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CHAPTER 1

Introduction

(a) Source: Randall Warniers (b) Source: James Kerr

Figure 1.1: Even common scenes can lead to exceptional pictures when the shot captures special
lighting, such as the shadow aligned with the pedestrian’s footstep (a), or a beautiful sunrise (b).

1.1 Motivation

Lighting is a key factor in successful photography. It sets the mood in a picture and affects
the experience of the viewer. Lighting can convey feelings about a scene: in Figure 1.1b,
the sun rising above a cloud casts an orange glow on the park, and produces a warm light
in a winter morning. Taking the same shot in midday light would reveal the leafless trees
and frozen ground, and would convey a colder ambiance.

Noticing the light and carefully planning for it is important for photographers. Some
times of day and weather conditions are particularly good for taking pictures: during the
golden hours around sunrise and sunset, the sun is low in the sky and produces a nice diffuse
light. A bright sunny day with strong shadows is great for photographing architecture. Soft
hazy light, when the sun is slightly obscured by clouds, is well-adapted for taking pictures
of people.

However, taking a picture at the decisive moment is not easy. Natural light can change
quickly, especially near sunrise and sunset (Figure 1.2), and it is often difficult to find a
good timing for both nice lighting and proper organization of the scene. Instead, studio
photographers control the lighting at the time of capture: they set up lights and reflectors to
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2 Chapter 1. Introduction

Source: Tim Smalley

Figure 1.2: Lighting can change quickly, especially during the “golden hours” around sunrise
and sunset. This example shows photographs of a scene captured from similar viewpoints, within
10 minutes in the morning: the sky switches from characteristic dawn colors to a bland greyish
dome in just a few minutes.

enhance the appearance of the subjects. But such equipment is out of reach of casual pho-
tographers who only own a camera. For large outdoors scenes, it is essentially impossible
to control lighting.

Consequently, the ability to manipulate the lighting after a photograph has been taken
would simplify the capture process, and would allow for significantly more control on the
final appearance of an image.

Image editing. Photographers often edit their digital pictures after the capture: they ad-
just the colors, enhance specific characteristics of the photographs, or manipulate their
content to remove undesirable objects. Recently, the use of image editing software has
become widespread and even casual photographers modify their photographs. Facebook
reported that more than 200 million photos were uploaded per day in 2011 (source); a large
proportion of these images has been edited.

Editing materials and lighting is a common image manipulation task that requires sig-
nificant expertise to achieve plausible results. The photograph captured by a camera results
from complex interaction between the incoming light and the scene, in particular its mate-
rials and geometry, which makes it difficult to edit manually. For example, changing the
position of the sun affects the location and direction of shadows, and also the intensity of all
pixels depending on their orientations (regions facing the sun should appear brighter). In
addition, each pixel aggregates the effect of both material and lighting, but standard color
manipulations are likely to affect both components simultaneously.
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1.1. Motivation 3

Source: PsDisasters Source: The New York Times

Source: Time Source: Time

Figure 1.3: Recent examples of image manipulations which led to inconsistent lighting. Top row
shows issues with reflections: on the left, the posture of jumping people does not match their reflec-
tions on the water surface; on the right, even though the wristwatch has been removed, its reflection
on the table is still visible. Bottom shows shadow mismatches: the voting machine and the men
seem to be floating over the ground, due to erroneous or missing shadows.

Taking into account the lighting is important during image editing, because ignoring it,
or modifying it incorrectly, yields images which look obviously manipulated. Figure 1.3
shows examples of such images, which exhibit non-coherent lighting. While plausible
results can be achieved by skilled artists given enough time, these examples show that this
step is often ignored due to its inherent difficulty.

In this thesis, one of our motivations is to create tools to simplify image editing, in
particular “lighting-aware manipulations” which maintain coherent lighting in the edited
image. Our approach builds on an image representation which decouples object materials
from their illumination. We develop methods to separate the intrinsic color of the scene
objects from the quantity of light they receive, and show how this can be used for advanced
image manipulations.
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4 Chapter 1. Introduction

Image-based rendering. Image-based rendering techniques exploit images of a scene
and produce novel views, which enable interactive navigation in the virtual scene. Ex-
amples of such techniques include Google StreetView, which provides panoramic views
from positions along many streets in the world, or Microsoft Photosynth and Google Photo
Tours, which allow users to navigate in a scene in three dimensions. StreetView displays
streets as they looked like at the time of capture; as a result, they can look drastically dif-
ferent from their current appearance in the real world. Photosynth combines images which
are not necessarily captured at the same time of day; this can produce disturbing transitions
when the lighting in successive images is very different.

The fact that image-based methods to date have been restricted to the lighting at the
time of capture has seriously limited their utility in digital content creation. Providing
the ability to modify the lighting in image-based captures will render such approaches
much more attractive, and will open the way for the use of image-based assets in standard
content creation pipelines. Allowing users to change the lighting as desired will also make
applications such as virtual tourism much more immersive.

The work developed in this thesis allows the transfer of lighting across pictures of a
photo collection, therefore enabling transitions with coherent illumination across views.

1.2 Context

We place ourselves in the context of tools related to extracting, removing or manipulating
the lighting in a photograph. Our work builds on a central representation which separates
the color of the materials from the received illumination, at each pixel of an input image.
We first define this intrinsic image representation, then outline our approach in this thesis,
and describe potential industrial applications.

1.2.1 Intrinsic images

Barrow and Tenenbaum [Barrow 1978] first proposed to describe a scene in terms of its
intrinsic characteristics, such as surface orientation, reflectance, and illumination. Given
one input image, they suggest to extract a set of intrinsic images, each representing one in-
trinsic characteristic at all the scene points visible in the original image. They motivate this
separation by the fact that intrinsic characteristics give a more invariant and discriminating
description of the scene than raw image colors. In addition, each intrinsic image can be
accessed independently, which is particularly helpful for image understanding operations
such as material recognition, image segmentation, or shape from shading.

Subsequent work has mostly focused on the problem of recovering two intrinsic im-
ages: the reflectance image (also called albedo), which corresponds to the material color
at each point, and the illumination image (also called shading), which represents the ef-
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1.2. Context 5

(a) Input image I (b) Reflectance R (c) Illumination S

Figure 1.4: Illustration of intrinsic decomposition. Starting from a picture (a), here a synthetic im-
age with direct illumination only, intrinsic decomposition yields two independent layers: reflectance
(b) and illumination (c).

fect of lighting at each point. More formally, a color photograph I is decomposed into a
reflectance image R and an illumination image S, so that:

I = R ∗ S (1.1)

where ∗ denotes per-pixel and per-channel product.

Figure 1.4 illustrates the intrinsic decomposition of a simple synthetic image, which
represents a cylinder with uniform color illuminated by a white directional light source.
Each pixel in the input image (left) aggregates the effect of both material color and light-
ing; as a result, the color of the cylinder is not uniform even though it is made of a single
material. Intrinsic decomposition yields two independent layers which, once recombined,
yield the input image again. The reflectance layer looks “flat” because it does not contain
shading effects and shadows, which provide important depth cues. In contrast, the illu-
mination layer is independent of the objects’s color and only depends on the light source
position, color, and scene geometry.

Such a decomposition is powerful for image editing, because intrinsic layers can be
manipulated separately and then recombined into a new image. However, the problem
of intrinsic image decomposition is ill-posed, because at each pixel we try to recover the
reflectance R and the illumination S using only the input image I (Equation 1.1). Existing
approaches have incorporated different kinds of assumptions about the scene, in order to
make the decomposition problem tractable. We review prior work in Section 2.3.2.
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6 Chapter 1. Introduction

1.2.2 Our insight

In this thesis, we tackle the problem of intrinsic image decomposition from multiple pho-
tographs. We focus on the case where photographs captured from multiple views are avail-
able. A lot of information about the scene can be extracted from such a set of images;
we exploit this additional information to add constraints which make the decomposition
tractable and yield plausible results.

We build on recent advances in Computer Vision to automatically reconstruct partial
scene geometry. We use off-the-shelf software to reconstruct a sparse 3D point cloud of the
scene. We then leverage this geometric information to guide the intrinsic image decompo-
sition process. The geometry reconstruction pipeline used in this thesis is briefly described
in Section 2.4.

Automatic 3D reconstruction methods yield geometry which is often incomplete or
inaccurate. A significant challenge consists in designing algorithms which identify and ex-
ploit the reliable parts of the reconstructed geometry, and which are robust to incomplete
reconstructions. In our work, we select a subset of reliable 3D points and infer constraints
on the corresponding pixels in the images to decompose. We then build on image-guided
propagation algorithms to separate reflectance and illumination in regions where no geo-
metric information is available.

The methods described in this manuscript apply to two types of input:

• Chapters 3 and 4 focus on outdoor scenes, using a few photographs with fixed light-
ing. Because the input photographs are taken at a single time of day, capture can be
done quickly and with simple equipment.

• Chapter 5 targets sets of images with varying illumination, such as collections down-
loaded from photo-sharing websites, or sequences acquired indoors with a moving
light source. This method can leverage the information contained in existing pho-
tographs in photo collections to facilitate the decomposition of new images with
different lighting, requiring no additional capture.

1.2.3 Industrial applications

Intrinsic images are a representation which allows independent editing of material color
and lighting in a photograph. We demonstrate in Chapters 3 and 5 advanced manipulations
in image editing software, through the use of layers.

Eliminating the effect of illumination in images is the first indispensable step towards
obtaining illumination-free models, which could be relit or inserted in different environ-
ments. Our work can simplify artists’s tasks such as texturing and compositing: we show
in Chapter 5 that lighting-free 3D models can be recovered from just a few photographs

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



1.3. Contributions 7

from different viewpoints. This opens the way for applications in capture and rendering,
enabling easy acquisition of real world objects rather than complex manual modification,
and in architecture modeling, for example in cultural heritage. The work described in
Chapter 3 led to a technology transfer agreement with Autodesk, which resulted in the
development of the solution presented in Chapter 4.

Our intrinsic image decomposition from multiple views also has applications in image-
based navigation and virtual tourism. Extracting the illumination from a photograph, and
transferring it to different views, enables modification of lighting in images and is an impor-
tant part of adapting the mood of a scene. In the European project VERVE which supported
part of this research work, lighting manipulation will be used to create personalized and
realistic virtual reality environments, in order to support the treatment of people who are at
risk of social exclusion due to fear and apathy associated with ageing or a neurological dis-
order. In Chapter 5, we also demonstrate an application for virtual tourism, using lighting
transfer to enable illumination-consistent view transitions.

1.3 Contributions

We present three approaches which exploit photographs from multiple views to extract
information about the scene.

1.3.1 Rich decomposition of outdoor scenes

In Chapter 3, we present an approach to decompose a photograph of an outdoor scene. This
method not only separates reflectance from illumination, but also introduces a decomposi-
tion of the illumination into sun, sky and indirect layers.

We use additional images captured from multiple views at a single time of day to au-
tomatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse
and incomplete, it is sufficient to compute plausible sky and indirect illumination at each
oriented 3D point, given a captured environment map that represents incoming distant radi-
ance. We introduce an optimization method to estimate sun visibility over the point cloud,
which compensates for the lack of accurate geometry and allows the extraction of pre-
cise cast shadows. We finally use image-guided algorithms to propagate the illumination
computed over the sparse point cloud to every pixel, and to separate the illumination into
distinct sun, sky, and indirect components.

This rich intrinsic image decomposition enables advanced manipulations which we
demonstrate in image editing software, such as reflectance editing with coherent lighting,
insertion of synthetic objects, and relighting.
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8 Chapter 1. Introduction

1.3.2 Outdoor lighting extraction from a few photographs

The approach described in Chapter 3 requires user interaction during capture and calibra-
tion. In Chapter 4, we simplify capture by automatically identifying the direction of the
sun, by estimating an environment map representing the incoming distant radiance, and by
designing a simpler calibration process.

As a result, we estimate lighting incident to an outdoor scene from just a few pho-
tographs and minimal user interaction. First, we automate the estimation of sun direction
by combining cues from the reconstructed geometry and captured photographs. Then, we
automatically reconstruct an approximate environment map by extrapolating the portions
of sky visible in the input photographs. Finally, we design a method to estimate the sun
radiance from simple user indications (two clicks) instead of a grey card.

By simplifying the capture and calibration steps, we remove the most constraining
aspects of our decomposition method and make it accessible to casual photographers. The
work presented in Chapter 4 has been developed as part of a technology transfer agreement
with Autodesk.

1.3.3 Coherent decomposition of photo collections

In Chapter 5, we focus on image collections with multiple viewpoints and multiple lighting
conditions. Such collections can be gathered from photo-sharing websites, or captured
indoors with a light source which is moved around the scene. We exploit the variations
of lighting to process complex scenes without user assistance, nor precise or complete
geometry.

We automatically reconstruct a set of 3D points and normals, from which we derive
relationships between reflectance values at different locations, across multiple views and
consequently different lighting conditions. We use robust estimation to reliably identify
reflectance ratios between pairs of points. From these, we infer constraints for our opti-
mization and enforce coherent reflectance in all views of a scene.

This constrained optimization yields coherent intrinsic image decompositions for mul-
tiple views of complex scenes. The resulting decompositions enable image-based illumi-
nation transfer between photographs of the collection, and view transitions with consistent
illumination for image-based rendering applications.
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CHAPTER 2

Background

2.1 Image formation and sensing

The color values of an image depend on the complex interactions of light with the scene
geometry, environment, and materials, and on the properties of the capture system. Light
energy is emitted by sources such as the sun; it then propagates through the environment,
bounces off surfaces of objects with diverse geometry and material properties, and ulti-
mately reaches camera sensors or human retinas which can record and process the signal.
We briefly review here notions that will be useful in the remainder of this thesis.

The distribution of light in a scene is completely characterized by a quantity L(p, ~ω),
named radiance, which intuitively represents the quantity of light at position p travelling
along direction ~ω. A more formal definition of radiance can be found in [Horn 1986].

An important aspect of light transport concerns the reflection of light from a surface.
Reflection is defined as the process by which light incident to a surface point p leaves that
surface on the same side, and is described by the reflectance equation [Hanrahan 1993]:

Lr(p, ~ωr) =
∫

Ωi

fr(p, ~ωi, ~ωr) Li(p, ~ωi) cos θi(p) dωi (2.1)

The reflected radiance Lr in a particular direction ~ωr depends on the radiance arriving at
point p from all incoming directions ~ωi. Each incident radiance Li is weighted by the angle
θi between the incident direction and the surface normal at point p, and by a function fr.
This bidirectional reflection distribution function (or BRDF) models the behaviour of the
scene materials and can vary spatially.

While equation 2.1 models the reflection of light on opaque surfaces, other effects such
as transparency, subsurface scattering, absorption, or fluorescence also affect the final ap-
pearance of a scene. These effects will not be treated in detail here; in addition, dependency
on wavelength has been ignored.

Image sensors measure the radiant power per unit area received on their surface. This
sensor irradiance is proportional to the radiance originating from the surface points visible
to the sensor. Finally, the sensor irradiance is mapped to the observed image intensity by
the camera response function. In this thesis, we assume that all input images have been
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10 Chapter 2. Background

linearized to compensate for the camera response function1, for example using the method
described in [Debevec 1997].

2.2 Inverse rendering

The propagation of light in an environment has been studied in the field of physically based
rendering, in an attempt to produce more realistic synthetic images. Because models such
as Equation 2.1 accurately describe the physical quantities that would be measured from
a real scene, they can also be used in inverse problems. Inverse rendering corresponds to
the problem of recovering characteristics of the scene from observed intensities in recorded
photographs.

Inverse rendering methods aim to recover at least one unknown scene attribute, which
can be geometry, materials, or surrounding lighting, assuming other attributes are known
and photographs of the scene are available. Despite extensive prior work on inverse render-
ing, most of the existing approaches focus on small objects or indoor settings [Sato 1997,
Marschner 1998, Yu 1999, Loscos 1999, Boivin 2001, Lensch 2003, Yu 2006]. We describe
here the approaches which try to recover the reflectance of real-world, natural scenes.

Known geometry and lighting. Yu and Malik [Yu 1998] recover the reflectance prop-
erties of an outdoor architectural scene. They acquire about 100 photographs of the scene
and its surroundings (sky and landscape) at four different times of day, and measure the
sun radiance with neutral density filters. After measuring and modeling the scene illumina-
tion, they use hand-modeled geometry to estimate spatially-varying diffuse and piecewise-
constant specular reflectance.

Similarly, Debevec et al. [Debevec 1998, Debevec 2004] describe a process for estimat-
ing spatially-varying surface reflectance of a complex scene observed under natural illumi-
nation conditions. They use a laser-scanned model of the scene’s geometry, photographs of
the scene surface under a variety of illumination conditions, and capture the corresponding
incident illumination with a lighting measurement apparatus. They use an iterative inverse
global illumination technique to compute surface reflectances for the scene which, when
rendered under the recorded illumination conditions, best reproduce the scene’s appearance
in the photographs. They also model non-Lambertian surface reflectance by measuring
BRDFs of representative surfaces in the scene.

Known geometry, unknown lighting. Troccoli and Allen [Troccoli 2008] use a laser
scanner and multiple photographs, with different viewpoints and lighting conditions, to

1 We also assume that the linear images are scaled so that the pixel intensities correspond to the radiance
incident to the camera. In our context of intrinsic image decomposition, there is a global scale ambiguity
between the estimated reflectance and illumination layers.
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2.3. Intrinsic image decomposition 11

estimate Lambertian reflectance of outdoor scenes. This approach does not require any
light measurement device, but relies on a user-assisted shadow detector. Based on the
estimated shadow map and known normals in regions where photographs overlap, it uses
the ratio of two images to factor out the diffuse reflectance from the illumination.

Haber et al. [Haber 2009] propose an approach to recover the reflectance of a static
scene from a collection of images with varying and unknown illumination. They simul-
taneously estimate the per-image distant illumination and the per-point BRDF, using an
inverse rendering framework which handles non-Lambertian reflectance but neglects in-
terreflections. The scene geometry can be reconstructed from images downloaded from
the internet, using multi-view stereo. However, manual intervention remains necessary to
correct spurious or inaccurate geometry, and this method assumes that the complete rele-
vant scene geometry is reconstructed. This includes occluders which cast shadows on the
objects, even though they might be visible in few pictures.

