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ABSTRACT
We present a sound synthesizer dedicated to particle-based environmental effects, for use in interactive
virtual environments. The synthesis engine is based on five physically-inspired basic elements which we
call sound atoms, that can be parameterized and stochastically distributed in time and space. Based on
this set of atomic elements, models are presented for reproducing several environmental sound sources.
Compared to pre-recorded sound samples, procedural synthesis provides extra flexibility to manipulate and
control the sound source properties with physically-inspired parameters. In this paper, the controls are
used to simultaneously modify particle-based graphical models, resulting in synchronous audio/graphics
environmental effects. The approach is illustrated with three models, that are commonly used in video
games: fire, wind, and rain. The physically-inspired controls simultaneously drive graphical parameters
(e.g., distribution of particles, average particles velocity) and sound parameters (e.g., distribution of sound
atoms, spectral modifications). The joint audio/graphics control results in a tightly-coupled interaction
between the two modalities that enhances the naturalness of the scene.

1. INTRODUCTION
In the last two decades advances in all fields of com-
puter graphics (i.e., modeling, animation, rendering
and more recently imaging) has resulted in impres-
sive advances in realism, even for real-time virtual
environments. Paradoxically, sound in virtual envi-
ronments is still usually based on pre-recorded sound
samples. Procedural sound synthesis is an attractive
alternative to increase the sense of realism in interac-
tive scenes [1]. Compared to pre-recorded sounds, it

allows interactive manipulations that would be dif-
ficult (if not impossible) otherwise. In particular,
procedural audio parameters can be linked to mo-
tion parameters of graphics objects [2, 3] to enhance
the sound/graphics interactions. Nevertheless, the
use of sound synthesis is still limited in current video
games, probably because of three major challenges
that are difficult to fulfill simultaneously: synthesis
quality should be equivalent to pre-recorded sounds,
synthesis should offer flexible controls to sound de-
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signers, and its computational cost should satisfy
real-time constraints.

Parametric sound synthesis techniques can be de-
composed into two main families: physical models,
aiming at simulating the physics of sound sources,
and signal models aiming at reproducing perceptual
effects independently of the source [4]. For environ-
mental sounds, physical approaches are of great in-
terest. Some authors have successfully used physical
models to reproduce specific environmental sounds
such as wind [5] fire [6] rolling [7] or liquids [8]. Nev-
ertheless, the physics of these phenomena is often
complicated. It requires the knowledge of various
objects’ characteristics and their possible interac-
tions with surrounding gases, liquids and solids. A
purely physical approach for sound synthesis is cur-
rently impossible in video games, due to the diffi-
culty of designing a general physical model for a wide
variety of environmental sounds, in addition to the
high computational cost. On the other hand, studies
on environmental sounds [9] suggest that synthetic
signals matching relatively simple properties could
give good results in terms of perceived realism.

In the computer graphics community, many models
have been proposed for generating environmental ef-
fects (deformable objects, liquids, smoke, etc.) lead-
ing to impressive results (see e.g., [10] for a review).
Depending on the approach, the computation cost is
sometimes too high to satisfy real-time constraints.
An efficient technique was introduced in [11] to sim-

ulate “fuzzy” phenomena like fire and smoke, by us-
ing dynamic collections of particles. The designer
has access to meaningful parameters (e.g., number
of particles, mean velocity) to control stochastic pro-
cesses that define the evolution of particles over time.
Recent efficient GPU and parallel implementations
allow the generation of up to millions of particles
in real time [12, 13]. Physical information is also in-
cluded to model realistic movements of particles, and
particle interactions [10]. The approach has been
successfully applied for a wide range of phenomena
[14, 15, 16, 17] (e.g., water, clouds, smoke, electricity,
explosions, crowds, magic etc.) and is still very pop-
ular in current video games [18, 19]. Curtis Roads
noticed that particle systems share many similarities
with granular sound synthesis, which models a sound
as a collection of short audio grains distributed in
time and space [20]. To our knowledge this similar-
ity has not yet been exploited to propose a sound
synthesizer dedicated to particle-based environmen-
tal effects.

