 Reeted representation

Let L(p; !) be a RF de�ned on the hemisphere oriented

with normal n. We apply the reetion R

n

with respet

to n in order to get

e

L(p; !) = L(p; R

n

!) whih we all

reeted radiane funtion (r-RF). This idea improves

the spatial oherene for a large lass of ommon ma-

terials. It has indeed been used eÆiently for ompat

BRDF representation [22℄, image-based rendering by

pre-�ltered environment mapping [1℄, and ompression

of SLF [25℄. We apply it for oherent interpolation and

improved rendering quality.

The motivation is that the reeted

e

L tend to hange

less than L when p varies, i.e., over the surfae. Fig. 2

illustrates this on a simple example: suppose two fun-

tions L(p

1

; �) and L(p

2

; �) (middle) were reonstruted

from a similar material (say, a Phong-like reetane

model) and a point light soure. They then exhibit spe-

ular peaks around the ideal reetion diretion. Sine

the surfae normals n

1

and n

2

diverge, L(p

1

; �) and

L(p

2

; �) di�er a lot. In ontrast,

e

L(p

1

; �) and

e

L(p

2

; �)

(bottom) are similar beause the peaks are aligned with

the lighting diretion.

This holds for omplex lighting environments (e.g.,

many lights) resulting in omplex outgoing radiane

funtions, provided that the ommon lighting environ-

ment is at in�nite distane. Inter-reetions and auto-

olusions violate this ondition in general, but it is

respeted loally when omparing nearby points on the

surfae: reetion loally inreases the oherene. This

is very important in our ontext beause edge ollapse

(setion 4) is a loal proess for simplifying preferably

homogeneous regions, and rendering (setion 5) loally

interpolates RF in triangles. As a result, a region with

homogeneous material and similar loal environment

results in homogeneous r-RF over the region.
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Fig. 2 Interpolation at point p of two radiane funtions

L(p

1

; �) and L(p

2

; �). Funtions at verties p

1

and p

2

are

derived from a point light soure at in�nite distane and a

Phong-like reetane model. i) Eah funtion is reeted

w.r.t. its own normal. ii) Linear interpolation is performed

(bottom). iii) The result is reeted w.r.t. the interpolated

normal n. Naive interpolation on non-reeted funtions

(dashed line) would be muh less oherent.

3.2 Interpolation

Interpolation onsists in deriving a RF at any position

p in a triangle t from known RF at verties p

1

, p

2

and p

3

. As presented in Fig. 2, we de�ne the r-RF at

p = �

1

p

1

+ �

2

p

2

+ �

3

p

3

through linear interpolation:

e

L

t

(p; !) = �

1

e

L(p

1

; !) + �

2

e

L(p

2

; !) + �

3

e

L(p

3

; !) (1)

whih formally de�nes a RF interpolation by

L

t

(p; !) = �

1

L(p

1

; R

n

1

R

n

!)

+ �

2

L(p

2

; R

n

2

R

n

!) + �

3

L(p

3

; R

n

3

R

n

!) (2)

This proedure tends to preserve speular peaks be-

ause it essentially interpolates funtions of ! while

naive interpolation (Fig. 2, middle, dashed line) would

interpolate olors at �xed !.

3.3 Gradient

If one �xes the viewing diretion ! then equation (1)

amounts to simple linear interpolation of olors over

the triangle t. Thus for �xed !, the gradient w.r.t. p of

e

L

t

is onstant over t. Di�erentiation on the surfae [6℄

leads to

r

p

e

L

t

(!) = J(J

T

J)

�1

"

e

L(p

2

; !)�

e

L(p

1

; !)

e

L(p

3

; !)�

e

L(p

1

; !)

#

(3)

where J =

�

p

2

� p

1

;p

3

� p

1

�

. Note that r

p

e

L

t

is a

funtion de�ned over the hemisphere. It should be a

Jaobian matrix but we onsider the olor hannels sep-

arately (see setion 7), so we ompute one vetor per

hannel.