Discussion. These inverse rendering methods yield a textured, illumination-free 3D
model of the scene and can estimate non-Lambertian BRDFs. This representation is conve-
nient for applications such as free viewpoint navigation and dynamic relighting, which can
generate renderings of the scene under novel lighting conditions. However, all these ap-
proaches assume the scene geometry is known and complete, and require manual interven-
tion either during the capture (laser scanning, lighting acquisition) or processing (geometry
modeling or cleaning) steps.

In contrast, we are interested in designing methods which are robust to incomplete ge-
ometry and handle sparse point clouds automatically reconstructed from a few photographs
of the scene. In addition, we focus on image-based applications and aim to produce pixel-
accurate decompositions despite possible misalignments in the reconstructed geometry.

2.3 Intrinsic image decomposition

Intrinsic images are a convenient representation which is more informative than just the
original image, but also less complex than the full scene reconstructed by inverse render-
ing algorithms. Decomposing a photograph into a reflectance image and an illumination
image (Equation 1.1) yields a compact representation which is well-suited for image-based
applications.

We first study the relation between intrinsic images and the image formation model
(Section 2.3.1). We then review existing work on intrinsic image decomposition (Sec-
tion 2.3.2), and discuss their evaluation in Section 2.3.3. We present applications enabled
by intrinsic images in Section 2.3.4.
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12 Chapter 2. Background

2.3.1 Relation with the reflectance equation

We show that the decomposition into reflectance and illumination images is related to the
image formation model described in Section 2.1. In particular, we can identify terms of
Equation 1.1 in the reflectance equation, under a few assumptions that we will specify.

Assuming the scene reflectance is Lambertian, the light is equally likely to be scattered
in any direction, regardless of the incident direction. In such a case, the BRDF fr(p, ~ωi, ~ωr)
does not depend on the incoming and outgoing light directions, and we relate it to the
reflectance R(p) [Hanrahan 1993]:

fr(p, ~ωi, ~ωr) = fr(p) = R(p)
π

(2.2)

Equation 2.1 then becomes:

Lr(p, ~ωr) =
∫

Ωi

R(p)
π

Li(p, ~ωi) cos θi(p) dωi (2.3)

= R(p)
π

∫
Ωi

Li(p, ~ωi) cos θi(p) dωi (2.4)

= R(p) E(p)
π

(2.5)

where E(p) represents the irradiance at point p.

Assuming that the radiance towards the camera Lr is constant over the field of view
of each sensor element2, and that the image has been linearized, the image intensities are
proportional to the radiance Lr. Relating Equations 1.1 and 2.5 in the three RGB chan-
nels then shows that for Lambertian scenes, the commonly named illumination image S
is proportional to the irradiance at each visible scene point. In the rest of this thesis, we
drop the π factor since the input images can be arbitrarily scaled and there is a global scale
ambiguity between the reflectance and illumination images.

For non-diffuse reflectances, however, lighting and reflectance are coupled because the
BRDF fr depends on the incoming and outgoing directions of light. The intrinsic decom-
position of Equation 1.1 does not represent such cases well, and more complex models are
required.

2.3.2 Prior work

Estimating an intrinsic image decomposition is a severely ill-posed problem. The mea-
sured image colors encode the effects of both reflectance and illumination: at each pixel
of an RGB image, R and S give 6 unknowns while I provides only 3 measured values.
As a result, the decomposition is not unique and Equation 1.1 has an infinite number of

2 The case where the radiance is not constant over a pixel is discussed in Section 5.4.1.1.

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



2.3. Intrinsic image decomposition 13

solutions. However, most of the mathematically valid solutions yield images which do not
represent the reflectance and illumination components we look for. For example, this is the
case with the trivial solution S = I and R = 1.

Successful methods make assumptions about the scene or use additional information,
such as multiple images or user intervention, in order to constrain the decomposition to
plausible solutions. We classify existing approaches based on the input they require.

2.3.2.1 Single-image methods

Analysis of local variations. Earlier methods have focused on classifying edges in the
input image as illumination or reflectance edges, according to various assumptions.

Horn extends the Retinex theory [Land 1971] in order to estimate the reflectance of a
particular class of scenes, the Mondrians, which consist of flat patches of uniform matte
color under uneven illumination. In images of such scenes, the reflectance is constant
within each patch and has sharp discontinuities at the boundaries between patches, whereas
the illumination varies smoothly over the image. Horn thresholds small derivatives in the
original image to estimate derivatives of the reflectance image; the reflectance image is then
obtained by re-integrating the modified derivatives [Horn 1974]. This assumes that small
image variations correspond to illumination changes, which is valid in the world of Mon-
drians. However, non-uniform reflectance and sharp illumination changes, due to corners
or shadows, can make this method fail on real-world scenes. Funt et al. [Funt 1992] extend
this approach to color images. They instead identify reflectance changes as large variations
in chromaticity, and assume monochromatic illumination. Different formulations of the
Retinex problem for intrinsic images are reviewed and unified in [Kimmel 2003].

Sinha and Adelson [Sinha 1993] discriminate edges based on the type of their junctions,
then verify the global consistency of these local inferences. They consider the domain of
painted polyhedral/origami objects in the absence of occlusions and cast shadows. Hsieh
et al. [Hsieh 2009] transform the input image into a color domain where most significant
illumination changes appear in a single channel. They then create a weighted map where
the reflectance derivatives are in general larger than the illumination derivatives, and dis-
criminate edges by applying a threshold on this map.

[Bell 2001] and [Tappen 2005] are learning-based approaches which predict the deriva-
tives of reflectance and illumination images. Their authors generate synthetic images show-
ing examples of reflectance and illumination changes, and train classifiers to interpret local
variations. In [Tappen 2005], local estimation is then propagated using belief propaga-
tion in order to disambiguate locally ambiguous regions. More recently, [Tappen 2006]
estimates the illumination image with low-dimensional local estimators based on small im-
age patches. These estimators are learned from training data, which consists of captured
real-world images with associated ground truth. Instead of classifying image derivatives
as either reflectance or illumination changes, Tappen et al. reconstruct the final image by
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14 Chapter 2. Background

weighting the different local estimates based on their reliability.

Jiang et al. [Jiang 2010] analyze the correlations between local mean luminance and lo-
cal luminance amplitude to interpret luminance variations in the input image. They separate
the image into frequency and orientation components using steerable filters, and reconstruct
illumination and reflectance images from weighted combinations of these components.

Although these approaches discriminate reflectance and illumination changes based
on diverse classifiers and heuristics, many configurations of reflectance and illumination
commonly encountered in natural images remain hard to classify.

Global constraints. More recent approaches incorporate non-local constraints or global
cues to improve the decompositions.

Shen et al. [Shen 2008] improve the Retinex approach by combining it with non-
local texture constraints. They identify distant pixels with the same texture configuration
by matching chromaticity in neighborhoods, and force such pixels to share the same re-
flectance value. Incorporating such non-local constraints weakens dependencies on the
original Retinex assumptions, such as illumination smoothness. Zhao et al. [Zhao 2012]
propose an optimization formulation which encompasses the Retinex constraints and the
non-local texture constraints, and which has a closed-form solution.

Garces et al. [Garces 2012] detect clusters of similar chromaticities in the input image
and assume they share the same reflectance. They relax the Retinex assumption of smooth
illumination, and instead assume that the illumination at cluster boundaries is continuous.
They formulate the decomposition as a linear system which describes the connections be-
tween clusters, rather than pixels, resulting in an a fast decomposition.

Shen and Yeo [Shen 2011b] exploit a global prior on the reflectance. They assume
that the set of reflectances is sparse, i.e., that the scene contains a limited number of dif-
ferent material colors. In addition, they relax the Retinex assumptions and instead assume
that neighboring pixels with similar chromaticities share the same reflectance. Gehler et
al. [Gehler 2011] enforce a similar global sparsity term on the reflectance, but formulate
the decomposition as a probabilistic problem where reflectance values are drawn from a
sparse set of basis colors.

Barron and Malik [Barron 2012] focus on the related problem of “shape, albedo, and
illumination from shading”. From a grayscale image of a single object, they aim to recover
its shape, reflectance, and distant incident lighting as a spherical harmonic model; intrinsic
images for reflectance and illumination can be deduced once these three components have
been estimated. In order to solve this ill-posed problem, they also use a combination of
local priors, such as reflectance and orientation smoothness, and global priors, such as
reflectance sparsity.
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2.3. Intrinsic image decomposition 15

Discussion. Estimating intrinsic images from a single RGB image is an under-
constrained problem, which requires all methods to make assumptions about the scene
to obtain plausible decompositions. Such assumptions limit the applicability to particular
scenes where they are valid. In particular, most of the methods described here assume
monochromatic illumination, which reduces the number of unknowns and simplifies the
problem. However, this assumption does not hold in the case of real outdoor scenes.

In the thesis, we adopt a more physically-based approach and start from the reflectance
equation described in Section 2.3.1. In Chapter 3 we constrain values of the illumination
image using the scene irradiance estimated with coarse scene geometry, while in Chap-
ter 5 we derive non-local constraints between pairs of distant points which are consistently
illuminated.

Shadow removal. Intrinsic image decomposition is also related to shadow detection
and removal methods [Mohan 2007, Wu 2007b, Shor 2008, Arbel 2011, Guo 2011,
Sanin 2012], which aim to remove cast shadows in an image, either automatically or with
user assistance. Finlayson et al. [Finlayson 2002, Finlayson 2004] also recover a shadow-
free image, but it does not represent the reflectance image as defined in Equation 1.1. While
intrinsic image decomposition aims to extract a reflectance image as well as illumination
variations, it also allows the subsequent removal of shadows by editing the illumination
layer. Note that in Chapter 3, we explicitly estimate the sun visibility (i.e., cast shadows)
at sparse reconstructed points of the scene.

2.3.2.2 User-assisted methods

Instead of making strong assumptions about the scene, which are necessary to constrain
the problem of decomposing a single image, some approaches rely on user assistance to
disambiguate reflectance and illumination.

Bousseau et al. [Bousseau 2009] propose a method which enables users to guide the de-
composition with a sparse set of simple annotations. These user scribbles indicate regions
of constant reflectance, constant illumination, or known absolute illumination (Figure 2.1).
Inspired by [Levin 2008], Bousseau et al. propagate the user-specified constraints to all
pixels using an image-guided energy formulation, which assumes that local reflectance
variations lie in a plane in color space. Combining user scribbles with their propagation
energy enables user-assisted decomposition of complex images, including on scenes which
receive colored illumination.

Shen et al. [Shen 2011a] use similar user scribbles but a different propagation energy:
they express the reflectance at each pixel as a weighted combination of the reflectance of its
neighbors. They define affinity weights between pairs of pixels according to the assumption
that neighboring pixels which share similar intensity and chromaticity values should have
similar reflectances.
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16 Chapter 2. Background

(a) Input image (b) User scribbles (c) Reflectance image (d) Illumination image

Figure 2.1: User-assisted intrinsic decomposition of [Bousseau 2009]. Starting from a single input
image (a), users mark scribbles indicate regions of similar reflectance, similar illumination, or
known absolute illumination (b). Constraints inferred from the scribbles are then propagated to all
pixels and guide the decomposition into reflectance (c) and illumination (d) images.

Dong et al. [Dong 2011] propose an interactive system for modeling materials from a
single texture image. In particular, they separate illumination from reflectance and identify
different materials in the image. They assume that nearby pixels with similar chroma values
correspond to the same material and have the same reflectance, and that the large scale
geometry is almost flat. They then interactively correct the estimation with user scribbles
in regions that violate their assumptions.

Okabe et al. [Okabe 2006] propose a pen-based interface to specify approximate nor-
mals, and propagate them over the image. Their algorithm then simultaneously refines
these normals and estimates the reflectance at each pixel. It assumes that the scene is
mostly illuminated with directional lighting, and shadows are not dominant in the image.
The extraction of reflectance and normals then allows the photograph to be relit under
different illumination conditions.

In work developed concurrently, Karsch et al. [Karsch 2011] describe a system to re-
alistically render synthetic objects in an existing photograph. They exploit user annotation
to recover a simple geometric model of the scene, and the position, shape, and intensity
of light sources. They then iteratively refine the lighting model and estimate the scene
reflectance, with a Retinex-inspired intrinsic image decomposition method which exploits
the geometry estimation. Although they start from a single image, the user annotation
allows them to extract a model of the scene that is suitable for inserting virtual objects.

Discussion. The methods we propose in Chapters 3 and 5 share similarities with the
scribble-based approaches: we also define constraints at a few pixels in the input images,
and use image-guided propagation to disambiguate other regions. However, we avoid
the need for user annotations, and instead infer constraints at a sparse set of points us-
ing reconstructed geometry. In contrast with the user-assisted model estimation described
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2.3. Intrinsic image decomposition 17

in [Karsch 2011], we automatically reconstruct approximate scene geometry using multiple
views.

In Chapter 3, we ask users to capture a few additional pictures and perform simple
calibration steps, once for each scene, instead of providing scribbles on each input image.
After these steps, we automatically compute illumination constraints and extract multiple
illumination components (sun, sky, indirect), which would be hard to disambiguate by
users. We further simplify the capture and calibration steps in Chapter 4. In contrast,
the method we describe in Chapter 5 does not require user assistance, and handles a large
number of images from a photo collection automatically.

2.3.2.3 Multiple-images methods

Several methods use images captured from a single viewpoint under multiple lighting con-
ditions (i.e., timelapse sequences) to constrain the decomposition. A timelapse sequence
of N frames can be factored into N illumination images and a single reflectance image,
assuming the scene is static.

Weiss [Weiss 2001] exploits the statistics of natural images to decompose a timelapse
sequence. He formulates the problem as a maximum-likelihood estimation, based on the
assumption that derivative filters applied to natural images tend to yield sparse outputs.
He shows that the reflectance derivatives can be robustly estimated by applying a median
operator on the N observations of the image gradients (in the log domain). The reflectance
image can then be re-integrated from its derivatives. However, Matsushita et al. [Mat-
sushita 2004a] observe that shading residuals can appear in the reflectance image when
neighboring pixels have different normals and the input images do not cover the illumina-
tion directions uniformly. They instead use the median estimator to detect flat surfaces, on
which they explicitly enforce smooth illumination. Matsushita et al. [Matsushita 2004b]
extend Weiss’s method to handle non-Lambertian scenes. They derive time-varying re-
flectance images instead of extracting a single reflectance image.

Sunkavalli et al. [Sunkavalli 2007] decompose timelapse sequences of cloudless out-
door scenes into a shadow mask and images illuminated only by the sky or by the sun.
This separation allows them to factorize and compress timelapse sequences. In subsequent
work, Sunkavalli et al. [Sunkavalli 2008] model distinct time-varying colors of ambient
daylight and direct sunlight, which allows them to extract a reflectance image, and illumi-
nation images corresponding to sunlight and skylight; they also recover scene information
such as sun direction, camera position, and partial geometry.

Matusik et al. [Matusik 2004] additionally measure the radiance incident to an outdoor
scene for each frame of a timelapse sequence. They use two cameras and a chrome sphere
to capture high-dynamic range images of the scene and the sky every two minutes over
a period of three days. They then estimate the reflectance field, i.e., a description of the
transport of light through the scene. Although the reflectance field can be used for relight-
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18 Chapter 2. Background

ing, this method does not explicitly estimate a reflectance and an illumination image, and
instead treats the scene as a black-box linear system that transforms an input signal (the
incident radiance) into an output signal (the reflected radiance towards camera).

These methods assume a fixed viewpoint and varying illumination. For outdoor scenes,
this leads to a lengthy and inconvenient capture process since lighting due to the main
illuminant (the sun) evolves slowly. In contrast, Liu et al. [Liu 2008] retrieve images from
different (yet similar) viewpoints and varying lighting, and use them to colorize an input
grayscale image. They extend Weiss’s approach [Weiss 2001] to recover reflectance and
illumination of the scene as viewed from the viewpoint of the grayscale image. While the
output of this decomposition is sufficient to transfer color to the input grayscale picture, it
produces blurry reflectance images and focuses on photographs from similar viewpoints.

Discussion. Our approaches build on this family of work, but we seek to take advan-
tage of the partial 3D information provided by multiple views and avoid the sometimes
cumbersome timelapse capture process. We use multiple views to reconstruct sparse scene
geometry, which allows us to constrain the decomposition based on the image formation
model of Section 2.1.

In Chapter 3, we describe a method which uses a few images captured at a single time
of day. The main advantage of this approach is to reduce the acquisition time, while it also
allows us to separate the illumination due to sun, sky, and indirect lighting. However, it
requires a chrome sphere to capture incident radiance, and manual calibration steps; we
simplify this process in Chapter 4.

In contrast, the method we describe in Chapter 5 exploits lighting variations to derive
constraints between pairs of pixels. It therefore applies to unstructured photo collections,
where the lighting is varying and unconstrained, or to indoor scenes, in which a light source
can be moved around to vary the lighting conditions.

2.3.3 Evaluation

Evaluating the results of intrinsic image decomposition methods is a non-trivial task.
Residual shadows or shading artifacts in the reflectance layers are clearly visible, but it
is more difficult to evaluate the decomposition for different surfaces with often varying ori-
entations and material colors. As a result, a visual comparison is not sufficient to compare
the output of different approaches.

An additional difficulty stems from the fact that there is no ground truth available to
validate the results on arbitrary images, because creating such ground truth would require
measuring the geometry and material properties everywhere in the scene. A few efforts
have been made towards providing datasets associated with ground truth, for training and/or
evaluation. However, existing datasets consist of single objects, or scenes rendered with
non-photorealistic lighting conditions (Figure 2.2).
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2.3. Intrinsic image decomposition 19

(a) [Tappen 2005] (b) [Bousseau 2009] (c) [Grosse 2009]

Figure 2.2: Existing datasets for intrinsic decomposition with ground truth. Top row shows the
input image, second row the ground truth reflectance layer, bottom row the ground truth illumination
layer. (a) Photographs of crumpled papers scribbled with a green marker. (b) Synthetic rendering
with simple illumination. (c) Photographs of isolated objects. In Chapter 5, we create a synthetic
dataset made of realistic renderings of a complex textured scene, with a physically-based sky and
global illumination.