In this paper we propose a signal-based synthesis ap-
proach, and focus on the perceptual control of the
generated sounds. Since most particle systems in
games are based on simple stochastic laws, the as-
sociated sound models should not rely on physical
solvers delivering collision detection, fluid dynam-
ics, etc. Instead, we follow a “physically informed”
synthesis approach [21, 1] and propose an efficient
implementation, based on an atomic representation,
suitable for several types of phenomena and in par-
ticular rain, fire and wind. This approach results in
plausible sound quality and has the advantage of ful-
filling real-time constraints. Furthermore, the sound
models offer intuitive controls to sound designers,
making the synthesizer suitable for practical artistic
scenarios. A mapping is described to connect the
sound synthesis parameters to particle systems and
produce relevant audio/graphics interactions. The
approach is illustrated in figure 1. It has been val-
idated with several examples (see the online videos
accompanying this paper [22]) in a realtime imple-
mentation.

The paper is divided into three parts. First we pro-
pose sound synthesis models based on five classes of
atoms, and their parameterization to simulate rain,
fire and wind effects. Then the real-time synthesis
and spatialization pipeline is described. In the third
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part, we show how the sound models are connected
to particles systems for producing multimodal envi-
ronmental effects.

2. SYNTHESIS MODELS
In his pioneering work on synthesis and classifica-

tion of environmental sounds [23] Gaver proposed
three main categories depending on the physics of
the source: vibrating solids, gasses and liquids. Even
if these sounds refer to a wide range of physical phe-
nomena, their acoustic morphology calls for com-
mon signal characteristics, allowing for a granular-
like synthesis approach. Five “sound atoms” were
defined in [24] as primitives to reproduce a variety
of environmental sounds in the three categories de-
fined by Gaver. In this paper, we rely on this set of
atoms to reproduce the micro structure of rain, fire
and wind sounds.

2.1. Rain sound model
Rain sounds result from drops falling on different

surfaces (leaves, solid floor, water...) producing a
wide variety of impact sounds [1]. Depending on the
surface hit by the drops, three main types of impacts
may be distinguished. Drops falling on water pro-
duce bubble sounds [25] that can be simulated by
a chirped sinusoid (the chirped impact atom) with
amplitude a and exponential decay α:

x1(t) = a sin
(
2π

∫ t

0

f(ν)dν
)
e−αt

where the instantaneous frequency f varies linearly
over time.

Alternatively, drops falling on resonant surfaces
(e.g., plates, windows...) trigger an oscillating sys-
tem with fixed resonant frequencies. The result-
ing harmonic impact sounds can be simulated by
a modal impact atom

x2(t) =

M∑
m=1

am sin
(
2πfmt

)
e−αmt

where fm are the modal frequencies of the impacted
object and M is the number of simulated compo-
nents. The amplitudes am depend on the excitation
point, and the decay factors αm are characteristic of
the material [26].

Drops falling on rigid or deformable objects (e.g.,
stone, leaves) that exhibit a noisy response (high

modal density) tend to produce a brief noisy sound
which is perceptually different from bubbles and si-
nusoidal impacts. Such sounds are efficiently repro-
duced by a noisy impact atom, which is a sum of 8
contiguous subbands of noise si(t), evenly spaced on
the Equivalent Rectangular Bandwidth (ERB) scale,
with amplitude ai and exponential decay αi:

x3(t) =

8∑
i=1

aisi(t)e
−αit

Additionally, an equalized noise atom is used to cre-
ate a rain background noise

x4(t) =

32∑
i=1

ai(t)si(t)

where si(t) are 32 contiguous subbands of noise
evenly spaced on the ERB scale, with amplitudes
ai(t). This allows the simulation of a huge number of
simultaneous drops with a low computational cost.
The 32-subband amplitudes are extracted from rain
sound samples with the method described in [27].
The rain sample is passed through a 32 ERB sub-
band filterbank, then ai is set as the time average
energy in subband i.

Atoms x1, x2, x3 and x4 produce the basic mi-
crostructure of the rain sound model. They are
distributed over time and space to simulate a wide
diversity of rain situations. Three user controls
GainWater, GainSolids and GainLeaves spec-
ify the maximum level of drops falling on water,
solids and leaves respectively. Similarly RateWater,
RateSolids and RateLeaves set the probability of
falling drops per unit-time (i.e., per frame). An
additional user control GainBackground sets the
global gain of the rain background noise.