3.4 Extrapolation

By using the gradient, equation (1) an be rewritten as

e

L

t

(p; !) =

e

L(p

1

; !) +r

p

e

L

t

(!) � (p� p

1

) (4)

Although the gradient lies in the triangle's plane and

was designed to ompute interpolation, this formula a-

tually de�nes its extension to ompute it for p that

does not lie in the triangle, not even in the plane. Con-

versely to the straightforward equation (1), formula-

tion (4) provides extrapolation by extending

e

L

t

to 3D

with onstant gradient on the whole plane and a (spa-

tially) onstant (diretional) olor in the normal dire-

tion. We exploit this in setion 4.

3.5 Distane measurements

We de�ne the distane between radiane funtions by

d (L(p

1

; �); L(p

2

; �)) =







e

L(p

1

; �)�

e

L(p

2

; �)







L

2

(
)

(5)

where

kL(p; �)k

L

2

(
)

=

�

1

2�

Z

!2


L(p; !)

2

d!

�

1=2

(6)

is the L

2

-norm for square integrable funtions on the

hemisphere 
. The hoie of 
 will be disussed in

setion 4.1.

This measure, whih integrates r-RF rather than

RF, has several advantages:

{ It is onsistent with the above interpolation proe-

dure: the average of L(p

1

; �) and L(p

2

; �) minimizes

the sum of squared distanes to L(p

1

; �) and L(p

2

; �).

{ Distane between di�use RF (i.e., onstant fun-

tions) redues to distane between simple olors.

{ kL(p; �)k

L

2

(
)

= k

e

L(p; �)k

L

2

(
)

sine they are de-

�ned on the same hemisphere.
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4 Mesh simpli�ation

Amesh is de�ned by its onnetivity and its embedding,

whih is generally a set of attributes attahed to the

verties. Mesh simpli�ation based on edge ollapse [11℄

essentially onsists in two stages:

1. build a priority queue of all ollapsible edges;

2. until the mesh is simpli�ed enough, ollapse the �rst

edge and update the queue.

This algorithm is grounded on a priority riterion (for

the edges) and an embedding strategy (for the vertex

resulting from a ollapse), whih must both take into

aount all the attributes. We �rst present our radiane

error metri in the ontext of half-edge ollapse and

then extend it to general edge ollapse.

4.1 Radiane error metri for half-edge ollapse

Half-edge ollapse is represented in Fig. 3: the edge v

0

v

1

is ollapsed onto v

1

. We de�ne the radiane error aused

by the ollapse as a pereived di�erene power of light

emitted by the surfae. Indeed, sine L is a luminous

ux (lumen) per unit solid angle and per unit surfae

area, the error E de�ned as follows has squared lumen

for theoreti dimension.

E =

X

t

Area(t) d

2

�

L(p

0

; !); L

t

(p

0

; !)

�

(7)

where the distane is de�ned by equation (5), extrapo-

lation is de�ned by equation (4), and the sum runs over

the post-ollapse modi�ed triangles (Fig. 3 right).

This equation an be understood as follows. Eah

�nal triangle t = (v

1

; v

2

; v

3

) ontributes to the error in

proportion to its area multiplied by the hange of RF

aused by the ollapse. The hange of RF is measured

by the squared distane between the RF at position p

0

before and after ollapse. The RF at p

0

is L before

ollapse and is extrapolated from the triangle t by L

t

after ollapse. Sine the distane is measured at point

p

0

, the hemisphere for integration is hosen to be 


0

.

Fig. 3 Half-edge ollapse of v

0

v

1

onto v

1

. The point p

0

(po-

sition of the vertex v

0

before ollapse) is generally o� the

surfae after ollapse.

4.2 Coherene with di�use olor

To understand the relevane of E in terms of olor, on-

sider purely di�use materials: equation (5) still applies

and the distane redues to an error between olors. As

a onsequene, E is the squared olor error times the

impated area. Fig. 4 illustrates typial situations: the

triangle t in red ontributes to the error if its extrap-

olated olor L

t

(bakground) di�ers from the original

olor, i.e., before the ollapse. This is the ase of p

00

0

,

as opposed to p

0

and p

0

0

whih perfetly math L

t

. E

is a good measure of visible olor hanges beause the

gradient links olor and geometry: the ontribution at

p

00

0

is positive although its original olor is the same

as p

1

, while the ontribution at p

0

0

vanishes although

its original olor di�ers from that of p

1

.