Tappen et al. [Tappen 2006] collect a set of images of crumpled paper which they color
with a green marker. As the green channel of the captured images does not contain any of
these markings, a ground-truth grayscale albedo image can be extracted by dividing the red
and green channels of the photograph.

Grosse et al. [Grosse 2009] present the MIT Intrinsic Images dataset, which includes
ground truth intrinsic image decompositions for 16 real objects, in three categories: arti-
ficially painted surfaces, printed objects, and toy animals. They also capture images with
a fixed viewpoint and ten different positions for a handhelp lamp, to use with Weiss’s ap-
proach [Weiss 2001]. The decompositions are obtained using polarization techniques to
remove specular highlights, and various paints to recover diffuse images of the same object
with and without reflectance variation; however, they do not account for interreflections.
Grosse et al. use this dataset to quantitatively compare several existing algorithms, with an
error criterion that they define as the Local Mean Squared Error (LMSE).

The MIT dataset is very useful for evaluating intrinsic decomposition methods. How-
ever, it consists of isolated objects illuminated with a single direct light source; there-
fore, it targets a simpler version of the intrinsic image problem, because real scenes made
of several objects exhibit complex (and possibly colored) illumination, interreflections,
occlusion boundaries at the objects’s outlines, or colored cast shadows. Bousseau et
al. [Bousseau 2009] also present a synthetic image with ground truth; however, it con-
sists of a simple scene composed of objects with uniform reflectance, and does not contain
noticeable interreflections or cast shadows.
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20 Chapter 2. Background

Several approaches presented in Section 2.3.2 obtain good scores on the MIT bench-
mark for isolated objects, but it is unclear how well they work on real scenes and outdoors
environments. In particular, most existing methods assume monochrome lighting while
outdoor scenes are often lit by a mixture of colored sun and sky light.

In Chapter 5, we propose a synthetic dataset which contains physically-based render-
ings of an outdoor scene with complex geometry and reflectance, under varying viewpoints
and lighting conditions. This allows a more meaningful comparison to ground truth since
our dataset captures indirect lighting, shadows, and occlusions between parts of the cap-
tured scene. We quantitatively compare the results of several existing methods using this
dataset. Our evaluation in Chapters 3 and 5 also demonstrates that our methods are more
robust to common outdoor lighting scenarios such as mid-day shadows, sunset, or urban
night lights, because we do not make the assumption of monochromatic lighting shared by
many existing methods.

2.3.4 Applications

Intrinsic images enable a variety of applications in image editing. In particular, Bousseau
et al. [Bousseau 2009] modify the reflectance layer to alter textures while preserving
coherent illumination, and Beigpour et al. [Beigpour 2011] similarly re-color objects.
Yan et al. [Yan 2010] focus on re-texturing objects in videos. The separation of re-
flectance and illumination facilitates the re-texturing, whereas previous work such as Tex-
tureShop [Fang 2004] used the luminance channel to approximate the illumination layer;
this approximation is not valid for images with varying reflectance or colored lighting.
Given an intrinsic image decomposition, Carroll et al. [Carroll 2011] propose a user-
assisted decomposition to isolate the indirect contribution of each colored material in the
scene; this enables the manipulation of object colors with consistent interreflections. Liu et
al. [Liu 2008] use intrinsic image decompositions and color transfer to colorize grayscale
images.

The illumination layer can be manually edited to enable image-based relighting, as the
day-to-night example shown in [Bousseau 2009]. Luo et al. [Luo 2012] infer normals from
the illumination image and estimate the subtle 3D relief of oil paintings, which can then
be re-rendered under different lighting conditions. The system of Melendez et al. [Me-
lendez 2011] reconstructs 3D models of historic buildings, and transfers the reflectance
of material exemplars to the model texture. The textured 3D model can then be rendered
under novel lighting conditions. Karsch et al. [Karsch 2011] leverage intrinsic images to
estimate a lighting model and reflectance from a single image and user annotations, thus
enabling the insertion of virtual objects in existing photographs.

In Chapter 3, we propose a rich intrinsic decomposition which separates reflectance
from illumination and further decomposes the illumination into sun, sky, and indirect com-
ponents. We show that modifying each layer independently in image editing software
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2.4. Geometry reconstruction 21

allows advanced manipulations such as lighting-aware editing, insertion of virtual objects,
or relighting. In Chapter 5, we demonstrate how our multi-view decomposition facilitates
texturing illumination-free 3D models. Lastly, we develop a method for image-based il-
lumination transfer, which enables the transfer the lighting from an image to a different
viewpoint in a photo collection; this allows for illumination-consistent view transitions
between photographs of the collection.

2.4 Geometry reconstruction

In this thesis, we leverage the information in multiple photographs to extract geometric
information about the scene and guide the intrinsic image decomposition.

Several methods have been developed in order to automatically extract 3D geometry
using photographs captured from multiple viewpoints. In this section, we briefly describe
the reconstruction pipeline used in our work, which is based on off-the-shelf software for
automatic 3D reconstruction. We refer the reader to [Snavely 2010] for more detail.

Starting from unorganized images of a scene, captured from different viewpoints, pos-
sibly at different times and with different cameras, the reconstruction aims to recover two
elements:

• a position and orientation for each input photograph (the camera pose), describing
where it was taken and the parameters of the corresponding camera;

• a set of 3D points corresponding to physical points in the scene (the reconstructed
point cloud), and a list which indicates, for each point, the images in which it is
visible.

Reconstructing cameras. The first step consists in recovering the camera pose and in-
trinsic parameters for each input photograph, in order to relate all photographs in a single
3D coordinate system. To do so, distinctive local features are extracted from the input
pictures, then matched across images in order to identify similar-looking features in dif-
ferent views [Lowe 2004, Wu 2007a]. Pixel correspondences may correspond to the same
physical points observed from different angles. Given enough matches, they can be used
to recover the 3D camera poses and the 3D position of each point in the set of matches;
this process is known as Structure from Motion. We use publicly available software for
recovering camera poses, namely Bundler [Snavely 2006] and VisualSFM [Wu 2011].

Reconstructing 3D geometry. Once the camera parameters have been estimated, Multi-
View Stereo algorithms [Seitz 2006] can recover the 3D structure of the scene. We use a
patch-based approach (namely PMVS [Furukawa 2009b]) which extracts a set of points on
the scene surface, where both the 3D position and 3D normal are estimated, and a list of
images in which each point is visible. However, the normals estimated by PMVS are often

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2

http://phototour.cs.washington.edu/bundler/
http://www.cs.washington.edu/homes/ccwu/vsfm/
http://grail.cs.washington.edu/software/pmvs/


22 Chapter 2. Background

noisy; we recalculate the normal to each point by fitting a local plane on the 3D position of
neighboring points [Hoppe 1992].

This automatic reconstruction pipeline results in a point cloud which represents the
scene geometry. This point cloud is often very irregularly sampled: textured regions are
densely reconstructed thanks to the presence of numerous image features, while uniform
textureless regions and specular objects contain few reconstructed points. As a result, con-
structing a mesh from this point cloud, for example with Poisson reconstruction [Kazh-
dan 2006], results in incomplete and inaccurate geometry. In this thesis, we design methods
which can handle such geometry resulting from automatic 3D reconstruction. We identify
reliable parts of the reconstructed point cloud, and guide the intrinsic image decomposition
problem with this knowledge of partial geometry.
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CHAPTER 3

Rich Intrinsic Image Decomposition
of Outdoor Scenes

In this chapter1, we focus on outdoor scenes and use multiple photographs, captured at a
single time of day from different viewpoints, to guide the decomposition. We introduce a
rich intrinsic image decomposition which extracts reflectance and illumination layers from
an input image, and also separates the illumination into components due to sun, sky, and
indirect lighting.

Our algorithm takes as input a small number of photographs of the scene, an environ-
ment map which represents the illumination coming from the sky and distant environment
in all directions, and two pictures of a photographer’s grey card for calibration. From this
lightweight capture we use recent computer vision algorithms to reconstruct a sparse 3D
point cloud of the scene. Although the point cloud only provides an imprecise and incom-
plete representation of the scene, we show that this is sufficient to compute plausible sky
and indirect illumination at each reconstructed 3D point. The coarse geometry is however
unreliable for sun illumination, which typically contains high-frequency features such as
cast shadows. We introduce a new parameterization of reflectance with respect to sun visi-
bility that we integrate in an optimization algorithm to robustly identify the 3D points that
are in shadow. We developed an optimization inspired by mean shift [Comaniciu 2002]
where we use asymmetric regions of influence and constrain the evolution of the estimates.

Image-guided propagation algorithms are typically used to propagate user scribbles
[Levin 2004, Bousseau 2009]; we show how to use these algorithms to propagate the il-
lumination information computed at 3D points to all the image pixels. Our approach gen-
erates intrinsic images of similar quality as scribble-based approaches, with only a small
amount of user intervention for capture and calibration. In addition, our ability to sepa-
rate sun, sky and indirect illumination (Figure 3.1e-h) opens the door for advanced image
manipulations, as demonstrated in Figure 3.1b-d.

1The work described in this chapter will be published in IEEE Transactions on Visualization and Computer
Graphics [Laffont 2012a]. An early version also appeared in [Laffont 2011].
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24 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

(a) Input photographs (b) Re�ectance editing (d) Sunset relighting

(f ) Sun illumination (h) Indirect illumination(g) Sky illumination

...

(c) Virtual object insertion

(e) Re�ectance

Figure 3.1: Starting from multiple views of the scene (a), our method decomposes photographs
into four intrinsic components — reflectance (e), illumination due to sun (f), illumination due to sky
(g) and indirect illumination (h). Each intrinsic component can then be manipulated independently
for advanced image editing applications (b-d).

In summary, this chapter makes the following contributions:

• We show how to compute sky, indirect, and sun (ignoring cast shadows) illumination
at automatically reconstructed 3D points, using incomplete and imprecise geometry
and a small set of input images.

• We introduce an algorithm to reliably identify points in shadow based on a new pa-
rameterization of the reflectance with respect to sun visibility. Our algorithm com-
pensates for the lack of accurately reconstructed and complete 3D information.

• We show how to propagate reflectance, sun, sky and indirect illumination to all pixels
in an image, without user intervention or involved inverse global illumination com-
putation. We achieve this by using the illumination values computed at 3D points as
constraints for image propagation algorithms.

After the definition of our image formation model and a description of the capture
process, the structure of this chapter follows these three contributions.

3.1 Overview

Image formation model. We assume Lambertian surfaces and model the image values
at each pixel as the product between the incident illumination and the object reflectance
R. Formally, the radiance I towards the camera at each non-emissive, visible point corre-
sponding to a pixel is given by the equation:

I = R ∗
∫

Ω
cos θωL(ω)dω (3.1)
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3.1. Overview 25

where we integrate over the hemisphere Ω centered on the normal at the visible point, L(ω)
is the incoming radiance in direction ω, θω is the angle between the normal at the visible
point and direction ω. Capital bold letters represent RGB color values and ∗ denotes per-
channel multiplication.

For our purposes, we will separate out the incoming radiance into three components:
the radiance due to the sun, that due to the sky and that due to indirect lighting. To simplify
notation, we define two subsets of the hemisphere: Ωsky, i.e., the subset of directions in
which the visible point sees the sky, and Ωind the subset of directions in which another
object is visible, and thus contributes to indirect lighting. We however explicitly represent
the sun visibility vsun, first because precise computation of vsun is necessary to capture sharp
shadows, and second because estimating vsun robustly is one of our main contributions.

We can now re-write Equation 3.1:

I = R ∗
(
vsun max(0, cos θsun)Lsun +∫

Ωsky

cos θωLsky(ω)dω +
∫

Ωind

cos θωLind(ω) dω
)

where Lsun, Lsky and Lind are radiance from the sun, the sky and indirect lighting respec-
tively, θsun is the angle between the normal at the visible point and the sun modeled as a
directional light source, and θω is the angle between the normal and the direction of inte-
gration ω over the hemisphere. The scalar vsun ∈ [0, 1] models the visibility of the sun (0
for completely hidden, 1 for fully visible).

We next define simplified quantities at each pixel:

Ssun = vsun max(0, cos θsun)Lsun = vsunŜsun (3.2)

Ssky =
∫

Ωsky

cos θωLsky(ω) dω (3.3)

Sind =
∫

Ωind

cos θωLind(ω) dω. (3.4)

where Ŝsun corresponds to the sun illumination when cast shadows are ignored. We define
a simplified image formation model from these quantities:

I = R ∗ (Ssun + Ssky + Sind) (3.5)

= R ∗ Stotal (3.6)

where R is the object RGB reflectance. Ssun, Ssky and Sind are the RGB illumination (or
irradiance) from the sun, sky and indirect lighting respectively.
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26 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Outline. Our first goal is to extract the reflectance R and illumination Stotal from this
image formation model. We demonstrate how to make this problem tractable by leverag-
ing the sparse geometric information generated by multiview stereo algorithms to compute
Ŝsun, Ssky and Sind at each reconstructed 3D point (Section 3.3). We then introduce a
new algorithm to estimate the sun visibility vsun precisely despite the approximate avail-
able geometry (Section 3.4), which will allow us to obtain all illumination components
using image-guided propagation (Section 3.5). Figure 3.2 illustrates the main steps of our
approach in the form of a block diagram.

...

Input images

Light probe, 
gray card

Point cloud 
and camera position

Multiview
stereo

User 
intervention

Aligned, calibrated
environment map and sun

Sun illumination
no visibility

Sky illumination

Indirect illumination

Visibility initialization Candidate

Sun visibility

Optimization

Total illumination

Sun illumination

Sky illumination

Indirect illumination

(a) Capture (b) 3D reconstruction
and callibration

(c) Geometry-based
computation

(d) Sun visibility 
estimation

(e) Image-guided propagation
and light source separation

Colored proxy

Total illumination

Figure 3.2: Overview of our approach. Users capture a small set of pictures of the scene, along
with an environment map and two pictures of a gray card in sun light and in shadow (a). We
illustrate our intrinsic image decomposition with the picture highlighted in orange. We use multi-
view stereo to reconstruct a point cloud of the scene and a coarse proxy geometry (b). Users
align the environment map and the sun with this point cloud and use the gray card to calibrate
their intensity. Once this calibration is performed, all the remaining steps are automatic. We
use the reconstructed 3D geometry to compute sun, sky and indirect lighting over the point cloud
(c). We also compute an initial guess of the sun visibility using the coarse proxy. These lighting
values give us the necessary information to compute a set of candidate reflectances for each 3D
point. The candidate reflectances form curves in color space parametrized by the sun visibility
(d). We introduce an iterative optimization that identifies the reflectance of each 3D point from
these candidates, along with a precise estimation of the sun visibility. The final step of our method
consists in propagating the illumination values computed at 3D points to every pixel in the image
(e). We decompose the propagated illumination into the sun, sky and indirect lighting components.
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3.2. Capture and Reconstruction 27

3.2 Capture and Reconstruction

Our method relies on a lightweight capture setup composed of a digital camera (preferably
on a tripod), a photographer’s gray card and a simple reflective sphere (Figure 3.3a). No
other special capture or measurement hardware is required.

Even though we use a reflective sphere to capture an environment map, the appara-
tus we use is by far simpler than the ones required for similar inverse-rendering based
approaches. In particular, Debevec et al. [Debevec 2004] measured the reflectance of a
mirrored sphere, whereas Yu et al. [Yu 1998] used a couple of neutral density filters to
measure the radiance of the sun. In contrast, we use an inexpensive pétanque ball (Fig-
ure 3.3b) to capture the environment map, and propose a simple calibration step described
in Section 3.2.3. While existing methods rely on complex equipment to yield high preci-
sion results, we target casual photographers and propose a simpler capture which yields
plausible decompositions.

(a) Capture equipment (b) Game of pétanque in Cannes

Figure 3.3: (a) Equipment used in the capture process: a DSLR camera, a photographer’s gray
card, and a reflective sphere. (b) Pétanque is a popular ball game in southern France and is played
with metal balls. We use such a ball as an inexpensive device to capture an environment map.

3.2.1 Photography

We first capture a few ordinary low-dynamic range photographs (LDR) which we use to
perform approximate geometric reconstruction of the scene. This set of photographs should
have a good coverage of the scene from different viewpoints and sufficient overlap between
neighboring viewpoints to facilitate multiview stereo reconstruction. The number of pho-
tographs required to obtain an acceptable reconstruction depends on the complexity of the
scene and the presence of image features. We captured between 10 and 31 LDR pho-
tographs for the scenes in this chapter.

We then capture two linear, high-dynamic range (HDR), images of the front and side
of the reflective sphere, placed in the scene, to obtain an angular environment map of the
scene (Figure 3.4). We do this using the standard HDR assembly technique of Debevec et
al. [Debevec 1997].

We finally capture linear HDR images of the viewpoints that we want to decompose.
Recall that we capture all images in one session, at a single time of day.
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28 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

3.2.2 Scene reconstruction

We apply structure-from-motion using Bundler [Snavely 2006] and the patch-based multi-
view stereo (PMVS) algorithm [Furukawa 2009b] on the set of LDR+HDR photographs,
using the publicly available implementations. The result of this process is an oriented
point cloud (3D positions and normals), and calibrated cameras (extrinsic and intrinsic
parameters). The process also returns whether each point is visible from each camera. We
rectify the images for radial distortion, using the recovered camera parameters.

We found the PMVS normals to be too noisy for illumination computation. We in-
stead estimate normals at each 3D point by fitting a plane on the local point cloud using
PCA [Hoppe 1992]. We discard 3D points for which the neighborhood is too sparse or
degenerate. We consider a neighborhood as degenerate when the first singular value of the
PCA is twice greater than the second one.