For real-time synthesis, the synthesis parameters are
initialized for a population of 100 chirped impacts
with different frequencies and amplitude, following
the laws proposed in [25]. Similarly, the initial pa-
rameters of 100 noisy and/or modal impacts are set
to precomputed values, previously extracted from
rain sound samples so as to reproduce “plausible”
drop sounds. At run-time, impacts are synthesized
in real time from their initial synthesis parameters.
Integration of the rain user controls within the
synthesis process is illustrated by the following
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pseudo-code:

1: function processRain
2: for each frame l do
3:
4: // Drops
5: if rand()< RateWater then
6: triggerOneChirpedImpact(rand().GainWater)

7: if rand()< RateSolids then
8: triggerOneModalImpact(rand().GainSolids)

9: if rand()< RateLeaves then
10: triggerOneNoisyImpact(rand().GainLeaves)

11:
12: // Background noise
13: for subband i = 1→ 32 do
14: a = ai . GainBackground
15: setEqualizedNoise subband(i, a)
16: end for
17:
18: end for
19: end function

where rand() is a random number uniformly dis-
tributed between 0 and 1, the three trigger func-
tions synthesize impacts with the given amplitude,
and setEqualizedNoise subband(i, a) synthesizes the
ith subband of the equalized noise atom with ampli-
tude a.

2.2. Fire sound model
The fire sound is synthesized as a combination of

noisy impact atoms to simulate crackling, and equal-
ized noise to simulate the combustion (flames) noise.

Noisy impact parameters (i.e., subband amplitudes
and decays) were defined to approximate real crack-
ling sounds. Due to the complexity of these signals
which are noisy and non-stationary, manual inter-
vention was required to set the range of plausible
parameters (as for noisy raindrop sounds). Five pro-
totype spectral envelopes with eight ERB subbands
were extracted from real-world crackling sound ex-
amples, along with three amplitude decays repre-
senting three categories of crack sizes: big, medium
and small. For simplicity, a single decay is used in
the eight subbands of each noisy impact.

To reproduce combustion noise, the 32 subband am-
plitudes ai of the equalized noise are extracted from
a fire sound sample (as described in [27]) and aver-
aged over time to get a constant spectral envelope.

For real-time synthesis, 100 noisy impacts are
initialized with one of the precomputed parameter
sets. Then the user controls GainCrackling and

RateCrackling to set respectively the maximum
gain and the probability of crackling per unit-time.
The user-control GainCombustion sets the gain of
the combustion noise. A low frequency noise b(t)
is also introduced to modulate the energy in the
first four subbands, to increase the variations of the
sound and continuously reproduce changing flame
sizes. This modulation can be efficiently achieved
by filtering a white noise by a low-pass filter with a
very low cutoff frequency (around 1Hz) as suggested
in [1]. The following pseudo-code illustrates the fire
synthesis process:

1: function processFire
2: for each frame l do
3:
4: // Crackling
5: if rand()< RateCrackling then
6: triggerOneNoisyImpact(rand().GainCrackling)

7:
8: // Combustion noise
9: b(l) =lowPass(rand()) // random modulation

10: for subband i = 1→ 4 do
11: a = ai . GainCombustion . (1 + b(l))
12: setEqualizedNoise subband(i, a)
13: end for
14: for subband i = 5→ 32 do
15: a = ai . GainCombustion
16: setEqualizedNoise subband(i, a)
17: end for
18:
19: end for
20: end function

2.3. Wind sound model
A signal model based on time-varying bandpass

filters for simulating wind sounds was proposed in
[1]. We adapted this model to our architecture,
producing a wind sound by the addition of several
band-limited noises that simulate wind resonances.
Each band-limited noise atom is defined by its time-
varying spectral envelope:

X5(f)=

{
A(t) if |f − F (t)|< B(t)

2

A(t)e−α(t)
(
|f−F (t)|−B(t)

2

)
otherwise

where F (t) is the center frequency, A(t) the gain,
B(t) the bandwidth and α(t) the filter slope.
The amplitude A and center frequency F of each
atom are set in real time by a single user control
WindSpeed as follows:

A(t) = Ai . WindSpeed .
(
1 + b(t− τi)

)
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where Ai and τi are constant values (different for
each atom i) that represent the relative amplitude
and propagation time to the listener, and

F (t) = Ci . A(t) + Fi

where Fi and Ci are respectively the frequency off-
set and deviation constants. This way, the center
frequency and amplitude of the band-limited compo-
nents are proportional to the WindSpeed user con-
trol. The modulation b(t) is a low frequency noise
with a cutoff frequency around 1 Hz, that introduces
plausible variations in the wind sound, as described
for the fire combustion noise.