Our metri an then be ompared to previous er-

rors for olor attributes [8,12,15℄. It ombines all the

following advantages:

{ Neither loal parameterization nor projetion is needed.

{ It an be extended to funtional attributes like ra-

diane.

{ The ombination with ommon quadrati geometri

errors is invariant under saling (see setion 4.4).

In the results setion (Fig. 9), we show ompetitive re-

sults ompared to a state-of-the-art metri on olors.

4.3 Embedding and metri for edge ollapse

Compared to half-edge ollapse the more general edge

ollapse ase requires an embedding strategy for all at-

tributes (p, n and L) of the vertex resulting from the

ollapse. We used the optimal position p as proposed

in [7℄. However, in order to de�ne the normal n, we

Fig. 4 Illustration of the ontribution of a single triangle

t (red) to the error of the ollapse of v

0

v

1

onto v

1

(equa-

tion (7)). The shaded bakground represents its extrapolated

olor L

t

while dots p

0

, p

0

0

and p

00

0

represent 3 possible

positions and original olors (i.e., at v

0

before ollapse, see

Fig. 3). The olor error between a dot and the bakground is

measured by d

2

in equation (7).
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Fig. 5 Edge ollapse.

don't use the extended QEM [8℄ beause mixing nor-

mals and geometry is somehow arbitrary. Instead we

projet p onto the edge p

0

p

1

and then linearly interpo-

late between n

1

and n

2

aordingly. The reeted radi-

ane

e

L(p; !) is interpolated in the same way, by restrit-

ing equation (1) to one dimension along the edge. Unlike

half-edge ollapse, an expliit expression of

e

L(p; !) is

required here. Thus a rotation-invariant spherial basis

is needed (see setion 6).

Finally, the RF error is omputed by summing equa-

tion (7) applied one for p

0

over the triangles depited

in blue in Fig. 5 and one for p

1

over the triangles de-

pited in green.

4.4 Combination with geometri error

To be e�etive, simpli�ation must onsider all the at-

tributes. We therefore linearly ombine E with the mem-

oryless variant of the standard QEM [12℄ beause our

radiane metri is also memoryless. Like the QEM, our

metri has quadrati growth in the mesh size, so the

balane between both does not depend on the geomet-

ri saling. Still, the balane depends on the mesh den-

sity and on the olor spae enoding. In our examples,

the radiane error is very low beause olor hanges are

gradual and speular e�ets impat only part of the

hemisphere. So we empirially weighted 1% geometry

and 99% radiane on all our examples.

4.5 Progressive meshes

Considering we have at our disposal an edge ollapse

metri and an embedding strategy, one an build pro-

gressive meshes with radiane attributes. A key ap-

pliation here is level-of-detail rendering. It onsists

in adapting the resolution to the rendering onditions

(viewpoint, memory and time resoures, sreen-spae

resolution). The issue is to dynamially adapt the res-

olution in suh a way that ollapses and splits are not

pereptible. Stati pitures are therefore not suited for

illustrating this, espeially sine radiane is visible when

the viewpoint hanges. The aompanying video (On-

line Resoure 2) shows that this appliation is e�etive.

5 Rendering

Eventually, the objet is rendered. In setion 4, we de-

termined a metri that onsiders interpolation of r-RF

within eah triangle. In this setion, we de�ne how to

render aordingly and visually show why this interpo-

lation is important.

A straightforward tehnique for shading triangles

with RF de�ned on their verties onsists in evaluating

the RF on these verties within the vertex shader and

then interpolating resulting olors at fragment level,

i.e., within the triangle. This approah works well when

triangle meshes are extremely dense w.r.t. the view-

point, i.e., a triangle overs only a few pixels in sreen-

spae. Conversely, when onsidering simpli�ed meshes,

triangles an be large in sreen-spae. This tehnique

then tends to sweep out speular highlights, as shown

in Fig. 6. One an notie that this is equivalent to per

fragment naive interpolation of RF (Fig. 2, dashed line).

It generates artifats analogous to those of Gouraud-

shading with vanishing highlights inside the triangles.