We recover a geometric proxy from the oriented point cloud using the scale space
meshing method of Digne et al. [Digne 2011]. This automatic approach produces detailed
accurate meshes in regions where the point cloud is dense, while leaving holes in areas
where the point cloud is irregularly sampled. We use the automatic hole filling tool avail-
able in MeshLab [Cignoni 2008] to further improve the reconstruction in those areas. We
also experimented with the Poisson reconstruction of Kazhdan et al. [Kazhdan 2006]. Al-
though this algorithm generates a closed surface with no holes, we found that it tends to
produce bumpy surfaces due to the irregular sampling of the point cloud. We neverthe-
less used the Poisson reconstruction on the “Rocks” scene for which the point cloud is
dense and uniform. Note that recent approaches could improve the quality of reconstruc-
tions in specific scenarios, for instance by detecting planar regions (e.g., [Sinha 2009, Fu-
rukawa 2009a, Gallup 2010]) in urban scenes.

3.2.3 Illuminant Calibration

Some manual interaction is required to calibrate the sun and sky illumination in the system
described in this chapter. Users specify the sun position, using cues from the shadows in
the image and reconstructed geometry. They label sky pixels in the environment map, and
rotate the sky dome until it aligns with the specified sun position and the scene horizon.
Finally, they take two photographs of a gray card placed in the scene, in sunlight and
in shadow, at the time of capture in order to estimate the color transfer function of the
reflective sphere and the radiance Lsun of the sun. We now describe details of this process.

First, because our model separates sun light from sky light, we need to remove sun pix-
els from the environment map. We define the sun position as the barycenter of the saturated
sun pixels, and use inpainting to fill-in these saturated pixels from their neighbors. Since
our model also separates sky light from indirect light, we use a standard color selection tool
to label sky pixels that will contribute to the sky illumination, while other pixels (buildings,
trees) will contribute to indirect lighting. This is illustrated in Figure 3.4b.
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3.2. Capture and Reconstruction 29

(a) Input photographs of the sphere (b) Assembled environment map

Figure 3.4: We use the standard HDR assembly technique of Debevec et al. [Debevec 1997] to
merge two pictures of a reflective sphere (a) into an environment map (b), shown in a latitude-
longitude parameterization. The red curve separates pixels contributing to sky illumination and
those contributing to distant indirect illumination, and is specified by the user (see Section 3.2.3).

(a) Bad orientation of the sun (b) Correct orientation of the sun

Figure 3.5: The user specifies the orientation of the sun by adjusting the sun zenith and azimuth
angles. In our calibration program shown here, a directional light source generates shadows us-
ing the proxy geometry. The user compares this virtual shadow with the shadow in the original
photograph (a), and changes the sun position until both shadows overlap (b).

(a) Location of the gray target (b) Shadowed gray target (c) Lit gray target

Figure 3.6: A simple calibration step with a photographer’s gray card is used to calibrate the
illuminants. The gray card is placed in a planar region whose geometry is well reconstructed (a,
red circle). We take two photographs of the gray card, once in shadow (b) and once in sunlight (c).
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30 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Second, we align the environment map and sun with the reconstructed scene. To do so
we manually mark a vertical edge of the reconstructed geometry and rotate the environment
map and sun until the cast shadow of the virtual edge is aligned with that in the photograph.
This process is illustrated on Figure 3.5.

Finally, the environment map only captures a scaled version of the incident lighting
since the sphere is not perfectly specular. We need to compensate for this scaling factor in
each color channel.

In our system the environment map is used to compute both the sky illumination Ssky

and part of the indirect illumination Sind, the other part being computed from the geometric
proxy (see Section 3.3 for more details). We estimate the color transfer function of the
reflective sphere K (represented as a RGB vector) by taking a photograph of a neutral gray
card with known reflectance R placed in sun shadow (Figure 3.6b), corresponding to the
case vsun = 0. We intentionally place the card at a position where we expect its geometry
to be well reconstructed (Figure 3.6a), which allows us to estimate its illumination using
the proxy geometry. From the image formation model we have:

I = R ∗ (Ssky + Sind)
= R ∗ (K ∗ Senv

sky + K ∗ Senv
ind + Sproxy

ind ) (3.7)

where Senv
. denotes the illumination terms computed from the environment map and Sproxy

.

those computed from the geometric proxy and environment map. I is the radiance of the
gray card, which can be looked up in the captured photograph. We can estimate K from
this equation, since it is the only unknown.

We similarly recover the sun radiance Lsun by taking a second picture of the gray card
placed in sunlight (Figure 3.6c). From this picture we have:

I = R ∗ (Ssun + Ssky + Sind)
= R ∗ (vsun cos θsunLsun + Ssky + Sind) (3.8)

where vsun = 1 if the gray target is placed in direct sunlight, θsun is the angle between the
scene normal and the sun direction previously specified by the user. Only Lsun is unknown.

Output. The output of the capture and calibration steps is:

• a moderately dense point cloud reconstruction of the scene which we will refer to as
the PMVS points (Figure 3.7b)

• a very approximate geometric proxy, which often contains significant geometric er-
rors (Figure 3.7c)

• the direction and radiance of the sun and a correctly aligned and scaled HDR envi-
ronment map containing the sky and distant indirect radiance (Figure 3.4b).

Note that Chapter 4 focuses on simplifying these capture and calibration steps.
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3.3. Geometry-Based Computation 31

(a) Input photograph (b) Reconstructed PMVS points

(c) Proxy shadows (d) Shadow configuration

Figure 3.7: Multiview geometry provides us with a sparse oriented point cloud (b, red pixels), from
which we generate a mesh that represents the scene geometry. Compared to the original image (a),
the initial guess of the sun shadows computed using the proxy reconstructed from the point cloud is
very inaccurate due to geometric errors, and incomplete (c). In particular, a bush casting a large
shadow on the floor (d) is not reconstructed.

3.3 Geometry-Based Computation

We describe here how to compute sun, sky and indirect illumination values for each PMVS
point. These points have been generated using multiview stereo and also have normals
(Section 3.2.2).

We first compute sun illumination Ŝsun ignoring cast shadows, i.e., unoccluded sun-
light. We already know the required quantities for this computation, i.e., the normal at
the point and the sun radiance and direction. Treating sun visibility requires much higher
precision than the one provided by the proxy, and is treated separately in Section 3.4.

We then compute sky and indirect illumination at each PMVS point. Figure 3.8 illus-
trates this computation that we detail below. In a nutshell, we use the HDR environment
map to compute both sky illumination and distant indirect illumination, while we compute
the near-field indirect illumination from the proxy geometry. Note however that we do
not need to know the reflectance of the proxy for this step, we instead use the captured
photographs to recover the necessary outgoing radiance over the geometry.
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32 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Figure 3.8: Evaluation of sky and indirect illumination at each PMVS point. We look up the
radiance value of the PMVS points in each image and average the values over the images where
they are visible (a). We then project and interpolate this radiance over the proxy geometry (b).
Finally we gather the sky and indirect illumination at each PMVS point by shooting rays which
sample the hemisphere (c, dotted lines). Rays that reach sky pixels in the environment map (c, blue
lines) contribute to sky illumination, while other rays contribute to indirect illumination (c, dark
lines).

(a) Input photograph (b) Colored proxy

Figure 3.9: We estimate sky and indirect illumination at PMVS points using a colored proxy
(b), obtained by projecting and interpolating the radiance of PMVS points on the reconstructed
geometry. When viewed from the estimated position of the camera, the proxy resembles a coarse
version of the input image (a).
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3.3. Geometry-Based Computation 33

Assigning radiance to the proxy geometry. We first assign radiance to each PMVS
point by looking up its pixel values in each HDR image where it appears (Figure 3.8a). We
assign the average value as the outgoing radiance of the point, which is assumed constant
in all directions. We then assign the radiance of the closest PMVS point to each vertex of
the proxy, and interpolate these values over the faces of the mesh (Figure 3.8b). This step
yields a colored proxy that stores the outgoing radiance, as captured in the photographs
(Figure 3.9). This colored proxy allows easy computation of indirect illumination, avoid-
ing complex multiple-bounce estimation typical of inverse global illumination approaches,
since it stores the outgoing radiance Lind at each point instead of its reflectance.

Sky and indirect illumination. We separate the environment map into two regions
(see Figure 3.4b), one for the sky and the other one for distant objects. At every PMVS
point we cast a set of rays towards the hemisphere (Figure 3.8c). If a ray reaches a sky
pixel of the environment map, the resulting radiance contributes to sky illumination Ssky.
Otherwise, the ray intersects the proxy or hits a non-sky pixel of the environment map,
and therefore contributes to indirect illumination Sind. If the ray hits the proxy, it uses the
radiance assigned to the geometry as described in the previous paragraph.

We rewrite Equations 3.3 and 3.4 to express this computation, changing the integra-
tion domain to the entire hemisphere Ω for both integrals, and introducing a visibility term
vsky(ω) which is 1 when the ray in direction ω reaches the sky, and 0 otherwise (it con-
tributes to indirect illumination):

Ssky =
∫

Ω
vsky(ω) cos θωLsky(ω) dω (3.9)

Sind =
∫

Ω

(
1 − vsky(ω)

)
cos θωLind(ω) dω. (3.10)

The computation of Equations 3.9 and 3.10 is robust to the coarse geometry of the proxy
since the integration over Ω averages the values over the entire hemisphere. We implement
this computation with a custom renderer in the PBRT stochastic raytracer [Pharr 2010].

Our approach shares similarities with the techniques of Yu and Malik [Yu 1998], but
while their method was designed for accurate geometry constructed manually, we handle
sparse incomplete geometry reconstructed automatically.

Finally we compute an initial guess of the sun visibility vinit
sun at each PMVS point by

intersecting a ray with the the proxy geometry in the direction of the sun. Note however
that this visibility test is very sensitive to errors in the reconstructed proxy, as illustrated in
Figure 3.7c. This fact underlines the importance of accurately estimating vsun and we next
show how to refine this initial estimate.
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34 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

3.4 Estimating Sun Visibility at 3D Points
One key contribution of this approach is a novel algorithm for identifying visibility vsun

with respect to the sun for each PMVS point. In the following, we wish to decompose one
photograph and thus consider only PMVS points visible from the corresponding viewpoint.

From our image formation model in Equations 3.2 and 3.5 we express the reflectance
at each PMVS point as a function of the visibility term:

R(vsun) = I
(vsunŜsun + Ssky + Sind)

(3.11)

where I is the RGB pixel value in the image we wish to process, Ssky, Sind and Ŝsun

are the illumination values of the corresponding PMVS point computed in Section 3.3, and
the division is per-channel. With this parameterization, varying vsun in [0, 1] generates a
curve of candidate reflectances in RGB space. Our goal is to find the reflectance R (or
correspondingly visibility vsun) of each PMVS point; by construction, this reflectance lies
on the candidate curve corresponding to that PMVS point.

The intuition of our approach is that multiple PMVS points sharing the same reflectance
will generate intersecting curves in color space; their (shared) reflectance will be the color
where the candidate curves intersect (Figure 3.10a-b). By finding these intersections we
can deduce the value of vsun for the PMVS point corresponding to each curve.

However, imprecision in the capture process and in the geometry-based computation
prevents the curves from perfectly intersecting in color space. In addition, multiple inter-
sections can occur along a curve, giving multiple candidates for the visibility. We address
these issues with a robust iterative procedure inspired by the mean shift algorithm.

Overview. Mean shift [Fukunaga 1975, Comaniciu 2002] is a non-parametric mode-
seeking algorithm that aims to locate the maxima of a density function, given a set of data
points. First, a kernel (or window) is placed at each data point; it represents the region of
influence of this point. In an iterative process, each kernel is then moved in a direction that
increases the local density, computed as the weighted average of nearby data points. The
process stops when all kernels have reached a stationary point (or mode).

In our approach, we define an asymmetric region of influence for each candidate curve.
We use mean shift iterations to maximize an energy that measures the overlap among pairs
of curves, and iteratively update the estimated reflectances while constraining them to lie
on their candidate curves. After convergence, for each curve we obtain the reflectance
(and corresponding visibility) that tends to maximize the number of PMVS points sharing
a similar reflectance, and correspondingly tends to minimize the number of reflectances in
the scene.

This algorithm assumes that the scene is composed of a sparse set of reflectances
shared by multiple points, which is a common assumption recently used in image seg-
mentation [Omer 2004] and white balance algorithms [Hsu 2008].
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3.4. Estimating Sun Visibility at 3D Points 35

(a) Selected PMVS points (b) Candidate reflectance curves

(c) Regions of influence at initialization (d) Regions of influence after one iteration

Figure 3.10: Multiple PMVS points sharing the same reflectance will generate intersecting curves
in color space. (a) We selected two PMVS points with the same reflectance but different illumina-
tions (red and blue squares). (b) The corresponding candidate reflectance curves (nearly) intersect
at one end, which corresponds to the reflectance of both points. Diamond markers on the curves
correspond to the initial guess for visibility (randomly set in this example). (c) Each curve affects
a region of the surrounding color space, according to Equation 3.12 . Regions of influence at ini-
tialization are illustrated as isosurfaces with varying opacity. Regions closer to the curve and the
current visibility estimate are more affected. (d) After one iteration, the visibility estimates have
moved towards the intersecting end of the curves, increasing the overlap between the regions of
influence (i.e., the energy Etotal in Equation 3.14).

Region of influence. Equation 3.11 defines the candidate reflectances of a PMVS
point as a rational curve that is parameterized non-uniformly by vsun. In order to obtain a
uniform parametrization we first approximate each curve c as a piecewise linear curve in
CIE L*a*b* space, and parameterize it by arc length from the shadowed end of the curve:
t in [0, 1] so that R(vsun = 0) = R(t = 0). We use this uniform parametrization to
compute distances along the curve. We chose to work in CIE L*a*b* space because it
defines a perceptually uniform distance metric.

We then define the influence of curve c on a point x of color space as:
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36 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Axc = h⊥

(
d2
⊥(x, c)
σ2
⊥

)
h‖

(
d2
‖(x, c)
σ2
‖

)
(3.12)

where:

• d2
⊥(x, c) = ‖x− proj3D(x, c)‖2 is the squared distance perpendicular to the curve,

defined by squared distance in color space between x and its projection on curve c.

• d2
‖(x, c) = (tc − projt(x, c))2 is the squared distance along the curve, defined by

squared difference between the arc length tc (i.e., the position of the current re-
flectance estimate along the curve) and the arc length projt(x, c) (i.e., the projection
of x on the curve).

• h⊥ and h‖ are Gaussian kernel profiles with the form h(x) = e−x controlled by
the standard deviations σ2

⊥ and σ2
‖ (larger σ values correspond to a wider region of

influence).

The first term in Equation 3.12 compensates for curves that do not exactly intersect,
by defining a region of influence around the curve with a Gaussian falloff orthogonal to
the curve. The second factor makes our algorithm robust to “false intersections”, i.e.,
intersections of curves that in fact do not share the same reflectance. Due to the Gaussian
kernel h‖, each curve only influences regions close to its current reflectance estimate. As
the reflectance estimate converges toward the most likely reflectance, the value of h‖ at
intersections lying at other positions along the curve will decrease.

The regions of influence of two curves are illustrated in Figure 3.10c.

Energy Formulation. We then define an energy that measures the overlap between the
regions of influence of pairs of curves:

E =
∫
V

∑
c∈C

∑
c′ 6=c

AxcAxc′

 dx (3.13)

where we integrate over the entire color space V .

We evenly discretize the 3D color space into a set S of samples, and rewrite this energy
as a discrete sum:

Etotal =
∑
s∈S

Esample(s) (3.14)

where the energy of a sampleEsample(s) accumulates the contribution of each pair of curves
(c, c′) intersecting nearby:

Esample(s) =
∑
c∈C

∑
c′ 6=c

AscAsc′ .

With this formulation, two curves will contribute to the energy of a sample only if they
(almost) intersect near this sample.

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



3.4. Estimating Sun Visibility at 3D Points 37

Derivation of the energy gradient. We seek the positions of the reflectance estimates
along the curves tc for c ∈ C that maximize Etotal:

arg max
tc

Etotal (3.15)

i.e., that are located at the zeros of the gradient function.

The derivative of Etotal with respect to tc is given by:

∂Etotal

∂tc
= 4
σ2
‖

∑
s∈S

∑
c′ 6=c

(projt(s, c)− tc)AscAsc′ (3.16)

Setting Equation 3.16 to 0 for all c ∈ C gives:

∂Etotal

∂tc
= 0 ⇔∑

s∈S

∑
c6=c′

AscAsc′


tc −

∑
s∈S projt(s, c)

(∑
c′ 6=cAscAsc′

)
∑

s∈S
∑
c′ 6=cAscAsc′

 = 0

which is analogous to the form obtained in the mean-shift algorithm [Comaniciu 2002].

Iterative process. We define our iterative procedure recursively by computing at iter-
ation i the weights Aisc (i.e., the regions of influence) using the estimates tic for all curves
c ∈ C, then updating the estimates ti+1

c for each curve c using a weighted average of the
projection of nearby samples on c:

ti+1
c =

∑
s∈S projt(s, c)

(∑
c′ 6=cA

i
scA

i
sc′

)
∑

s∈S
∑
c′ 6=cA

i
scA

i
sc′

(3.17)

We initialize t0c using the initial guess of the sun visibility vinit
sun, obtained in Section 3.3 by

casting the shadow of the geometric proxy. We ensure that this iterative process converges
to a maximizer by checking that the energy does not decrease after each iteration [Comani-
ciu 2000]; if Ei+1

total < Eitotal we set ti+1
c = (ti+1

c + tic)/2 for all c and iterate. The algorithm
stops when |ti+1

c − tic| is small enough for all c.

As a result of this process, the reflectance estimates converge to regions of space where
many curves intersect, while being constrained to lie on their candidate curves due to our
parameterization. This is illustrated in Figure 3.10d.

