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This document describes an improved implementation of our multi-
view intrinsic image algorithm [Duchêne et al. 2015]. This algo-
rithm computes an intrinsic decomposition of multiple images of
an outdoor scene captured under the same lighting condition. This
is work in progress, please check this document regularly for
potential updates.

1 Problem formulation

1.1 Image formation model

The intrinsic images model assumes diffuse surfaces and expresses
the image values I at each pixel as the product between the incident
illumination S and the object reflectance R. Formally, the radiance
towards the camera at each non-emissive, visible point correspond-
ing to a pixel is given by the equation

I = R ∗
∫

Ω

cos θωL(ω)dω

I = R ∗ S

where lighting is integrated over the hemisphere Ω centered on the
normal at the visible point. L(ω) is the incoming radiance in direc-
tion ω, θω is the angle between the normal at the visible point and
direction ω. Capital bold letters represent RGB color values and ∗
denotes per-channel multiplication.

We can further separate out the incoming radiance into three com-
ponents: the radiance due to the sun, that due to the sky and that
due to indirect lighting. To simplify notation, we define two sub-
sets of the hemisphere: Ωsky , i.e., the subset of directions in which
the visible point sees the sky, and Ωind the subset of directions
in which another object is visible, and thus contributes to indirect
lighting. We model the sun as a directional light source subject to
the visibility term vsun to obtain

I = R ∗
(
vsun cos θsunLsun +

∫
Ωsky

cos θωLsky(ω)dω

+

∫
Ωind

cos θωLind(ω)dω

)
I = R ∗

(
vsunSsun + Ssky + Sind

)
(1)

where R is the object RGB reflectance, Ssun, Ssky and Sind are
the RGB incident illumination (or shading) from the sun, sky and
indirect lighting respectively, vsun indicates points visible from the
sun and as such captures shadows [Laffont et al. 2013].

1.2 Joint recovery of reflectance and shadows

Given the multiple images of the scene, the first step of our method
is to reconstruct a 3D model of the scene using multi-view stereo
algorithms [Snavely et al. 2006; Furukawa and Ponce 2010], which
we call proxy. The resulting sparse 3D reconstruction only provides
an imprecise and incomplete representation of the scene. Neverthe-
less, this reconstruction is sufficient to compute plausible sky and
indirect illumination at each reconstructed 3D point. The coarse

proxy is however unreliable for sun illumination because it typi-
cally contains high-frequency features due to cast shadows.

Our key observation is that sun visibility (i.e. shadows) can be es-
timated jointly with reflectance once all other unknowns have been
computed. Assuming known Ssun, Ssky and Sind, we rewrite
Equation 1 to express reflectance as a function of sun visibility:

R(vsun) =
I

vsunSsun + Ssky + Sind
. (2)

With this formulation, each point now has multiple candidate re-
flectance values depending on the value of vsun. We can further
simplify our problem by assuming binary visibility, i.e. vsun ∈
{0, 1}, which yields two candidate reflectances per point. A guid-
ing principle of our approach is to select the value of vsun that
favors a small number of reflectances in the scene, a heuristic also
used in prior work on intrinsic image decomposition and segmen-
tation [Omer and Werman 2004; Barron and Malik 2013; Bell et al.
2014].

1.3 Progressive recovery of all unknowns

Equation 2 requires knowledge of all shading terms Ssun, Ssky and
Sind. While Sind and Ssky can be computed directly from the 3D
reconstruction and an estimate of the sky, Ssun requires a known
sun intensity Lsun, which we don’t have yet. However, we can
estimate this quantity using Equation 1 and a pair of points with
same reflectance and different visibility. Given two points p1 and
p2 with the same reflectance, with one in shadow and the other in
light, we can compute

Lsun =
I1 ∗ (Ssky2 + Sind2)− I2 ∗ (Ssky1 + Sind1)

I2 ∗ vsun1 ∗ cos(θsun1)− I1 ∗ vsun2 ∗ cos(θsun2)
.

(3)
We thus face a chicken-and-egg problem: we need an estimate of
vsun to select pairs of points (p1, p2) to compute Lsun from Equa-
tion 3, but we need a known Lsun to select vsun using Equation 2.
Our strategy to cope with this problem will be to first compute a
coarse estimate of vsun using complementary cues from the image
intensity and the approximate 3D reconstruction. This coarse es-
timate is sufficient to compute Lsun from many pairs of points in
light and in shadow. We then use the now known Lsun to refine our
shadow estimate based on Equation 2.

While our original implementation described in [Duchêne et al.
2015] employs two very different shadow classifiers to compute
the coarse and fine estimates of vsun, the main novelty of the im-
plementation described in this document is to express the two clas-
sifiers within a common Markov Random Fields (MRF) formula-
tion. We implement this formulation over a graph of super-pixels
which are created using mean-shift clustering [Christoudias et al.
2002] each super-pixel corresponding to a small region of pixels
with similar colors.