To reproduce different types of wind sounds, from
broadband (e.g., wind in the trees) to narrowband
phenomena (e.g., wind whistling in a window) the
bandwidth and slope of each atom can be adapted
intuitively by the sound designer via the WindType
user control. This control linearly interpolates be-
tween several preset values previously created for
[αi, Bi, Ai, τi, Ci, Fi].

The sound of rustling leaves in the trees is also
simulated, as a combination of noisy impacts and
equalized noise (to simulate a huge number of
leaves) parameterized with the method described
above for rain background noise. By default
RateWindLeaves and GainWindLeaves (i.e., rate
and gain of noisy impacts and equalized noise)
are set proportionally to WindSpeed. The general
synthesis process is illustrated by the following
pseudo-code:

1: function processWind
2: for each frame l do
3:
4: // Wind band-limited noises
5: b(l) =lowPass(rand()) // random modulation
6: for each noise i do
7: [αi, Bi, Ai, τi, Ci, Fi] =
8: interpolatePresets(i,WindType)
9: A = Ai . WindSpeed . (1 + b(l − τi))

10: F = Ci . A+ Fi

11: setBandlimitedNoise(A,F, αi, Bi)
12: end for
13:
14: // Rustling leaves
15: if rand()< RateWindLeaves then
16: triggerOneNoisyImpact(rand().GainWindLeaves)

17: for subband i = 1→ 32 do
18: a = ai . GainWindLeaves
19: setEqualizedNoise subband(i, a)

20: end for
21:
22: end for
23: end function

In summary the rain, fire and wind models require
five classes of sound atoms, whose low-level param-
eters are listed in table 1. These atoms are the core
components of the environmental sound synthesizer.

Atom Parameters

Modal impact
am initial amplitudes

αm decays

fm frequencies

Noisy impact
[a1...a8] subband amplitudes

[α1...α8] subband decays

Chirped impact
f0 initial frequency

σ linear frequency shift

α decay

Band-limited noise

F (t) center frequency

B(t) bandwidth

α(t) filter slope

A(t) amplitude

Equalized noise [a1(t)...a32(t)] amplitudes

Table 1: The five classes of atoms used for the sound syn-

thesis models, with their respective parameters.

3. SPATIALIZED SYNTHESIS ENGINE
Rain, fire and wind sounds are created as a com-

bination of time-frequency atoms x(t). Each atom
is modeled as a sum of sinusoidal and noisy com-
ponents, noted respectively sD(t) and sS(t). This
allows the use of efficient synthesis algorithms based
on the inverse fast Fourier transform (IFFT) to gen-
erate the atoms. Additionally, IFFT synthesis is
combined with 3D audio modules in the frequency
domain, following the efficient approach described in
[28]. The complete synthesis/spatialization pipeline
is depicted in figure 2 and each part of the process
is described in more detail below.

Time-frequency synthesis The synthesis of
each source is realized by blocks in the frequency
domain. At each block l, an approximation of the
short-time Fourier transform of the atoms is built
by summing the deterministic SlD or stochastic SlS
contributions. Real and imaginary parts of the de-
terministic short-time spectrum (STS) are computed
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Fig. 2: Architecture of the synthesis/spatialization engine. Deterministic and stochastic components of the atoms are added

in the frequency domain to form a collection of spectra (STS) that are spatialized around the listener (spatial encoding/decoding

with C intermediate channels). Inverse fast Fourier transform (IFFT) and overlap-add (OLA) are performed to get the mul-

tichannel signal for an arbitrary setup of P loudspeakers (or headphones). A supplementary short-time spectrum is dedicated

to the reverberation, common for all sources in the scene and implemented by a Feedback Delay Network (FDN) in the time

domain (1 input channel, P output channels).

by convolving the theoretical ray spectrum formed
by the M sinusoidal components of amplitude alm,
frequency f lm and phase Φlm, with the “spectral mo-
tif” W which is the Fourier transform of the synthe-
sis window w[n] as described in [29]:

SlD[k] =

M∑
m=1

alme
jΦl

mW (
k

N
− f lm) (1)

N being the number of frequency bins (i.e., the syn-
thesis window size) and k the discrete frequency in-
dex (i.e., W [k] = W ( kN )). We use two synthesis
window sizes N in parallel to produce the impul-
sive impacts (N = 128) and the continuous atoms
(N = 1024). The real and imaginary parts of the
stochastic STS are computed by summing the sub-
band spectral envelopes of the atoms, multiplying
by two noise sequences, and circularly convolving
the result with the spectral motif W . The final STS
X l[k] is obtained for each source by summing the

deterministic and stochastic contributions in the fre-
quency domain.