Orientation separation. We observed that false intersections sometimes occur when
two curves of different reflectances have different orientations, sky or indirect illumination.
In order to further reduce the presence of such intersections, we separate PMVS points
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38 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

(a) Groups of normal orientation (b) Clusters for vertical orientation

(c) Candidate curves before clustering (d) Candidate curves after clustering

Figure 3.11: Orientation separation and curve clustering. (a) PMVS points are separated into
three groups according to the orientation of their normals. Each group is then processed indepen-
dently. (b-c) Within one group (in this illustration, points with vertical normals, i.e. blue pixels
in (a)), PMVS points are clustered according to the endpoints of their candidate curves. (d) After
clustering, pairs of representative curves intersect as expected (orange and light blue, green and
dark blue), since each pair represents PMVS points sharing the same reflectance.

into separate groups based on the orientation of their normals; using three groups worked
well in our experiments. We first apply mean-shift clustering [Comaniciu 2002] where the
3D feature vectors contain the normals of the points. The first two clusters correspond
to the two dominant groups of normal orientations in the scene (Figure 3.11a, blue and
green), while the remaining points form a third group (Figure 3.11a, red). We then run our
optimization independently on each group.

Curve clustering. Even within one group of orientations, the candidate curves corre-
sponding to the numerous PMVS points (up to dozens of thousands, in our scenes) tend to
intersect each other at several positions along the curves (Figure 3.11c), since many similar
(but not equal) reflectances might be present in the scene. We enforce sparsity in our al-
gorithm by grouping all the curves corresponding to a similar reflectance and illumination
(Figure 3.11b). Note that this grouping is only used to identify the sun visibility, we do not
enforce sparsity in the final reflectance image.

We use mean-shift clustering to perform this grouping, representing each curve as a
6D feature vector that contains the L*a*b* reflectances of its endpoints. Clusters that
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3.4. Estimating Sun Visibility at 3D Points 39

contain a small number of curves (less than 1% of the largest cluster) are discarded, and
the corresponding PMVS points are ignored in the remaining of the algorithm. This leads
to the clustering shown in Figure 3.11b-c.

Finally, we replace all the curves belonging to each cluster by one representative curve:
the curve closest to the median of this cluster’s feature vectors. The initial guess of the sun
visibility vinit

sun is assigned to the median visibility of each cluster. This process greatly sim-
plifies and cleans up the set of curves, and lowers the computational cost of our algorithm.
As shown in Figure 3.11d, the curves corresponding to groups of PMVS points with similar
reflectances (nearly) intersect after clustering.

After clustering, we run the optimization to maximize Etotal. Upon convergence, for
each cluster we obtain the position of the estimated reflectance along its representative
curve tfinal. This position value is assigned to all curves belonging to this cluster, from
which we can deduce the final estimated reflectance of each PMVS point corresponding to
these curves.

We found that clustering candidate curves largely improves the stability of the algo-
rithm. The clustering groups candidate curves corresponding to PMVS points with same
reflectance and same illumination, while our subsequent optimization identifies the re-
flectances shared between clusters with different illumination. We show more examples of
candidate curves after clustering in the appendix.

At the end of this process, we obtain a list of PMVS points for which the position along
the curve t, the sun visibility vsun and the reflectance R have been estimated.

Implementation. In practice we use a truncated kernel profile h⊥ (Equation 3.12) so
that h⊥(x) = 0 when x > λ (we use λ = 3, which discards negligible values). This
means that each curve will only influence a limited number of samples; for each curve
c we can precompute the indices of these samples, as well as their orthogonal distance
‖s− proj3D(s, c)‖ and position of their projection along the curve projt(s, c).

We evenly discretized the CIE L*a*b* color space into 60 × 36 × 36 samples, with
L* in [5, 95], a* in [−25, 25], b* in [−25, 25]. We used a fixed bandwidth for the curve
clustering using 6D mean-shift clustering, as well as for the 3D mean-shift clustering for
orientation separation.

The clustering is the most costly part of the algorithm and takes from 25 seconds to a
few minutes with our Matlab implementation, depending on the number of PMVS points.
Once the clustering has been performed, the iterative optimization takes around 10 seconds,
which allowed us to test many parameters for σ2

⊥ and σ2
‖ .

We found that the algorithm produces good results for a wide range of parameters, and
that the best values were scene-dependent. In our experiments we found that large values
of σ2

⊥ can compensate for calibration errors that prevent reflectance curves from perfectly
intersecting, while large values of σ2

‖ can compensate for the erroneous initialization of
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40 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

vinit
sun provided by the approximate proxy. However, σ values should remain small enough to

prevent curves of different materials from influencing one another. Table 3.1 summarizes
the parameter values used for the examples in this chapter.

Statue Rocks Ramp Stairs
(σ2
‖, σ

2
⊥) (0.1, 1) (0.01, 1) (0.3, 1) (0.01, 20)

(0.1, 5) (0.01, 5) (0.3, 5)

Table 3.1: Sets of region of influence parameters used on the four scenes.

3.5 Estimating Illumination at Each Pixel

In previous steps, we have used multiview stereo methods to generate a sparse set of 3D
points on which we compute the illumination values Ŝsun, Ssky and Sind (Section 3.3) along
with the visibility of the sun vsun (Section 3.4). We next show how to leverage image-
guided propagation methods to assign reflectance and illumination values to all pixels in
the input photographs. We first show how to propagate the total illumination Stotal and then
describe a method to subsequently separate the contribution of each lighting component
(i.e., sun, sky and indirect).

3.5.1 Image Guided Propagation

We use the intrinsic images algorithm of Bousseau et al. [Bousseau 2009] that was de-
signed to propagate user indications for separating reflectance and illumination in a single
image. This algorithm makes the intrinsic image decomposition tractable by assuming that
the reflectance values in a pixel neighborhood lie in a plane in color space. This planar
reflectance assumption translates to a set of linear equations so that the illumination image
is expressed as the minimizer of a least-square energy

arg min
S̄total

S̄TtotalM S̄total (3.18)

where the vector S̄total stacks the pixels of the unknown illumination image and the ma-
trix M encodes the planar reflectance assumption (see the paper [Bousseau 2009] for the
complete derivation). For colored illumination the optimization is solved for each color
channel separately.

In their original paper, Bousseau et al. constrain the least-square system with user indi-
cations. Users can specify the value of S̄total over a few pixels or indicate that several pixels
share the same illumination or reflectance. In our approach we use instead the illumination
and visibility estimated at PMVS points to constrain the optimization. We express these
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3.5. Estimating Illumination at Each Pixel 41

(a) Input photograph (b) Illumination constraints

(c) Estimated total illumination (d) Estimated reflectance

Figure 3.12: Separation of reflectance and total illumination. The optimization procedure de-
scribed in Equation 3.19 enforces illumination constraints at PMVS points (b) and propagates them
to all pixels, in order to separate a photograph (a) into total illumination (c) and reflectance (d).

constraints as an additional quadratic penalty

arg min
S̄total

S̄TtotalM S̄total + w
∑
p∈P

(S̄ptotal − Sptotal)
2 (3.19)

where P is the set of pixels covered by PMVS points and Sptotal = vpsunŜpsun + Spsky + Spind
their illumination values computed in Sections 3.3 and 3.4. The weight w controls the
importance of the constraints, we use w = 1 to give equal importance to the constraints
and the propagation model.

Figure 3.12 shows the results of the image guided propagation. This result shows the
power of our approach. We exploit the information provided by the sparse and imprecise
geometry to automatically generate constraints for the propagation of [Bousseau 2009],
thus eliminating the need for user scribbles. A visualization of the constraints for all scenes
can be found in the appendix. While our method supports user scribbles to guide the
decomposition in regions that could not be reconstructed (e.g., trees, specular objects), all
our results have been generated using only the automatically computed constraints.
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42 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

3.5.2 Light Source Separation

Given the estimated illumination image S̄total, we wish to separate the contribution of each
illumination component S̄sun, S̄sky and S̄ind. Inspired by previous work on white balance
under mixed lighting [Hsu 2008], we express our light source separation as two successive
matting problems. We first decompose the illumination into a sun component and a diffuse
component S̄diff that includes the contribution of both sky and indirect lighting. In a second
step we decompose the diffuse component into its two terms.

We first express each illumination term S̄ as the product between a scalar intensity
s = ‖S̄‖ and a chromaticity C = S̄/‖S̄‖, so that:

S̄total = ssunCsun + sskyCsky + sindCind

= ssunCsun + sdiffCdiff. (3.20)

where the low-frequency component Sdiff = Ssky + Sind sums the contribution of sky and
indirect illumination. Denoting α = ssun/(ssun + sdiff) we express the illumination image
values at each pixel as a mixture between two values weighted by α:

S̄total = α(ssun + sdiff)Csun

+(1− α)(ssun + sdiff)Cdiff (3.21)

= αF + (1− α)B (3.22)

We can now recover S̄sun = αF and S̄diff = (1 − α)B by solving a standard matting
problem. We compute α at each PMVS point from the illumination values estimated in
Sections 3.3 and 3.4. We then propagate α over the image S̄total using the matting Laplacian
algorithm of Levin et al. [Levin 2008]. Finally, given α at every pixel and the known Ssun

and Sdiff at each PMVS point, we solve for the sun and diffuse illumination images with
the following least-square optimization:

arg min
F,B

∑
i∈I

((
S̄itotal −

(
αiFi + (1− αi)Bi))2

+ λ
(
(Fi

x)2 + (Fi
y)2 + (Bi

x)2 + (Bi
y)2
))

+ w
∑
p∈P

(
αpFp − Spsun

)2 +
(
(1− αp)Bp − Spdiff

)2
where I is the image domain, P is the set of pixels covered by PMVS points and Fx, Fy,
Bx and By are the x and y derivatives of F and B computed with finite differences.

The first term of this functional ensures that the decomposition explains the input il-
lumination S̄total and follows the estimated ratio α. The second term adds a smoothness
regularization on each component while the third term constrains the solution to agree with
the illumination values computed at PMVS points. We used λ = 0.1 and w = 0.01 for all
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3.6. Results and Discussion 43

(a) Sky illumination before inpainting (b) Sky illumination after inpainting

Figure 3.13: The reflectance, sky illumination (here, close up) and indirect illumination estimated
by our algorithm can contain residual variations along hard shadow boundaries (a). We use in-
painting to remove these artifacts (b).

our results.

As a second step we apply the same matting approach to further separate the diffuse
illumination S̄diff as the sum of the sky illumination S̄sky and the indirect illumination S̄ind.
We show in Figure 3.14 and in the appendix the results of this decomposition. The overall
decomposition takes around 90 seconds to compute for a 3.2 megapixel image, where 30
seconds are necessary to compute S̄total and 60 seconds to perform the two subsequent
separations.

Inpainting. This overall process gives a satisfactory decomposition in the scenes we
have tested. However, a small residual border can remain around the hard shadow boundary
(see Figure 3.13 (left)), a common artifact of shadow removal [Finlayson 2004, Wu 2007b].
We identify these shadow boundaries as pixels located on sun illumination discontinuities
but not on normal discontinuities. We first propagate normals from the PMVS points over
the image using the method of Okabe et al. [Okabe 2006]. We then run an edge detector
over the sun illumination image and label edge pixels that do not correspond to edges in
the normal image. We remove the labeled pixels and their immediate neighbors from the
reflectance, sky and indirect illumination images and use inpainting to fill in the holes (see
Figure 3.13 (right)). This post-process takes 60 seconds per image on average.

3.6 Results and Discussion

3.6.1 Rich intrinsic decomposition results

In Figure 3.14 we show results on four different scenes. For all results, we show reflectance,
sun, sky and indirect illumination layers. The number of photographs used for each scene
is shown in Table 3.2. The estimated illumination at PMVS points and additional views for
each scene are shown in the appendix.
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44 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Input Reflectance Sun Sky Indirect
(undistorted) illumination illumination illumination

Figure 3.14: Results of our rich intrinsic decomposition on four scenes: Statue, Ramp, Stairs,
Rocks. We adjusted the brightness of images for illustration purposes (the scaling factors used can
be found in the appendix). For each scene, the sun illumination is usually much more intense than
sky illumination on average, and the sky illumination is more intense than indirect illumination on
average. The bottom row illustrates a failure case, where a spurious character appeared in one
view only and therefore was not reconstructed at all.
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3.6. Results and Discussion 45

The first scene shows the base of a statue on a square; we took HDR images for three
different views and we show results for all three. The reflectance layer is plausible in all
views. The sun and sky layers have been successfully separated in all cases, however the
third view shows a slight color shift of the reflectance in the shadow area; this is due to
the insufficient number of PMVS points on the ground. Please refer to the appendix for an
illustration of the distribution of 3D points. The indirect layer clearly shows the indirect
light bouncing off the front of the base (first and second views) which is in direct sunlight.
The sides of the base do not receive the same amount of sky and indirect illumination due
to the configuration of the scene (see Figure 3.4a).

The second scene is challenging, since the reconstruction process is unable to capture
details of the railings and does not reconstruct the vegetation casting the main shadows (see
also Figure 3.7d). In this view, despite the intricate geometric configuration, our method
successfully removes shadows from the reflectance layer, and the three other layers show
good results. In the third scene, a staircase is shown. There are some residual artifacts at the
shadow boundaries because the vegetation moved in the breeze during HDR acquisition.
In the fourth scene, an umbrella casts a shadow onto a rock wall. Notice how the indirect
layer well represents lighting in the cracks between rocks where neither sun nor skylight is
present.

Statue Rocks Ramp Stairs
30 11 31 10

Table 3.2: Number of photographs captured for the geometric reconstruction, for each scene in this
chapter.

3.6.2 Comparisons

We compare our approach to three state-of-the-art methods in Figure 3.15. All these
methods take a single image as input. The user-assisted approach of Bousseau et
al. [Bousseau 2009] produces results of a similar quality to ours, but requires a signifi-
cant number of user indications (between 25 and 105 scribbles). The automatic method of
Shen et al. [Shen 2008] is able to extract most of the illumination variations but colored
shadows remain in the reflectance image. These colored residuals are due to the variation
in color between sun and sky illumination, which violates the gray illumination assump-
tion of this method. Residual shadows are also present in the reflectance estimated with
the automatic method of Shen et al. [Shen 2011a], as well as reflectance residuals in the
illumination image (tiled floor in the statue scene). Although this method can support
user scribbles, the authors reported that scribbles did not improve the result significantly
in these examples. All the results of these comparisons have been kindly provided by the
respective authors. While these approaches can be applied to single images from various
sources, to our knowledge ours is the first to provide a richer decomposition by separating
the illumination into different components.
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46 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Input and scribbles [Bousseau 2009] [Shen 2008] [Shen 2011a] Our approachfor [Bousseau 2009]

82 user scribbles

105 user scribbles

72 user scribbles

26 user scribbles

Figure 3.15: Comparison of our method with a user-assisted method [Bousseau 2009] and two
automatic algorithms [Shen 2008, Shen 2011a]. In the first column, the user scribbles used for
the method of Bousseau et al. [Bousseau 2009] are shown under the input image. In the next
columns, the first row contains the estimated reflectance while the second one corresponds to the
total illumination. Our results are shown in the last column. Our multiview approach outperforms
single-image automatic algorithms and achieves results of comparable quality to the user-assisted
approach with significantly less user intervention. White arrows point to residual reflectance or
shading variations. The brightness has been adjusted for comparison.
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3.6. Results and Discussion 47
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Sun illumination Sky illumination Indirect illumination Reflectance

Figure 3.16: Comparison between the decomposition estimated directly from the geometric proxy
(first row), and our results (second row). We obtain the proxy reflectance by dividing the input image
by the sum of the illumination components. Holes and inaccuracies in the proxy result in artifacts
and residual shadows in the reflectance image.

In Figure 3.16 we show a comparison to the result obtained simply by using the proxy to
compute sun, sky and indirect illumination using PBRT, and then inverting Equation 3.5 to
obtain reflectance. This approach produces illumination layers with many holes due to the
incomplete proxy. In addition, the sun illumination is completely erroneous (Figure 3.16,
top left), due to the lack of reconstruction of the surrounding objects. In contrast, our
method (Figure 3.16, bottom row) correctly captures these sun shadows, and removes them
in the reflectance layer as well.

3.6.3 Applications

We illustrate applications of our decomposition in Figure 3.1. We first alter the reflectance
of the ground to insert a graffiti while maintaining consistent shadows (b). We then add
a virtual object in the scene with consistent lighting and shadows (c). We used PBRT to
render the dinosaur surrounded by the captured environment map, and its shadow cast on
a horizontal plane. Finally we simulate a sunset by changing the color and intensity of
each illumination component separately; in addition, our decomposition allows us to blur
shadows without affecting the reflectance of the scene (d). All these manipulations can be
performed easily in image-editing software with layer support; the accompanying video
shows how we created the images in Figure 3.1b-d with Adobe Photoshop.

3.6.4 Discussion

Since we were interested in separating sun lighting from other sources, we have not shown
overcast scenes. There is no fundamental reason that our method would not work with
overcast scenes; the decomposition would simply rely on the Ssky and Sind values and
ignore sun illumination.
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48 Chapter 3. Rich Intrinsic Image Decomposition of Outdoor Scenes

Our method tolerates holes in the proxy geometry if the hole is sufficiently distant from
the 3D points where sky and indirect illumination are computed. In such configurations,
rays that do not hit the proxy will hit the environment map and provide a plausible color.
However, in Figure 3.14 (fifth row), the near bush over the stairs was not reconstructed
while being too close to be properly captured in the environment map. As a result, rays
emitted from the stairs reach the sky instead of the bush and yield a residual shadow in the
indirect lighting.

Our method can fail if the initial guess for sun visibility is completely wrong. In Fig-
ure 3.14 (bottom row), we show a case where a spurious object appeared in a single view,
and was thus not reconstructed at all, resulting in this type of failure. Similarly, if objects
have very dark reflectance, or specularities, the PMVS reconstruction procedure does not
provide a sufficient number of points, resulting in errors. Similarly to other intrinsic image
methods, we have assumed that the scene is Lambertian. Incorporating a specular layer in
the intrinsic image formulation is a challenging avenue for future work.