2 Coarse shadow classifier

Our goal is to assign a sun visibility label xs ∈ {0 = shadow, 1 =
light} to each super-pixel s of each image. Denoting X a labeling
that assigns a label to all super-pixels, we seak to recover the label



configuration that minimizes

argmin
X

∑
s∈V

φs(xs) +
∑

(s,t)∈E

φs,t(xs, xt), xi ∈ {0, 1}, (4)

where V denotes the set of nodes of the graph (i.e. the super-pixels),
E is the set of edges that connect nodes, φs(xs) is the unary term
that measures the cost of label xs given the appearance of super-
pixel s, and φs,t(xs, xt) is the pairwise term that measures the
agreement between the couple of labels (xs, xt) of two connected
super-pixels (s, t). We now detail the definition of these energy
terms and the construction of the connections E .

2.1 Unary term

The goal of the unary term is to predict the shadow label xs of
a superpixel s solely from its local information. In practice we
combine two local cues, one based on the reconstructed 3D proxy
and the other one based on the intensity of the image.

We first compute the shadow image vproxysun casted by the recon-
structed proxy. Denoting P

(
vproxysun (s)

)
the ratio of pixels within

super-pixel s that are covered by this shadow, we define the cost

φproxys (xs = 0) = 1− P
(
vproxysun (s)

)
φproxys (xs = 1) = P

(
vproxysun (s)

)
.

In other words, we penalize label 0 if the super-pixel is not covered
by the shadow of the reconstructed proxy, and vice-versa.

Our second cue is based on the “bright channel” image, i.e. the
graylevel image obtained by taking for each pixel the value of its
brightest channel [Panagopoulos et al. 2013]. Given the shadow
image computed from the reconstructed proxy, we build two bright-
ness histograms, one for the pixels covered by the shadow and one
for the pixels in light. We then fit Gaussian mixture models [Prince
2012] on these two histograms to obtain the probability distribu-
tions P (b|light) and P (b|shadow) of brightness level b to appear
in light (resp. in shadow). In practice we use three Gaussian func-
tions for each mixture model. Denoting P (shadow) the ratio of
pixels covered by the shadow of the proxy, and P (light) its com-
plement, we apply Bayes’ rule to derive the following cost of a pixel
to be in shadow or light given its brightness

P (shadow|b) ∝ P (b|shadow)P (shadow)

P (light|b) ∝ P (b|light)P (light)

φbrightnesss (xs = 0) = 1− P (shadow|b)
φbrightnesss (xs = 1) = 1− P (light|b).

2.2 Pairwise term

The goal of the pairwise term at this stage is to propagate labels
from confident super-pixels to ambiguous ones, building on the as-
sumption that neighboring super-pixels with similar colors should
have similar labels [Boykov and Jolly 2001]. We encourage color-
aware smoothness by penalizing configurations that assign differ-
ent labels to neighboring super-pixels that have similar color dis-
tributions, as measured by the χ2 distance between their color his-
tograms. We define the following cost that decreases with distance

φsmoothnesss,t (xs = xt) = 0

φsmoothnesss,t (xs 6= xt) = Gσ=0.15

(
χ2(Hs, Ht)

)
where Gσ is a Gaussian function of standard deviation σ and Hs
and Ht are the Lab histograms of the two super-pixels. We create
an edge (s, t) ∈ E for each immediate neighbor t of each super-
pixel s.

2.3 Optimization

We include our terms in Equation 4 by setting φs(xs) =
wproxyφproxys (xs) + wbrightnessφbrightnesss (xs) and
φs,t(xs, xt) = wsmoothnessφsmoothnesss,t (xs, xt). We solve
the resulting binary labeling problem using Belief Propagation
[Felzenszwalb and Huttenlocher 2006]. Note that GraphCuts
[Boykov and Jolly 2001] could also be used at this stage, but this
won’t be the case once we will augment our formulation to refine
the classification, as described next.

3 Refined shadow classifier

While approximate, the coarse shadow classifier gives us sufficient
information to select a number of pairs of points in light and in
shadow, from which we deduce sun intensity using Equation 3. We
now have all the necessary quantities to evaluate Equation 2 for the
two possible sun visibility values, which provides us with two can-
didate reflectances per super-pixel. We denote the two candidates
of super-pixel s as Rs(0) and Rs(1).

3.1 Pairwise term

We can now exploit our hypothesis that the scene is composed of
few reflectances. Given two super-pixels s and t, our goal is to
assign them visibility values i and j such that their difference of
reflectance Dij = ‖Rs(i) − Rs(j)‖ is minimized. We achieve
this goal by augmenting our formulation with additional pairwise
terms of the form

φreflectances,t = 1−
(
Gσ=0.04(Dij)

)
.

However, connecting each super-pixel to all others with such a term
is not practical. Instead, we only create edges between super-pixels
that have a high probability of sharing the same reflectance for at
least one of the label configurations. In practice we select for each
super-pixel and each 4 possible label configurations (i, j) the K
super-pixels with the smallest Dij . Each super-pixel thus has an
edge with cost φreflectances,t with at most 4K other super-pixels.

3.2 Optimization

Unfortunately, the pairwise term defined by Equation 5 is not sym-
metric (i.e. D01 6= D10 and D11 6= D00), which prevents the use
of GraphCuts to solve for a labeling that minimizes the total energy.
We thus rely on Belief Propagation [Felzenszwalb and Huttenlocher
2006], which supports such pairwise terms.
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