Integrated spatialization The architecture of
the synthesizer is designed for easily extending the
perceived width of sound sources. Rain, fire and
wind sounds are formed by a collection of sec-
ondary sources spatialized around the listener. Two
approaches are used to distribute the synthesized
atoms into secondary sources STS. Impulsive atoms
(i.e., chirped, modal and noisy impacts) correspond
to phenomena typically localized in space (i.e., rain-
drop sounds and fire crackling). For this reason,
each of them is integrated into one single STS. On
the other hand, continuous noisy atoms (i.e., band-
limited and equalized noises) correspond to natu-
rally diffuse phenomena (i.e., rain background noise,
fire combustion noise and wind band-limited noises).
Consequently, decorrelated copies of these atoms
are integrated into all the secondary sources STS,
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producing a diffuse noise around the listener. The
decorrelation is achieved by using different sequences
of noise when building the stochastic component of
each atom.

A supplementary STS, common for all sources is pro-
vided for the reverberation, which is efficiently im-
plemented by a multichannel Feedback Delay Net-
work [30]. Spatialization of each secondary source is
based on a multichannel encoding/decoding scheme
(see [28] for more details). The C-channel encod-
ing consists in applying real-valued spatial gains
(g1, . . . , gC) to the STSX l

i [k], simulating the position
(θli,Ψ

l
i) of the ith point source. The gains are com-

puted with an amplitude-based panning approach
such as VBAP [31] or Ambisonics [32, 33]. The en-
coded multichannel STS are then summed together,
channel by channel, producing a single block Y l with
C channels:

Y lc [k] =

I∑
i=1

gc(θ
l
i,Ψ

l
i)X

l
i [k]

where gc is the cth position-dependent gain and I
is the total number of sources. Spatial decoding
performs linear combinations of the channels of Y l

to get the signals for the P loudspeakers. It de-
pends on the chosen panning method and on the
loudspeaker setup. Finally, the decoded channels are
inverse fast Fourier transformed and overlap-added
to reconstruct the synthetic signals xp[n] for the P
output channels:

xp[n] =
∞∑

l=−∞

gp(θ
l
i,Ψ

l
i)w[n−lL]

(
slD[n−lL]+slS [n−lL]

)
where slD and slS are the sum of all atomic compo-
nents (deterministic and stochastic) at block l and
L is the synthesis hop size. For rendering over head-
phones (P = 2) we use Head Related Transfer Func-
tions (HRTF) from the Listen1 database to simulate
C = 18 virtual loudspeakers in the spatial decoding
stage.

4. COUPLING WITH PARTICLE SYSTEMS
The advantage of sound modeling compared to
sample-based approaches lies in the flexibility of
transformations offered by the synthesis parameters.

1http://www.ircam.fr/equipes/salles/listen

Stochastic control of sound atoms were defined in
section 2 to provide high-level physically-inspired
manipulation of the rain, fire and wind phenomena.
Here we present the mapping of audio and graphics
parameters for particle-based effects.

4.1. Principles of particle systems
At each frame of the animation sequence, the basic
steps of a particle system are as follows [11]: new
particles are generated with a set of attributes, par-
ticles that have existed for a certain amount of time
are destroyed, and remaining particles are trans-
formed and moved according to their dynamic at-
tributes. Initial attributes of particles are their posi-
tion, velocity and acceleration, along with their size,
color, transparency, shape and lifetime. To change
the dynamics and appearance of the particle system,
the designer has access to a set of controls that af-
fect the mean m and maximum deviation δ of parti-
cle initial attributes. Typically, a particle attribute
p ∈ RN is defined as:

p = m+ rand().δ

where m and δ ∈ RN (respectively the mean and
maximum deviation) are the designer controls, while
rand() is a random number uniformly distributed be-
tween -1 and 1. Simple uniform stochastic processes
have the advantage of being intuitive to manipulate.
As an example, if the designer sets m = [10, 0, 0] and
δ = [0.5, 0.5, 0.5] for the initial position parameter,
then the particles are randomly created inside a unit
cube centered at [10, 0, 0].