Our optimization for sun visibility exploits the redundant information provided by
points of the same reflectance that are in sun light and shadow. Nevertheless our method
can also handle reflectances that are only in light or shadow. Most often in such cases the
proxy initialization will result in the correct answer. The only case which could potentially
cause errors is when other reflectance curves incorrectly intersect with or influence the
curve of this material. We have carefully designed our algorithm to avoid this situation, by
making each curve vote only for the region in which it is confident, by processing PMVS
points with drastically different orientations separately, and by clustering similar candidate
reflectance curves. The results were satisfactory for our examples and the values shown in
Table 3.1.

A drawback of the method described in this chapter is the need for the reflective sphere
to capture the environment map. Some user interaction is also required for calibration. In
Chapter 4, we discuss how to further simplify the capture and calibration process.

3.7 Conclusion

We have presented a method to estimate rich intrinsic images for outdoor scenes. In addi-
tion to reflectance, our algorithm generates a separate image for the sun, sky and indirect
illumination. Our method relies on a lightweight capture (10-31 photographs in the scenes
shown here) to estimate a coarse geometric representation of the scene. This geometric in-
formation allows us to estimate illumination terms over a sparse 3D sampling of the scene.
We then introduce an optimization algorithm to refine the inaccurate estimations of sun
visibility. While incomplete, we demonstrate that this sparse information provides the nec-
essary constraints for an image-guided propagation algorithm that recovers the reflectance
and illumination components at each pixel of the input photographs. Our intrinsic image
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3.7. Conclusion 49

decomposition allows users of image manipulation tools to perform consistent editing of
material and lighting in photographs.

The research work presented in this chapter has led to a technology transfer agreement
with Autodesk, and an industrial collaboration which aims to make our intrinsic image
decomposition and its applications accessible to customers. As part of this collaboration,
we simplify the capture and calibration process of our approach in Chapter 4.
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CHAPTER 4

Outdoor lighting extraction
from a few photographs

The appearance of a scene largely depends on the lighting it receives. Pictures taken during
a sunset or on an overcast day exhibit drastically different moods. Extracting the lighting
incident to a scene is a required step towards enabling relighting a photograph, or plausibly
inserting synthetic objects.

In Chapter 3, we presented an approach to separate the effects of lighting and materials
on the appearance in a scene. In this chapter1, we instead focus on extracting lighting
incident to an outdoor scene (i.e., incident radiance from all directions) semi-automatically
from the captured photographs. Our approach requires only two user clicks and has little
overhead in the capture process. We leverage the multiple views of the scene captured at a
single time of day and automatically reconstructed geometry, in order to approximate the
three components of outdoor lighting:

• directional sunlight: we model the sun as a directional light source which can pro-
duce high-frequency, sharp cast shadows; we estimate its direction automatically by
combining cues from the reconstructed geometry and captured photographs, and we
design a method to estimate its radiance from simple user indications (two clicks)
instead of using a photographer’s grey card as in Chapter 3;

• low-frequency distant radiance: we automatically reconstruct an environment
map which approximates distant radiance coming from the sky and distant, non-
reconstructed surfaces, by extrapolating the information captured in the input pho-
tographs; this replaces the environment map which was assembled from HDR pic-
tures of a reflective sphere and manually aligned with the reconstructed scene in
Chapter 3;

• near-field indirect lighting: we use proxy geometry textured with radiance values
from the input photographs in order to approximate indirect illumination, as in Sec-
tion 3.3.

1 The method described in this chapter results from joint work with Jorge Lopez-Moreno at REVES / INRIA
Sophia-Antipolis, who particularly contributed to Section 4.3 on estimating the sun direction.
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52 Chapter 4. Outdoor lighting extraction from a few photographs

This results in a comprehensive method for estimating all the components of outdoor
lighting. The estimated incident lighting can then be used as input to the rich intrinsic
decomposition described in Chapter 3, which required user intervention to capture an envi-
ronment map with a chrome sphere, to align the sun and sky dome with the reconstructed
geometry, and to take photographs of a gray card to calibrate the illuminants. By sim-
plifying the capture and calibration steps, we remove the most constraining aspects of our
decomposition method in order to make it accessible to casual photographers, in the context
of a technology transfer agreement with Autodesk.

4.1 Previous work

Several methods have been developed to estimate components of incident lighting in a
scene. We review these approaches here.

A light probe is a calibration object of known size and shape, with known reflection
properties; placing such a light probe in a scene during capture allows the extraction of
some information about incident lighting. In particular, Debevec et al. [Debevec 1998]
accurately measure the radiance incident to a physical point in the scene by capturing high-
dynamic range images of a mirrored sphere. This results in an environment map which
represents incoming radiance from all directions, and can be used to render synthetic ob-
jects inserted in the scene. The process of measuring incident radiance with a light probe
is now part of the standard workflow in visual effects, animation and games industry, but
requires special equipment (the mirrored sphere) and careful capture.

A few approaches simplify the capture process by extrapolating the data contained in
captured photographs. In the work of Yu and Malik [Yu 1998], a set of photographs of
the horizon are taken, and a sky model is fitted to the sky pixels observed in the captured
images. Although they do not need a chrome sphere, they still use special equipment in the
form of neutral lens filters in order to measure sun radiance, and assume a geometric model
of the scene is available. Lalonde et al. also fit a sky model in order to generate a plausible
environment map for each frame in a webcam sequence [Lalonde 2009], or from a single
image after estimating the sun position [Lalonde 2011]. In contrast, our method leverages
multiple views of the scene which can be quickly captured at a single time of day.

Other approaches assume that the scene is illuminated by a limited number of light
sources, and try to recover their position. A local analysis of the surface and image
derivatives is used to estimate the direction of a single light source in [Pentland 1982,
Brooks 1985]. Alternatively, occluding contours of a single object [Horn 1986, Nil-
lius 2001] or the texturing [Koenderink 2003, Varma 2004] provide cues about where the
light is coming from. Lalonde et al. [Lalonde 2011] combine a set of visual cues (shadows
over planar surfaces, sky gradients, etc.) in order to estimate the position of the sun in
outdoor scenes. Lopez-Moreno et al. [Lopez-Moreno 2010] detect multiple light sources
in the scene: they estimate the number of sources, their dominant directions and the rel-
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4.2. Overview 53

ative intensities based on a perceptual framework. In contrast to these methods, we aim
to recover all components of outdoor lighting: this includes a directional component (the
sun), but also significant contribution from the sky and indirect lighting in all directions.

Lastly, knowledge of the scene geometry can help with recovering information about
the incident lighting. Haber et al. [Haber 2009] estimate distant lighting in photographs
of a photo collection and model it with spherical harmonics; however, they assume the
reconstructed geometry is complete and includes all surfaces which cast shadows on the
scene. Panagopoulos et al. [Panagopoulos 2009] use a probabilistic mixture framework and
coarse 3D models provided by the user to estimate and identify shadow casters and light
direction in a single image. Our method leverages automatically reconstructed geometry,
and handles sparse and inaccurate reconstructions.

In this chapter, we aim to estimate the complete lighting incident to an outdoor scene
only from a few photographs and minimal user interaction. We develop a comprehensive
approach which estimates all components of outdoor lighting: the direction of the sun and
its color, the radiance from the sky and distant surfaces towards all incoming directions,
and near-field indirect lighting which represents interreflections from nearby surfaces. Our
approach leverages multiple views and automatically reconstructed 3D geometry. It does
not require special equipment for capture, and uses photographs taken at a single time of
day for low capture overhead.

4.2 Overview

We represent the lighting incident to an outdoor scene with three components: a directional
light source, the sun, defined by its direction and radiance; near-field indirect illumination,
generated by a proxy textured with radiance values; and an environment map representing
the sky dome and distant indirect lighting, which corresponds to the light reflected by non-
reconstructed surfaces.

Instead of requesting user input to specify the sun direction as in Chapter 3, we propose
in Section 4.3 a method to estimate it automatically by combining cues from reconstructed
geometry and input images. First, we find a rough estimation of the sun direction based on
the observation that the sun is likely to be in the direction of the brightest normals. Then,
we refine the estimated sun direction by automatically aligning a virtual shadow cast by
the reconstructed geometry with shadows detected in the input image. We define a set of
descriptors which measure the overlap of the two shadow masks and the alignment of the
shadow edges.

In Section 4.4, we construct a synthetic environment map which approximates the dis-
tant radiance from all incoming directions. Given a few photographs of the scene from
different viewpoints, we detect sky pixels and fit a parametric sky model using the esti-
mated sun direction. Our method extrapolates the information present in the input images,
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54 Chapter 4. Outdoor lighting extraction from a few photographs

and yields a complete environment map which does not contain holes and does not require
a reflective sphere.

The synthetic environment map is consistent with the radiance values captured in the
input photographs, which allows us to simplify the illuminant calibration process. Instead
of using two photographs of a grey card to correct for the chrome sphere transfer function
and estimate the sun radiance, we design a user-assisted method which only requires simple
indications (e.g., in lit and shadowed regions). We ask users to specify two pixels with
the same reflectance but different illuminations, which allows for the estimation of sun
radiance. This process is described in Section 4.5.

4.3 Estimating sun direction

In this section, we estimate the sun direction automatically by combining cues from the
reconstructed geometry (i.e., an oriented 3D point cloud and a very approximate mesh),
and from one photograph in which a cast shadow is clearly visible. The sun position is
defined by its azimuth (φs) and zenith (θs) angles. The proposed method consists of two
parts: a coarse estimation based on the orientation of 3D points and their luminance, and a
refinement step based on matching shadows detected in one image with those generated by
the reconstructed geometry.

4.3.1 Coarse estimation based on luminance

(a) Average luminance (b) Clusters after K-means (c) Cluster with
per orientation bin highest luminance

Figure 4.1: (a) Normals from the reconstructed 3D points after binning, and their luminance values
(color-mapped); note that normals pointing down will be discarded. (b) Clusters corresponding
to three energy levels, after K-means. (c) Cluster with the highest average luminance. The color
shows the level of luminance per orientation. Although no particular direction stands out within this
cluster, a weighted average of all its orientation bins yields a coarse estimate of the sun direction.

In the first part of the algorithm, we estimate a coarse sun direction, based on the
luminance of reconstructed 3D points and their normals.

We first gather the outgoing radiance of reconstructed 3D points, by averaging the
color of corresponding pixels in all images where they are visible. We then compute their
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4.3. Estimating sun direction 55

luminance and use it as a coarse approximation of their irradiance; this approximation
assumes that the reflectance is constant, but we found that it is sufficient to obtain a coarse
sun direction when many points and orientations are available. We bin the normals and
assign the average luminance to each bin (Figure 4.1a).

We cluster the orientation bins with a K-means approach depending on their luminance
level and angular distance, similar in spirit to [Lopez-Moreno 2010]. We build feature
vectors which combine average luminance, azimuth angle, and zenith angle, for each ori-
entation bin. As we are looking for the sun direction, we discard all the normals pointing
down. We then apply K-means (with K = 3) to identify three clusters which intuitively
corresponds to three energy levels (direct light, shadows, and uncertain), as illustrated in
Figure 4.1b.

We compute the weighted average of the normals in the cluster with the highest energy
level (Figure 4.1c), using the per-bin luminance as a weighting factor. The resulting normal
is likely to point towards the sun, and will be used as the initial guess (φinit

s , θinit
s ) for the

second part of our method. Although we have introduced an uncertainty in this initial
solution by considering the reflectance as uniform, in our experiments this approach was
sufficient to find at least the right quadrant (±π/4) of the solution, providing sufficient
initialization for the subsequent shadow-based refinement.

4.3.2 Shadow-based refinement

Once we have an initial guess, we apply an optimization approach to refine the estimation
of sun direction. We use an image from the dataset where a cast shadow is clearly visi-
ble; we assume that the geometry of both the shadow caster and the receiving surface is
approximately reconstructed in the proxy geometry.

We estimate the shadow areas in the selected image by using the automatic pairing
technique described in [Guo 2011]. This yields a detected shadow mask sdetected. This
estimate is not fully reliable and false positives and negatives are to be expected: regions
with dark reflectance might be wrongly considered as shadows, while vertical surfaces
receiving significant indirect lighting might not be detected as shadows (Figure 4.2). After
the shadow detection, we mask out all the pixels which correspond to non-reconstructed
regions in the proxy; these pixels will be ignored in our optimization.

For each sun position, we generate virtual shadows using the reconstructed geometry,
as in Section 3.2.3 (Figure 3.5), yielding a virtual shadow mask svirtual. Our strategy then
consists in automatically comparing this virtual shadow mask, for a set of azimuth and
zenith angles around the initial guess, with the detected shadow mask sdetected estimated
with [Guo 2011].

We define a set of descriptors which measure how the two masks agree, based on area
of shadow overlap and orientation of shadow edges.
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56 Chapter 4. Outdoor lighting extraction from a few photographs

Input image Result of the shadow detector

Figure 4.2: Example of common errors in shadow detection. Framed in red: region of dark
reflectance, detected as shadow. Framed in green: shadow not detected due to indirect light. After
the image-based shadow detection, pixels corresponding to holes in the proxy are masked out (blue
pixels).

4.3.2.1 Shadow overlap area

The first descriptor compares the virtual shadow mask svirtual, created by casting shadows
and the detected shadow mask sdetected pixel-per-pixel. This descriptor measures the per-
centage of pixels which do not agree well:

Doverlap =
∑
p∈P

(svirtual(p)− sdetected(p))2

|P|
(4.1)

where P is the set of pixels corresponding to regions with reconstructed geometry.

This descriptor reaches a local minimum at the correct solution (see Figure 4.4, left).
However this minimum is non-global, as both the proxy shadow and the detected shadow
may miss shadowed areas (due to incomplete reconstructed geometry, or to poor detection
of shadows in the image) or contain false positives (due to noise in the proxy, or surfaces
with dark reflectance).

4.3.2.2 Orientation of shadow edges

We design a second descriptor which encourages shadow edges to have a similar orientation
in the virtual and detected shadow masks.

We first extract the contours of shadows in the virtual and detected shadow masks using
Canny’s filter [Canny 1986]. Then, we establish pairs of pixels along the edges of shadows
which share a similar orientation within a given distance K in screen space. For each pixel
(x, y) on a contour of the detected shadow mask, we compute a distance function to each
pixel (x′, y′) in the contours of the virtual shadow mask. This distance incorporates the
2D position of the two points, and the local orientation of the contours at both points. We

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



4.3. Estimating sun direction 57

define this distance function dmatching as follows:

dmatching =

√
(x− x′)2 + (y − y′)2 +

(2K
π

(ψ − ψ′)
)2

(4.2)

where ψ and ψ′ are the orientation (angle in [0, 2π]) of the detected and virtual shadow’s
edge pixels in screen plane respectively, computed as in [Hong 1998]. The difference
(ψ−ψ′) is computed with the interior angle. The (2K/π) factor balances the penalties due
to orientation changes and Euclidean distance, so that points with an orientation difference
above π/2 (right angle) yield a distance dmatching ≥ K.

ψA 

ψC 

ψB 

ψO 

A 

B 

C 

O 

Figure 4.3: Illustration of matching pixels on shadow edges. For each pixel along the contours
of the detected shadow mask (in this example, point O on the red curve), we aim to locate the
closest pixel on a contour of the virtual shadow mask (green curve), based on 2D distance and
edge orientation. Out of the three pixels A,B,C in this example, the most likely matching will be
A because it is closest both in 2D space and orientation.

For each pixel (x, y) on a contour of the detected shadow mask, we keep the matching
pixel (x′, y′) with the lowest distance dmatching; this is illustrated for one pixel in Figure 4.3.
This results in a set of pairs of matching pixels which are close and have a similar local
shadow edge orientation.

A large number of matchings with a small distance dmatching indicate that edges of the
virtual and detected shadow masks are well aligned. From this observation, we adopt a
simple multiscale analysis to increase robustness by combining two search radii K and
K/3, and we assemble a descriptor from the following data:

• nbPairs: number of pairs matched with distance below search radius K,
• averageDistance: average distance of these pairs,
• nbPairsSmallRadius: number of pairs matched with distance below a smaller

search radius K/3,
• averageDistanceSmallRadius: average distance of these pairs.
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58 Chapter 4. Outdoor lighting extraction from a few photographs

We combine these two average distances, using the number of pairs as a confidence
measure: the higher the number of matching pairs, the more confident we are that a low
average is not produced by chance. The smaller search radius K/3 is more restrictive
and yields a better alignment of shadows near the solution, whereas radius K yields more
matching pairs and is more robust to imperfect detected and virtual shadows. We also
normalize all these values to the [0, 1] range by dividing by the maximum number of pairs
maxNbPairs and the maximum average value maxAverageDistance detected in the
whole search space. This yields the following descriptor:

Dorient = nbPairs

maxNbPairs
∗
(

1− averageDistance

maxAverageDistance

)
(4.3)

+ nbPairsSmallRadius

maxNbPairsSmallRadius
∗
(

1− averageDistanceSmallRadius

maxAverageDistanceSmallRadius

)

4.3.2.3 Optimization

Figure 4.4: Example of descriptor responses in azimuth-zenith space. Responses are color-coded
(blue: low values; red: large values). The highlighted location corresponds to the global maximum
of the combined descriptors (Equation 4.4).

Figure 4.4 shows the responses of individual descriptors for different zenith and az-
imuth angles. In order to find the sun direction, we look for the angles which maximize a
function that combines the two descriptors:

arg max
θs,φs

(
Dorient ∗ (1−Doverlap) + F (θs)

)
(4.4)

where F (θs) is a regularization term which penalizes extreme sun positions close to the
ground level (θs = π/2), since any small protuberance or noise in the proxy mesh produces
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4.3. Estimating sun direction 59

elongated shadows which might yield false positives.

We follow a brute force optimization approach around the initial guess obtained from
Section 4.3.1. We limit our search space to one quarter (φinit

s ± π/4, θinit
s ± π/4). Addi-

tionally, the sun zenith angle is bound to the [0, π/2] range, as we are looking for a sun
position above the ground level. We take a fixed step size of π/32.