Rendering quality an signi�antly bene�t from the

RF interpolation proposed in setion 3.2. In pratie,

the reeted funtions

e

L are stored and transferred to

the GPU. The r-RF evaluation is now done in the frag-

Fig. 6 Toy example generalizing Fig. 2: four radiane fun-

tions are stored on a four-vertex plane. Their normals diverge

and the funtions represent a di�use + speular behavior (i.e.,

a Phong-like BRDF). Left (naive interpolation): the speular

highlight fades out at some angles. Right (equation (8)): the

speular highlight is well interpolated.
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ment shader as follows:

L

t

(p; !) = �

1

e

L(p

1

; R

n

!)

+ �

2

e

L(p

2

; R

n

!) + �

3

e

L(p

3

; R

n

!) (8)

whih is atually equation (2) with r-RF on the right-

hand side. The improvement of this r-RF interpolation

over naive RF interpolation is analogous to the well-

known improvement of Phong shading over Gouraud

shading, but applied to stored RF. Fig. 6 shows a quad

(2 triangles) with divergent normals: equation (8) pre-

vents the speular peak to fade out inside the quad.

To evaluate equation 8 at fragment level, implemen-

tation needs to be adapted. The following data is re-

quired for eah fragment:

{ the interpolated position p and normal n;

{ baryentri oordinates �

1

, �

2

and �

3

;

{ all three r-RF of its triangle (

e

L at p

1

, p

2

and p

3

).

To obtain the three r-RF per fragment, they are du-

pliated on the provoking vertex of the triangle in the

geometry shader and exported as at output attributes.

We atually dupliate only referenes to the r-RF whih

are stored in arrays.

Note that swithing from per-vertex to per-fragment

evaluation impats performane. It moves the omplex-

ity from O(visible verties) to O(objet-overed sreen-

spae pixels). This implies that rendering speed inrea-

ses when visualizing the objet from a distane. Con-

versely, rendering speed dereases when visualizing a

simpli�ed mesh, i.e., when triangles over many pix-

els. It is however in the latter ase that visual qual-

ity is improved by per-fragment evaluation. So even-

tually, the user an see the hoie of per-vertex versus

per-fragment evaluation as a trade-o� between, respe-

tively, rendering speed and quality.

6 Results

Basis funtions. We experimented with two linear bases.

First, a spae of polynomials [19℄ that represent hemi-

spherial funtions by orthogonal projetion on the tan-

gent plane. These funtions must be expressed in a loal

frame and the spae is invariant under rotation around

the normal. For all �gures but Fig. 7 we used a poly-

nomial basis (PB) of bi-degree d = 4 whih require

(d+1)(d+2)

2

= 15 oeÆients per hannel and a rotation

(from global to loal frame). We also experimented with

spherial harmonis [18℄ whih represent funtions on

the entire sphere. They an be expressed either in a lo-

al or a global frame and the spae is invariant under

any rotation. Although funtions are enoded on the en-

tire sphere, they ontain relevant information only for

PSfrag replaements

607MB 152MB 149MB

188MB 47MB 44MB

0 Max

Fig. 7 The original (left) is redued by mesh simpli�ation

(middle) and degree redution (right). Memory redution is

similar. All objets use spherial harmonis in global frame.

Elephant, respetively: d = 6 & 1M verties, d = 6 & 250K

verties, d = 2 & 1M verties. Mask, respetively: d = 8 &

193K verties, d = 8 & 48K verties, d = 3 & 192K verties.

the visible hemisphere, so it is ompliant with the om-

putations of previous subsetions. We show spherial

harmonis (SH) of degree d = 2; 3; 6 and 8 expressed in

global frame (Fig. 7), whih require (d+1)

2

= 9; 16; 49

and 81 oeÆients per olor hannel, respetively.

We emphasize that our algorithms do not depend

on the basis hosen, neither on the basis degree, nor

on the frame. We argue that the hoie should be left

to the �nal user aording to the appliation needs.

Simpli�ation results only slightly di�er aording to

the basis (see Online Resoure 1). Equations (1) to (8)

apply whatever the basis and the frame. However, for

hemispherial funtions, (1) to (4) an be omputed for

a �xed ! only beause it requires rotations around arbi-

trary vetors. On the ontrary, rotation-invariant spher-

ial funtions allow for an expliit expression of the re-

sults in the basis. In other words, equations on funtions

translate into equations on oeÆients. A global frame

is not mandatory: it makes most omputations simpler,

exept reetion whih is trivial in a loal frame.