With these simple principles, particle systems are
used as real-time building components for a wide
range of environmental phenomena. The size and
shape of each particle can be designed to approxi-
mate individual raindrops to simulate complex rain
environments [34, 35, 36, 37, 38]. Similarly, flame
and smoke particles are used to simulate fire [39, 40,
41] and leaf-like particles to simulate wind [42].

4.2. Audio/graphics controls
To decrease computational cost, particle systems of-
ten do not provide collision detection for individual
particles. For this reason we do not use such in-
formation for coupling audio and graphics, and fo-
cus on high-level manipulations of sound and graph-
ics components. This approach leads to flexible au-
dio/graphics controls that are suitable for practical
artistic scenarios.
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Rain Intensity In our implementation, rain is
produced by particles with initial positions ran-
domly distributed at the top of the virtual world
(concentric circles around the player) with vertical
initial velocities. The RainIntensity parameter dy-
namically controls the number of graphics particles
(raindrops) emitted by the particle system per unit-
time (particle spawn rate). A linear mapping be-
tween RainIntensity and the rain sound parameters
provides a simple way to match graphics and sound
rendering. Specifically, RainIntensity is linked
to the raindrop rate via RateWater, RateSolids
and RateLeaves, along with their gain GainWater,
GainSolids and GainLeaves. It also controls the
background noise level via GainBackground (see
section 2.1). For more flexibility the mapping can
be edited by the sound designer to achieve the de-
sired result (piece-wise linear mapping, exponential,
etc.). The expected number of drops falling on wa-
ter, leaves or solids can be set separately, which al-
lows the specification of zones with different charac-
teristics (e.g., more water or more foliage).

Fire Intensity For the fire simulation, a bunch
of flame-like and smoke-like particles are projected
above the fireplace, with varying initial positions and
velocities. FireIntensity controls the spawn rate of
these particles (i.e., the expected number of parti-
cles per unit-time). Simultaneously, we map this
parameter to control in real time the rate and gain
of crackling via RateCrackling and GainCrackling
and the gain of flame noise viaGainCombustion (see
section 2.2). As for the rain, the mapping can be
edited by the designer to adjust the desired behav-
ior. The joint audio/graphics control is illustrated
in figure 3.

Wind Speed In our system, wind is simulated by
leaf-like particles moving around the player. The
parameter WindSpeed controls the spawn rate and
velocity over the lifetime of the particles. Addition-
ally, it controls the wind sound model by changing
the resonance frequency and amplitude of the band-
limited noise atoms (see section 2.3). To improve
the simulation, the trees in the scene are also slightly
moved with the same average wind speed.

4.3. Implementation
An interactive scene with rain, fire and wind was de-
signed to illustrate the audio/graphics interactions

time (s)

fr
eq

(H
z)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
20

500

2k

6k

20k

−80

−60

−40

−20

0dB

Intensity IntensityIntensity

si
gn
al

Fig. 3: Audio/graphics high-level control of a fire. The

control Intensity changes the rate and gain of noisy impacts,

and the combustion noise of the fire sound model. Simulta-

neously, it controls the flame/smoke particle spawn rate for

the graphics simulation.

Fig. 4: Interactive scene with fire, wind and rain. Graph-

ics are generated with UDK2 and audio with custom exter-

nal libraries implemented for Max3. Bidirectional commu-

nication between the audio and graphics engines is set with

UDKOSC4.

(see figure 4). We used the UDK2 game engine for
graphics rendering, while sound rendering was per-
formed with our custom synthesis/spatialization en-
gine (see section 3) implemented as a Max3 exter-
nal library. Network communication between the
graphics and sound engines was realized with the
UDKOSC4 library [43, 44], allowing the two en-
gines to run on separate machines. High-level au-
dio/graphics controls were edited by the designer
and saved as automation parameters in the game

2www.UDK.com
3www.cycling74.com
4https://ccrma.stanford.edu/wiki/UDKOSC
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Graphics
Engine

 Sound
Engine

High-level controls

Modulations
Fr ~ 30 Hz  Fr ~ 170 Hz

Fig. 5: Audio/graphics interactions. The graphics engine

sends high-level designer controls (e.g., fire intensity and po-

sition) at the frame rate Fr = 30 Hz. For specific effects, the

audio engine may also compute modulation parameters (e.g.,

flame energy) that are sent back to update the graphics.

engine. At run-time, these controls and the position
of sound sources relative to the player are sent in real
time (via UDKOSC functions) to the sound engine
(see figure 5).