4.3.3 Results

Coarse estimation Shadow-based refinement Ground truth

Figure 4.5: Results of the automatic estimation of sun direction. As in Figure 3.5, we show the
virtual shadow cast by the reconstructed proxy overlaid with the input photograph. The ground
truth sun direction has been set manually using the method described in Section 3.2.3.

Figure 4.5 shows the results of sun direction estimation, after coarse estimation and
shadow-based refinement, on three scenes. The final error compared to ground truth is less
than 2.5 degrees on all scenes, as reported in Table 4.1.

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



60 Chapter 4. Outdoor lighting extraction from a few photographs

Coarse estimation Shadow-based refinement
Statue 24.5 <0.1
Ramp 29.9 2.4
Chair 14.3 1.2

Table 4.1: Error in sun direction estimation, in degrees.

4.4 Gathering distant illumination

In Chapter 3, we captured an environment map which represents the radiance incoming
from all directions. This is necessary to account for distant indirect illumination, which
comes from directions corresponding to holes in the reconstructed geometry, and for sky
illumination. The capture process involved taking photographs of a chrome sphere placed
near the center of the scene, from two viewpoints and with multiple exposures to build
an HDR environment map; the user then marked sky and non-sky pixels in the environ-
ment map. In this section, we show that this manual process can be avoided by fitting a
parametric sky model to the sky pixels observed in the input photographs.

4.4.1 Extracting partial environment maps from input photographs

From each input photograph which contains a portion of sky, we extract two partial envi-
ronment maps which represent distant radiance. We consider that all pixels corresponding
to non-reconstructed regions in the proxy geometry represent “distant radiance”.

Given one input image (Figure 4.6a), we first detect sky pixels. We currently use a
simple thresholding strategy which gives reasonable results on our clear-sky scenes (Fig-
ure 4.6b, blue pixels), but other sky detectors such as the approach proposed by Hoiem et
al. [Hoiem 2005] could be used to handle more complex cases.

We then identify pixels corresponding to distant radiance (Figure 4.6c, green pixels) by
rendering the reconstructed proxy geometry from the viewpoint of the input photograph,
using ray-tracing. Pixels corresponding to rays which intersect the proxy are ignored, since
the intersected geometry will contribute to near-field indirect illumination (see Section 3.3).

We use the color of the pixels corresponding to distant radiance in the input photograph
to partially fill two environment maps aligned with the reconstructed scene: Figure 4.6d
represents a partial sky environment map extracted from the photograph, and Figure 4.6e
corresponds to the partial distant indirect environment map. The sky/non-sky pixel classi-
fication (Figure 4.6b) is used to decide which environment map each pixel contributes to:
sky pixels corresponding to distant radiance are transferred into the partial sky environment
map, while non-sky pixels corresponding to distant radiance contribute to the partial distant
indirect environment map.
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4.4. Gathering distant illumination 61

(a) Input image (b) Detected sky pixels (c) Reconstructed proxy

(d) Partial sky environment map (e) Partial distant indirect environment map

Figure 4.6: From one input image (a), sky pixels are detected (b, blue pixels) and the reconstructed
geometry is rendered from the viewpoint of the photograph to label pixels corresponding to distant
radiance (c, green pixels). These pixels are then used to construct two partial environment maps,
in latitude-longitude format, which represent the incoming radiance due to skylight and distant
indirect lighting.

4.4.2 Fitting a parametric sky model

Although each input photograph only observes a small portion of the sky (or no sky at all)
due to its limited field of view, combining the partial environment maps extracted from
several input images leads to average environment maps which describe a larger portion of
distant radiance (Figure 4.7a-b).

In order to fill the remaining holes, we fit a parametric sky model to the non-saturated
pixels in the average sky environment map (Figure 4.7a). We use the physically-inspired
sky model introduced by Perez et al. [Perez 1993], which defines the luminance Lp of a
sky element relative to another arbitrary sky element, such as zenith luminance Lz:

Lp = f(θp, γp)
Lz

f(0, θs)
(4.5)

where θp is the zenith angle of the sky element, γp its angle with respect to the sun, θs
the sun zenith angle, and f( ) a function which depends on five additional coefficients
representing the atmospheric conditions. Preetham et al. [Preetham 1999] show that these
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62 Chapter 4. Outdoor lighting extraction from a few photographs

(a) Average sky environment map (b) Average distant indirect environment map

(c) Parametric sky model after fitting (d) Inpainted distant indirect environment map

(e) Blending weights for sky and indirect radiance (f) Final environment map

Figure 4.7: Combining partial environment maps constructed from several photographs yields
average environment maps which cover a larger set of incoming light directions (a-b). We use
the average sky environment map to fit a parametric sky model (c), and fill holes in the average
distant indirect environment map with diffusion (d). We then estimate per-pixel blending weights
β (e, color-coded) which describes the probability that radiance comes from the sky (blue pixels)
or distant indirect lighting (red pixels); the white curve defines the limit above which all pixels
correspond to sky radiance (see text for details). The environment map resulting from our approach
approximates distant radiance coming from all directions (f).

five weather coefficients can be approximated with a single parameter, the turbidity t, and
they apply the sky model in xyY color space.

Since the sun zenith angle is known from Section 4.3, we can deduce θp and γp for
each sky element. Fitting the parametric sky model then consists in estimating four pa-
rameters which minimize the difference between the average sky environment map and the
synthesized sky:

arg min
t,kx,ky ,kY

∑
c∈{x,y,Y }

∑
p∈P

(
kc f(θp, γp, t)−Ac

p

)2
(4.6)

where P is the set of non-empty pixels in the average sky environment map A (converted
to xyY color space), and k is an unknown scale factor which incorporates the sky zenith
color and the denominator in Equation 4.5.
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4.4. Gathering distant illumination 63

We solve this non-linear minimization problem iteratively using Matlab’s
fminsearch function: at each iteration, we generate a synthetic sky given the
current turbidity, then find k by solving a linear system. The initial turbidity is set
to t = 3.5. After the fitting, we generate a sky environment map using the estimated
parameters (Figure 4.7c).

4.4.3 Assembling the final environment map

Similarly, we extrapolate the average distant indirect environment map (Figure 4.7b) by
applying diffusion [Perona 1990] to fill-in holes below the horizon (Figure 4.7d). We
combine this extrapolated environment map with the synthesized sky after fitting, using
blending with per-pixel weights, which we describe next.

Some directions of incident radiance appear both in partial sky environment maps and
partial distant indirect environment maps; this occurs when 3D reconstruction fails to re-
cover the geometry of some nearby surfaces. In such cases, we account for both sky and
indirect radiance at the corresponding pixels in the final environment map, by mixing their
contributions. More formally, if a particular radiance direction appears in nsky partial sky
environment maps with an average color Lsky, and in nind partial distant indirect environ-
ment maps with an average color Lind, we set the color in the final environment map as:

β Lind + (1− β) Lsky (4.7)

with blending weight β = nind / (nind + nsky). For directions where both nind = 0 and
nsky = 0, this quantity β is undefined. We instead infer it by applying diffusion from the
neighboring pixels where it is defined (Figure 4.7e). We further constrain incident radiance
in the lower hemisphere to come from distant indirect lighting (i.e., β = 1). Lastly, we
estimate a curve which separates sky and indirect regions of the environment map, by
locating the highest row where nind > 0, for each column of the environment map in
latitude-longitude representation; after smoothing this curve, we enforce β = 0 at all pixels
above this curve (Figure 4.7e, white curve). This process allows automatic estimation of
the contribution of sky and indirect radiance for each incident direction, instead of asking
the users to manually segment the environment map as in Figure 3.4.

After combining the inpainted distant indirect environment map with the synthesized
sky model, we add in the clouds from the average sky environment map by replacing the
corresponding pixels in the final environment map. This results in a synthetic environment
map constructed from only a few photographs (Figure 4.7f).

We also show a comparison with a captured environment map for the Ramp scene, in
Figure 4.8. For this particular scene, the assumption that the environment map captures
distant radiance does not hold, because some objects (in particular the building façade and
the tall bush) are very close from the chrome sphere location; these objects occupy large
areas in the captured environment map. In contrast, our synthetic environment map only
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64 Chapter 4. Outdoor lighting extraction from a few photographs

(a) Captured environment map (b) Synthesized environment map

Figure 4.8: Captured and synthesized environment maps for the Ramp scene. Note that the cap-
tured environment map (Section 3.2.1) is shown before color correction for the chrome sphere. The
synthesized environment map represents radiance from the sky and from non-reconstructed distant
surfaces; it does not include the nearby buildings, which appear in the reconstructed proxy geome-
try and contribute to near-field indirect lighting.

contains distant radiance; reconstructed surfaces do not appear in the synthetic environment
map because they produce near-field indirect illumination which is modeled by the colored
geometric proxy. Lastly, some directions of the radiance are never observed in the input
photographs, which results in large holes in the synthetic environment; in particular, the
bush is missing. Taking additional pictures to cover these regions at the time of capture
would prevent these holes.

4.5 User-assisted illuminant calibration

In Section 3.2.3, we described how two photographs of a grey card can be used to correct
for the color transfer function of the chrome sphere used to capture an environment map,
and to estimate the sun radiance. We show here how to remove grey card calibration.

Applying the method described in Section 4.4 yields an environment map which con-
tains radiance values coherent with the photographs of the scene, since it uses pixels from
the input images to fit a sky model. As a result, there is no need to calibrate the environment
map (i.e., K = (1, 1, 1)), and only the sun radiance Lsun remains to be estimated.

We start from Equation 3.8 and derive the ratios for two points:

I(2)

I(1) = R(2)

R(1) ∗
(v(2)

sun cos θ(2)
sunLsun + S(2)

sky + S(2)
ind)

(v(1)
sun cos θ(1)

sunLsun + S(1)
sky + S(1)

ind)
(4.8)

When the two points share the same reflectance, the reflectance ratio R(2) / R(1) vanishes
and we can rewrite the equation as:

Lsun (I(2)v
(1)
sun cos θ(1)

sun − I(1)v
(2)
sun cos θ(2)

sun) = I(1)(S(2)
sky + S(2)

ind)− I(2)(S(1)
sky + S(1)

ind) (4.9)

where Lsun is the only unknown. Therefore, a pair of points which share the same re-
flectance is enough to estimate the sun radiance.
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4.6. Decomposition results 65

Input image and Reflectance Total illumination
correspondences for calibration

Figure 4.9: Preliminary results of the decomposition on the Ramp scene. Top row: results with the
captured environment map and user-assisted calibration from Chapter 3. Bottom row: results with
the synthesized environment map and 2-click calibration without using the grey card; correspon-
dences marked by the user are shown on the left image.

In practice, we let users indicate correspondences in one picture of the scene. They are
asked to mark pixels in at least two regions which share the same reflectance. The values
v

(i)
sun, θ(i)

sun, S(i)
sky and S(i)

ind are estimated using the proxy in the marked regions. When multiple
pixels are selected, all the quantities are averaged over each connected component.

4.6 Decomposition results

We have applied the rich intrinsic image decomposition method described in Chapter 3,
after automatically extracting the sun direction and the synthetic environment map, and
running the user-assisted illuminant calibration. We used RAW images for all the input
photographs instead of the HDR pictures as in Chapter 3; this simplifies the capture process
and did not negatively affect the results in our experiments.

Figure 4.9 provides a visual comparison between the method from Chapter 3 and the
new method on the Ramp scene. Although the shadows are not as well separated from the
reflectance layer, the decomposition is fully automatic except for the two clicks to mark the
correspondences for calibration (Figure 4.9, bottom-left). Also, the parametric sky model
was fitted to a very limited portion of the environment, because the sky was visible in only
few pictures. Results should improve with additional pictures of the missing portions of
the scene.

We also captured a new scene, without a grey card nor a chrome sphere (Figure 4.10).
For this scene, the PMVS reconstruction fails to reconstruct the chair pillow and legs; there
are also no reconstructed points in the background, where the bush casts a shadow on the
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66 Chapter 4. Outdoor lighting extraction from a few photographs

(a) Input image (b) Reflectance (c) Total illumination (d) Sun illumination at
reconstructed points

Figure 4.10: Preliminary results of the decomposition on the Chair scene. Although the chair’s
shadow is properly detected (d), a color shift remains in the extracted reflectance (b) due to incom-
plete and inaccurate reconstructed geometry. Note that the background bush and the ground close
to it were not reconstructed (d).

ground. Still, our method reconstructs an environment map from only a few photographs
(Figure 4.7d) and properly estimates the sun visibility (shadows) on reconstructed portions
of the ground and chair (Figure 4.10d). We believe the results will improve with a better
reconstruction, in particular the color shift in the reflectance below the chair.

In order to compare the proposed method with the one described in Chapter 3, we
captured a new outdoor scene consisting of toys placed on a table. We captured images
of a chrome sphere and a grey card placed in the scene, and took additional pictures of
the surroundings in order to synthesize an environment map. Figure 4.11 compares the
results obtained when using the environment map captured with the chrome sphere, or that
obtained with the method described in Section 4.4. It also compares the two illuminant
calibration processes: using a gray card (Section 3.2.3) or correspondences marked by the
user (Section 4.5). Although results are visually similar, extracting an environment map
directly from the input images and using pairs of points marked by the user simplify the
capture process, since it does not require placing a chrome sphere or a grey card in the
scene.

We also show results of our rich intrinsic decomposition for three views of this new
scene, in Figure 4.12. Note that the cameras were registered and the geometry was re-
constructed using the Autodesk reconstruction pipeline; the chrome sphere and grey target
were not used in these results.

Lastly, the faster and lighter capture process allows us to treat scenes that were difficult
for the method described in Chapter 3, such as urban scenes. We show in Figure 4.13
results of our rich intrinsic image decomposition on a complex scene, captured within a
few minutes in a busy city. This suggests promising directions for applications in urban
environments.
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4.6. Decomposition results 67

(a) View to decompose (b) Chrome sphere for (c) Example views used for
envmap capture synthetic environment map generation
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Reflectance Total illumination Environment map after calibration

Figure 4.11: Results of our decomposition on an image of the OutdoorToys scene (a). We recon-
struct an environment using either HDR photographs of a chrome sphere (b), or by leveraging the
information contained in photographs of the surroundings (c) as described in Section 4.4. We cali-
brate the illuminants using either a grey card (top and middle row) as described in Section 3.2.3, or
the user-assisted calibration (bottom row) described in Section 4.5. Results of all three methods are
visually similar, but the generation of a synthetic environment map and user-assisted calibration
simplify the capture since it does not require the placement of a chrome sphere or a grey card in the
scene.
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68 Chapter 4. Outdoor lighting extraction from a few photographs

Input and Reflectance and Total illumination and
sun illumination sky illumination indirect illumination

Figure 4.12: Results of our rich intrinsic decomposition on three views of the OutdoorToys scene.
We created a synthetic environment map using the method described in Section 4.4, and calibrated
the sun radiance using our new method,i.e., without using a grey card (Section 4.5). We adjusted
the brightness of images for illustration purposes (the scaling values were: 1 for the input, sky
illumination and indirect illumination; 0.2 for the total illumination and sun illumination).

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



4.7. Conclusion and future work 69

Input Reflectance Sun Sky Indirect
(undistorted) illumination illumination illumination

Figure 4.13: Results of our rich intrinsic decomposition on three views of a complex scene: the
Masséna Museum, in Nice. The capture process required neither a photographer’s grey card, nor a
chrome sphere.

4.7 Conclusion and future work

We have presented a method for simplifying the capture and calibration process of our
rich intrinsic image decomposition. Our preliminary results show that the sun direction
can be reliably estimated from cast shadows, that an approximate environment map can
be constructed from just a few photographs, and that the calibration based on a grey card
can be replaced by simple user intervention consisting of two clicks. We have developed a
pipeline which can handle the reconstruction data provided by Autodesk.

In future work, we would like to fully automate the calibration process: instead of
requesting users to specify regions of constant reflectance, we will investigate detecting
paired regions with an approach inspired by [Guo 2011], constrained by our geometry-
based estimation of the low-frequency components of the illumination (Chapter 5). Such
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70 Chapter 4. Outdoor lighting extraction from a few photographs

automatic calibration will make our approach practical for processing a large number of
scenes.

The outdoor lighting recovered with our approach could be used to realistically insert
synthetic objects in the captured scene, with plausible illumination, even for glossy objects.
The simplified capture and calibration process enables easy extraction of lighting in pho-
tographs, which can be used to recover illumination-free 3D models of captured scenes.
Combined with free-viewpoint image-based rendering [Chaurasia 2011], it opens the way
to navigating in 3D and controlling the lighting in outdoor scenes captured at a single time
of day.
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CHAPTER 5

Coherent Intrinsic Images
from Photo Collections

Photo-sharing websites such as Flickr c© and Picasa c© contain millions of photographs of
famous landmarks captured under different viewpoints and illumination conditions. Photo
collections of less famous places are also becoming available thanks to initiatives like the
collaborative game PhotoCity [Tuite 2011]. The wide availability of photos on the inter-
net has been exploited for many computer graphics applications including scene comple-
tion [Hays 2007] and virtual tourism [Snavely 2006]; however, the variation of illumination
in a collection has often been seen as a nuisance that is distracting during navigation or,
at best, an interesting source of visual diversity. Inspired by existing work on time-lapse
sequences [Weiss 2001, Matsushita 2004a], we consider these variations as a rich source
of information to compute intrinsic images.

In this chapter1, we exploit the rich information provided by multiple viewpoints and
illuminations in an image collection to process complex scenes without user assistance, nor
precise and complete geometry. Furthermore, we enforce that the decomposition be coher-
ent, which means that the reflectance of a scene point should be the same in all images.