Spatial versus diretional data redution. Fig. 7 shows

that, to save memory, it may be bene�ial to simplify
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Fig. 8 Original data (top row) exhibits di�use strips on spe-

ular material. Compared to radiane error (bottom), olor

error (middle) fails to preserve speular features. Simpli�a-

tion to 50% is proessed through half-edge ollapse. The olor

error is extended QEM [8℄ applied to the RF's average olor.

the mesh (spatial resolution) rather than to redue the

degree of the basis (diretional resolution). On suh

glossy objets, preserving speular highlights is essen-

tial for pereiving the material and the geometry, as

beomes lear on animated objets in the aompany-

ing video (Online Resoure 2). The olored errors em-

phasize that simpli�ation tends to remove �ne details

sattered on the surfae, while degree redution tends

to produe large errors on the highlights.

Comparison to olor metris. With existing tehniques,

the best one an do is to use olor metris applied on

per-vertex di�use (i.e., non-diretional) olor. Fig. 8 il-

lustrates the need for improvement over the latter on

a syntheti example. Slight simpli�ation is performed

on a sphere alternating di�use and speular materials

(top). It shows that straightforward usage of a olor

metri is unable to detet and preserve speular fea-

tures, while our radiane metri does (bottom).

To show a fair omparison of our metri w.r.t. state

of the art methods we ompare it with olor metris

when applied on the di�use olor omponent of our ob-

jets. In this ase, our metri redues to a olor distane

(see setion 4.2). The lower pair of Fig. 9 illustrates

this on the mask forehead. Simpli�ation at 25% still

preserves �ne wood veins; at 1:5%, only pronouned

features are preserved. Our metri applied on the full

radiane (top row) does not deteriorate the results om-

pared to olor metris. Both our radiane metri (top)

and its appliation on di�use olor (middle) ompete

with the extended QEM (bottom) on this material hav-

ing predominant non-diretional olor features. Note

PSfrag replaements
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Fig. 9 The mask forehead exhibits few geometry or ree-

tion but strong olor features. Our metri on radiane (top)

and its appliation to di�use olors only (middle) amount

to similar results, and they ompete with QEM extended to

olors (bottom) [8℄, even for severe simpli�ation. Note how

well the triangles adapt to the features (right olumn). RF are

enoded with PB(d = 4) and respetively onsume 42MB,

10MB and 0:7MB of memory.

how the resulting triangles follow the olor features at

high simpli�ation ratios (right olumn).

The mask fae in ontrast has a quite uniform olor

and few geometry but high speular e�ets, as shown

by di�erent viewpoints in Fig. 10. In suh ase the ra-

diane metri (middle) improves over the metri on dif-

fuse olors (bottom): the triangles on the eyebrow and

the eyelid are muh better adapted to the features.

Finally, we drove tests on another large and omplex

aquired dataset (double dragon, 921k verties, Fig. 1)

whih ombines geometry, olor, and diretional fea-

tures. It resists to severe simpli�ation and the di�er-

ent types of features have been preserved. A good bal-

ane between them is ensured by the geometry-radiane

ombination desribed in setion 4.4.

Edge vs. half-edge ollapse. In setion 4, we disussed

two embedding strategies: edge ollapse and half-edge

ollapse. Fig. 7 shows edge-ollapse whereas Fig. 9 and

Fig. 10 show half-edge ollapse. There are no signi�ant

di�erenes between results: half-edge ollapse generates

more elongated triangles while edge ollapse may mix

olors. This did not result in issues on our examples so

one or the other an be used safely.

7 Tehnial details

Color hannels. Besides RGB, we tested CIELUV and

CIELAB olor spaes beause they are pereptually

uniform. Sine we observed only minor di�erenes (see
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Fig. 10 Simpli�ation of the mask model (original on top

row) using our radiane metri (middle) and its restrition

to di�use olor (bottom). Di�erent viewpoints and lose-ups

show important light reetions on the fae. The radiane

metri better preserves important visual features (e.g., eye-

brow, eyelid). See aption of Fig. 9 for model details.