4.4. Spatial sound distribution
We use two approaches for simulating spatial prop-
erties of sound sources in the virtual environment:
localized volumetric sound sources, such as fire or
wind in the trees are simulated as collections of
point-like sources while completely diffuse sources
like background wind and rain are created as collec-
tions of plane waves attached to the listener. These
two strategies are illustrated in figure 6. Point-like
sources and plane waves are both simulated with the
technique described in section 3.

To compose a scene, the sound designer attaches lo-
calized sources to objects in the virtual environment.
Several point-like sources can be attached together
to form a volumetric source (e.g., a fire, wind in
a tree). The location of each point-like source is
continuously updated according to the listener posi-
tion and orientation. The source-player distance d
is simulated by a gain 1

d that attenuates the direct
sound (not the reverberation). On the other hand,
diffused sources (surrounding sounds) are simulated
as a sum of eight plane waves, automatically dis-
tributed around the player. The plane wave analogy
comes from the fact that surrounding sounds are vir-
tually at an infinite distance from the listener and
thus have no distance attenuation. The eight plane
waves incident directions are evenly positioned on
a horizontal circle, and their gain is weighted ac-
cording to the desired source width as proposed in
[28]. Surrounding sounds are attached to the player,
i.e., they follow the player’s position and orienta-
tion (all plane waves have a fixed orientation in the

Fig. 6: Spatial distribution of sound sources in the virtual

environment. Left: localized sounds (e.g., fire) are produced

as a collection of point sources (spherical waves) represented

as white circles. Right: diffuse sounds (e.g, rain and wind

backgrounds) are simulated by plane waves with fixed incom-

ing directions surrounding the player.

player’s coordinate system). Consequently their po-
sition (orientation and distance) does not need to be
updated in real time, saving some computation time
compared to volumetric sources.

Several controls allow the sound designer to adjust
the perceived width of volumetric and surrounding
sounds (please see [28] for more details on the width
gain computation). RainWidth sets the angular dis-
tribution of rain components around the listener: in-
dividual raindrops are randomly distributed in the
plane waves, while background noise is duplicated.
FireWidth sets the spatial distribution of crack-
ling and combustion noise among their point-like
sources. Finally WindWidth sets the spreading of
band-limited noises in the wind plane waves.

5. CONCLUSION AND FUTURE WORK
Atomic signal modeling of environmental sounds has
been presented for the generation of audio in inter-
active applications. The proposed synthesizer is able
to generate realistic sounds evoking a wide variety of
phenomena existing in our natural environment. It
provides an accurate tool to sonify complex scenes
composed of several sound sources in 3D space. The
position and the spatial extension of each source are
dynamically controllable. High-level intuitive con-
trols have been presented for simultaneous transfor-
mations of sound and graphics in interactive appli-
cations. Our approach results in a strong interac-
tion between graphics and sound which increases the
immersion in the scene. Demonstration videos are
available online [22].
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The main limitation of this study is the absence of a
fully automatic analysis method to extract the syn-
thesis parameters from recorded sounds. Currently
the sound designer can modify the parameters of the
sound models to approximate target sounds. Fur-
ther research is needed to automatically decompose
a given sound sample (provided by the sound de-
signer) as a set of atomic elements. This decom-
position would allow independent control of atom
distribution in time and space, for high-level trans-
formation of the original sound.

Automatic generation of soundscapes is another in-
teresting research direction. For the moment, syn-
thesis parameters (i.e., RainIntensity, FireIntensity
and WindSpeed) are manually controlled by the de-
signer, which allows him to produce the desired be-
havior. It would be interesting to provide a fully
automatic weather system, where the correlation
between each element could be specified by simple
rules. As an example, the wind speed would influ-
ence fire intensity, rain intensity would be inversely
proportional to fire intensity, etc. The synthesizer
proposed in this paper is a good starting point for
such research.
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[45] C. Verron, Synthèse Immersive de Sons
d’Environnement, Ph.D. thesis, Université de
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