Online Resoure 3), we worked in RGB endowed with

the 2-norm. This norm has the advantage that the 3

olor hannels an be treated separately in equation (7).

Numerial integration of errors. The omputation of

errors (equation (7)) requires to integrate a mix of fun-

tions over a hemisphere. Deriving a losed form would

be tedious, if even possible. When using polynomials,

this is due to loal frame alignments and domain in-

tersetions. When using spherial harmonis, it is due

to the arbitrary orientation of the integration domain.

Therefore we perform numerial integration using Lebe-

dev quadrature on the sphere.

Time omplexity. Simpli�ations typially take a few

hours for our aquired data. The omplexity is�(N(logN+

BP )) where N is the number of verties, B the num-

ber of basis funtions, and P the number of integra-

tion points. The numerial integration (BP ) atually

dominates the priority queue update (logN). Thus the

algorithm is suitable and salable for an o�line proess.

Data aquisition and reonstrution. The double dragon

(Fig. 1), the mask (Fig. 9 and Fig. 10) and the elephant

(Fig. 7) are aquisitions of real objets. Geometry is

aquired with a 3D-sanner operating with strutured

light. It generates point louds whih are approximated

by a triangle mesh using the Poisson surfae reon-

strution algorithm [13℄. Radiane funtions are �tted

on photographs that are taken with a hand-held high-

resolution amera and projeted onto the mesh [24℄.

The radiane funtions attahed to the plane and the

spheres (Fig. 6 and 8 and aompanying video in On-

line Resoure 2) are �tted on virtually aquired pho-

tographs of a syntheti sene haraterized by point

light soures and BRDF.

Exeeding hemispheres. RF may have to be evaluated

outside of their hemisphere of de�nition. This happens

i) during simpli�ation when omparing RF with di�er-

ent normals, or ii) during visualization when a vertex is

visible from under its tangent plane. To solve this prob-

lem, olors of the hemisphere's border are prolonged on

the opposite hemisphere. This avoids popping artifats

during rendering (exept at the opposite pole, whih is

never visible in pratie).

8 Conlusion

In this paper, we treated the problem of the mem-

ory load of digitized surfae light �elds represented by

radiane funtions stored as attributes on mesh ver-

ties. This load an be problemati for visualization and

streaming. We �rst derived interpolation and gradient

formulas as well as a distane measure for RF. Then,

we de�ned a �rst RF-aware metri that we exploit in a

mesh simpli�ation algorithm. Our metri has proven

to be a true added value w.r.t. existing tehniques (i.e.,

adaptations from metris on olors) in terms of qual-

ity when diretional features are present. When the RF

are di�use, our algorithm redues to a olor metri and

ompetes with the state of the art.

As a result, the user now has a new hoie to redue

the memory load: besides reduing the diretional res-

olution (lowering the degree of RF funtions), we pro-

vided an algorithm for reduing the spatial resolution

while preserving geometri and diretional features. We

have shown that this may be preferable for higher over-

all realism. We point out that ompression strategies

for the set of RF [2,25℄ an be applied as a subsequent

omplementary stage in the proessing pipeline.

As a omplementary ontribution, we de�ned how

to improve rendering quality for loal RF by determin-

ing smart interpolation of reeted RF. We have also

shown that progressive meshes onstitutes an e�etive

appliation for level-of-detail rendering.

Based on our interpolation and distane measure,

we think of dealing with RF stored in textures, in-

luding �ltering and mip-mapping. One severe issue is

the management of parameterization boundaries. An-

other problem for mip-mapping is the expliit averag-

ing of several RF if hemispherial funtions are hosen.
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A more aurate view-dependent �ltering also requires

aounting for geometry-related masking e�ets.

We would also like to push the omparison further.

Indeed, under a rendering perspetive, simpli�ation

an be ompared to ompression tehniques. However,

whereas the memory load an be measured objetively,

the visual quality is more subjetive. To this end we

onsider that a pereptual study would be helpful.

Finally, another prospet is advaned signal pro-

essing on the mesh. Indeed, interpolation and gradient

omputations essentially provide spatial ontinuity for

SLF. Investigating further di�erentiation on the surfae

ould lead to proessing through di�erential equations.
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