We process pairs of points visible in several images in order to guide the decomposition
process. We consider the ratio of radiance between two points, which is equal to the ratio
of reflectance if the points share the same illumination. A contribution of this chapter is to
identify pairs of points that are likely to have similar illumination across most conditions.
For this, we leverage sparse 3D information from multi-view stereo as well as a simple
statistical criterion on the distribution of the observed ratios. These ratios give us a set
of equations relating the reflectance of pairs of sparse scene points, and consequently of
sparse pixels where the scene points project in the input images. To infer the reflectance
and illumination for all the pixels, we build on image-guided propagation [Levin 2008,
Bousseau 2009]. We augment it with a term to force the estimated reflectance of a given
3D point to be the same in all the images in which it is visible. This yields a large sparse
linear system, which we solve in an interleaved manner. By enforcing coherence in the
reflectance layer we obtain a common “reflectance space” for all input views, while we
extract the color variations proper to each image in the illumination layer.

1The work described in this chapter has been accepted to SIGGRAPH Asia 2012 [Laffont 2012b]. It has
been developed in part during a research visit at MIT, with Frédo Durand and Sylvain Paris (Adobe).

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



72 Chapter 5. Coherent Intrinsic Images from Photo Collections

Our automatic estimation of coherent intrinsic image decompositions from photo col-
lections relies on the following contributions:

• a method to robustly identify reliable reflectance constraints between pairs of pixels,
based on multi-view stereo and a statistical criterion;

• an optimization approach which uses the constraints within and across images to
perform an intrinsic image decomposition with coherent reflectance in all views of a
scene.

We ran our method on 9 different scenes, including a synthetic benchmark with ground
truth values, which allows for a comparison to several previous methods. We use our
intrinsic images for three different applications, including a novel image-based illumination
transfer between photographs captured from different viewpoints. Our coherent reflectance
layers enable stable transitions between views by applying a single illumination condition
to all images.

5.1 Overview

We take as input a collection of photographs {Ii} of a given scene captured from different
viewpoints and under varying illumination. We seek to decompose each input image into
an illumination layer Si and a reflectance layer Ri so that, for each pixel p and each color
channel c:

Iic(p) = Sic(p) Ric(p) (5.1)

Furthermore, whereas the illumination is expected to change from image to image, we
assume that the scene is mostly Lambertian so that the reflectance of a 3D point is constant
across images. In the following, we drop the color channel subscript c and assume per-
channel operations, unless stated explicitly.

In order to leverage the multiple illumination conditions, we need to relate scene points
in different images. For this, we apply standard multiview-stereo [Furukawa 2009b] (Fig-
ure 5.1(a)), which produces an oriented point cloud of the scene and estimates for each
point the list of images where it appears. For ease of notation, we make 3D projection
implicit and denote the observed radiance of point p and the color of the pixel where it
projects in image i as Ii(p).

We next infer ratios of reflectance between pairs of 3D points (Figure 5.1(b)). For a
pair of points (p, q), we consider the distribution of ratios of pixel radiance Ii(p) / Ii(q) in
all the images where both points are visible. The ratio of reflectance is equal to the median
ratio of radiance if the two points have the same illumination in most lighting conditions.
A contribution of our work is to identify pairs of points that share the same illumination
based on geometric criteria and on the distribution of radiance ratios.
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5.1. Overview 73

(a) off-the-shelf multiview stereo (b) reflectance ratio inference

3D points + normals

radiance ratio
histogram

(c) least-squares propagation
within and across images

 (d) coherent reflectance and
individual illumination layers

constraint
across images

constraint
within images

reflectance
reflectance

illumination

reflectance

illumination
illumination

Figure 5.1: Our method leverages the heterogeneity of photo collections to automatically decom-
pose photographs of a scene into reflectance and illumination layers. We first reconstruct a 3D
point cloud of the scene using automatic algorithms (a). We then derive constraints on the relative
reflectance of pairs of 3D points, based on their appearance in multiple images (b). We enforce
coherent reflectance of 3D points across all images and propagate the decomposition to all pixels
(c). The extracted reflectance layers are coherent across all views, while the illumination layers
capture the shading and shadow variations proper to each picture (d).
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74 Chapter 5. Coherent Intrinsic Images from Photo Collections

Our last step solves for the illumination layer at each image based on a linear least
squares formulation. It includes the constraints on reflectance ratios (depicted as green
edges in Figure 5.1(c)), an image-guided interpolation term inspired by Levin et al.
[Levin 2008] and Bousseau et al. [Bousseau 2009], and coherency constraints which force
reflectance to be the same in all images (magenta edges in Figure 5.1(c)).

5.2 Reflectance ratios

Our method relies on reflectance ratios inferred from the multiple illumination conditions
provided as input. In order to relate points in different images, we reconstruct a sparse set
of 3D points and normals, and introduce a statistical criterion to reliably infer reflectance
ratios.

5.2.1 Relations on reflectance between pairs of points

If two points p and q have the same normal ~n and receive the same incoming radiance,
then the variations of the observed radiances I are only due to the variations of the scene
reflectance R.

Assuming Lambertian surfaces, the radiance I towards the camera at each non-emissive
point p is given by the following equation:

I(p) = R(p)
∫

Ω
L(p, ~ω) (−~ω · ~n(p)) d~ω (5.2)

where L(p, ~ω) is the incoming radiance arriving at p from direction ~ω, ~n(p) is the normal
at p, and Ω is the hemisphere centered at ~n(p).

Given a pair of points p and q with the same normal ~n, we can express the ratio of
radiance between the two points as

I(q)
I(p) = R(q)

R(p)

∫
Ω L(q, ~ω) (−~ω · ~n) d~ω∫
Ω L(p, ~ω) (−~ω · ~n) d~ω . (5.3)

If the incoming radiance L is identical for both points, then the ratio of reflectances
R(q) / R(p) is equal to the ratio of radiances I(q) / I(p). From multiview stereo we
have a normal estimate for each point, and it is straightforward to find points with similar
normals. We next find an image where lighting conditions at p and q match. For points p
and q which are close, the likelihood that a shadow boundary falls between them is low.
Thus for most images in which these points are visible, the radiance ratio is equal to the
reflectance ratio. However, lighting may still not match in a few images. Inspired by the
work of Weiss [Weiss 2001] and Matsushita et al. [Matsushita 2004a] in the context of
timelapse sequences, we use the median operator as a robust estimator to deal with such
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5.2. Reflectance ratios 75

rare cases:
R(q)
R(p) = median

i∈I(p,q)

(Ii(q)
Ii(p)

)
(5.4)

where the median is taken only over the images of the set I(p,q) ⊂ {Ii} in which both p
and q are visible. This equation allows us to estimate the ratio of reflectances at p and q
based on the observation of their radiances in a sequence of images with varying lighting;
in Section 5.3.1, this reflectance ratio will be incorporated as a constraint which guides the
intrinsic decomposition.

Ambient occlusion Our derivation so far assumes that the illumination depends only on
the normal orientation and is independent of the location. However, for scenes with strong
concavities, differences in visibility might cause two points with similar normals to have
different illumination on average, because one of them might be in shadow more often. We
compensate for this by evaluating the ambient occlusion factor α(p), that is, the propor-
tion of the hemisphere visible from p. Ambient occlusion is computed by using a standard
Poisson mesh reconstruction (in practice the one in MeshLab) to create a geometric proxy
of the scene, and casting rays from the 3D points in the upper hemisphere around the nor-
mal. Figure 5.2 shows an example of reconstructed proxy and ambient occlusion estimated
at 3D points.

(a) View of St. Basil (b) Approximate proxy (c) Ambient occlusion at 3D points

Figure 5.2: Ambient occlusion estimation on the St.Basil scene (a). An approximate proxy created
with Poisson reconstruction (b) is used to estimate ambient occlusion at sparse 3D points (c).

When p and q are both in shadow, Equation 5.3 becomes:

I(q)
I(p) = R(q)

R(p)
α(q)
α(p) (5.5)

We account for the discrepancy in visibility by multiplying the ratio I(q)/I(p) by
α(p)/α(q), in order to correct the reflectance ratio estimated in Equation 5.4. With this
approach, we correct the case where both points are often in shadow, which happens in
regions with concavities. When only one of the points is in shadow and the other receives
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76 Chapter 5. Coherent Intrinsic Images from Photo Collections

sunlight in most images, the pair is not reliable and will be discarded as explained in Sec-
tion 5.2.2. Lastly, in the case where both points receive sunlight in most images, the ambi-
ent occlusion ratio α(p)

α(q) is likely to be close to 1 since this rarely happens in concavities; in
such a case, the correction does not affect the estimated reflectance ratio.

The estimation of ambient occlusion is robust to inaccurate geometry, since it averages
the contribution of incoming light from all directions of the hemisphere. Models recon-
structed from our point clouds are typically very coarse, but our results show that this is
sufficient for correcting the estimated reflectance ratios.

5.2.2 Selection of constrained pairs

Given the set of 3D points, we need to select a tractable number of pairs whose median
radiance ratio is likely to be a good estimate of the reflectance ratio. Based on the above
discussion, we start with a set of geometric factors (normals and 3D distance), and add a
simple statistical criterion on the observed ratios. We make things tractable by selectively
subsampling the valid constraints.

Geometric criterion. For each 3D point, we select a set of candidate pairs that follow the
geometric assumptions in Section 5.2.1. In most cases, the two points of a pair should be
nearby and have similar normals. However, we also wish to obtain a good spatial coverage
so that all regions of the point cloud are inter-connected; thus, we also select fewer pairs
consisting of points which are further apart or with varying orientations. Our approach
consists in sampling candidate pairs carefully by controlling the distribution of their spa-
tial extent and orientation discrepancy. Note that this step only selects candidate pairs of
points, on which constraints might be applied; unreliable pairs will be detected and dis-
carded in the next step of the algorithm.

We define the distance d~n on normal orientation between two points p and q from the
dot product between their normals

d~n(p,q) = |1− ~n(p) · ~n(q)| . (5.6)

We set d3D(p,q) to be the Euclidean 3D distance, representing the spatial proximity of
two points.

Our goal is to select N candidate pairs of points so that d~n and d3D follow normal dis-
tributionsN (σ~n) andN (σ3D). The parameter σ~n accounts for surfaces with low curvature
and inaccuracy in the normals estimated from multiview stereo. We set σ~n = 0.3 for all
our results, and set σ3D to 20% of the spatial extent of each scene.

For a given point p, we sample the density functions in two steps. First we select a
subset of points according toN (σ3D), and then we sample this subset according toN (σ~n).
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5.2. Reflectance ratios 77

In both cases, the major difficulty resides in properly accounting for the non-uniform dis-
tribution of the distance d ∈ {d~n, d3D} in the point cloud generated by multiview stereo.
We account for these non-uniform distributions with the following algorithm:

Algorithm 1 Sampling according to 3D distances or normals

1. Estimate the density of distances foriginal(d(p,q)) of all points q to the current point
p. We use the Matlab ksdensity function, which computes a probability density
estimate of distances to p from a set of samples d(p,q) by accumulating normal
kernel functions centered on each sample.

2. Assign to each point q a sampling probability based on the desired distributionN (σ)
and the density of distances foriginal:

Pr(q) = exp
(
− d(p,q)2

2σ2

)
/ foriginal(d(p,q))

3. Select a subset of points according to probabilities Pr(q) using inversion sampling.

In practice, we accelerate the sampling of N (σ3D) by first embedding the point cloud
in a 3D grid (with 103 non-empty cells on average). We then apply Algorithm 1 to the grid
cells instead of the points, ignoring empty cells and computing d3D between the centers of
the cells. As a result of this first sampling we obtain a list of cells and the number of points
that we need to choose in each cell to obtain a total of N pairs. We then apply Algorithm 1
according toN (σ~n), with the caveat that we only consider points from the cells which have
been obtained in the first step, and we apply inversion sampling independently in each cell
to select the proper number of points. We illustrate this process in Figure 5.3 and provide
reference Matlab code.

Our sampling strategy ensures a good distribution of pairs of points, with many “short
distance” pairs around the point and a few “longer distance” pairs. We also experimented
with a simple threshold that selects the pairs with the highest score based on d~n and d3D,
but this naive strategy tends to only select short pairs with identical normals, which yields a
weakly connected graph of constraints and results in isolated regions in the final optimiza-
tion.

In our experiments, the sampling strategy we designed produces a well-connected
graph of candidate pairs. However, we did not try to enforce connectivity of this graph,
because our subsequent statistical criterion discards a large number of unreliable pairs.
We used 30 candidate pairs per point in all our examples, and keep at most 1.5 million
candidate pairs per scene.
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78 Chapter 5. Coherent Intrinsic Images from Photo Collections
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Figure 5.3: 2D Illustration of our algorithm for sampling candidate pairs for a single point. (a)
Given an oriented point cloud, we wish to select N points so that their distances d3D and d~n to
a reference point (black square) follow normal distributions. (b-c) The point cloud is irregularly
sampled, and the distribution of distances of all points (blue curves) is very different from the target
normal distributions (red curves). (d) We first embed the point cloud in a grid and compute the
Euclidean distance d3D to the cell containing the reference point: the distance is color-coded (blue:
small distance; dark red: large distance). (e) We infer a sampling probability for each cell based
on d3D as described in Algorithm 1; this sampling probability is shown color-coded for each cell
(blue: low sampling probability; dark red: large sampling probability). From these probabilities,
we draw N samples to choose the number of points to select in each cell, shown as black numbers
in the corresponding highlighted cells. We discard all points contained in cells for which no sample
has been drawn. (f) For all the points within sampled cells, we infer a sampling probability based
on d~n (shown color-coded; blue: low sampling probability; dark red: large sampling probability).
We draw samples in each cell from these probabilities; the number of samples drawn in each cell
corresponds to the result of (e). (g) The final samples are distributed so that many points are nearby
and have similar normals compared to the reference point, while a few are further away or with
different normals to produce a well-connected graph of constraints. (h-i) The distribution of dis-
tances of sampled points (blue curves) is closer to the desired normal distributions (red curves). We
provide the Matlab sampling code used to generate this figure with the following parameters: 150
points in the point cloud and 35 samples drawn, for the illustrations (a, d-g); 500000 points in the
point cloud, and 100 samples drawn, for the distributions estimated with the Matlab ksdensity
function (b-c, h-i).
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5.2. Reflectance ratios 79

0-1.5 1.5
Log of radiance ratios
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Figure 5.4: Analysis of the distribution of radiance ratio (red channel, log scale) between two
3D points (red dots) with similar normals, under varying viewpoints and lighting. The probability
distribution function has a dominant lobe, corresponding to (b) and (c) where both points receive
approximately the same incoming radiance. In (a), the light is visible from only one of the points
and the corresponding radiance ratio falls in a side lobe. (d) shows the point cloud for image (a).

Photometric statistical criterion. Each candidate pair (p,q) can be observed in a subset
of input images I(p,q). Figure 5.4 illustrates the probability density function (PDF) of
the ratio of radiances of a pair over multiple images with different lighting. When the two
points fulfill our assumptions, the distribution has a dominant lobe well captured by the
median operator. In such a case, the reflectance ratio of the pair can be estimated with the
median (Equation 5.4). However when the two points receive different incoming radiance
in more than 50% of the images, the distribution is spread and not necessarily centered
at the median. We detect and reject such unreliable pairs of 3D points, by counting the
observations of their radiance ratio which are far from the median value. The observation
of pair (p,q) in image j is considered far from the median if∣∣∣∣∣log

(
Ij(q)
Ij(p)

)
−median

i∈I(p,q)
log

(Ii(q)
Ii(p)

)∣∣∣∣∣ > 0.15 (5.7)

in at least one channel. We consider a pair to be unreliable if it has less than 50% of the
radiance ratio values close to the median, or if it is visible in less than 5 images (too few
observations). Candidate pairs that are considered reliable will be used to constrain the
intrinsic image decomposition (Section 5.3.1).
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80 Chapter 5. Coherent Intrinsic Images from Photo Collections

What would happen for a cube? In theory, the faces of a cube are not connected by
pairwise constraints because they have orthogonal normals. However, the solution is also
influenced by an image-guided smoothness prior (Section 5.3.2) and a coherence term that
enforces the reflectance to remain the same under different illumination conditions (Sec-
tion 5.3.3). The faces may also be indirectly connected via other objects in the scene. In
our experiments, these additional constraints were enough to obtain plausible decomposi-
tions even on cube-like scenes (Temple in Figure 5.10, first row; RizziHaus in Figure 5.12,
third row).

5.3 Multi-Image Guided Decomposition

We now have a sparse set of constraints on the ratio of reflectance at pairs of 3D points.
To obtain values everywhere, we formulate an energy function over the RGB illumination
S at each pixel of each image. Our energy includes data terms on the reflectance ratios,
an image-guided interpolation term, and a set of constraints that enforce the coherence of
the reflectance between multiple images. This results in a large sparse linear least square
system, which we solve in a staggered fashion.

5.3.1 Pairwise reflectance constraints

Given the ratio between the reflectances of pixels corresponding to points p and q in Equa-
tion 5.4, we deduce ratios Qj(p,q) between the illumination of the corresponding pixels
in image j:

Qj(p,q) = Sj(p)
Sj(q) = Ij(p)

Ij(q)
R(q)
R(p) (5.8a)

= Ij(p)
Ij(q) median

i∈I(p,q)

(Ii(q)
Ii(p)

)
(5.8b)

where Sj is the illumination layer of image j. This formula lets us write a constraint on the
unknown illumination values of pixels corresponding to p and q in image j:

Qj(p,q)
1
2 Sj(q) = Qj(p,q)−

1
2 Sj(p) (5.9)

We combine the contribution of all the constrained pairs selected in Section 5.2.2, in all the
images where they are visible, and express these constraints in a least-squares sense to get
the energy Econstraints:

Econstraints =
∑

(p,q)

∑
j∈I(p,q)

[
Qj(p,q)

1
2 Sj(q)−Qj(p,q)−

1
2 Sj(p)

]2 (5.10)

In practice, we have one such term for each RGB channel.
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5.3. Multi-Image Guided Decomposition 81

5.3.2 Smoothness

We build our smoothness prior on the intrinsic images algorithm of Bousseau et
al. [Bousseau 2009] that was designed to propagate sparse user indications for separating
reflectance and illumination in a single image, and on the closely related Matting Laplacian
introduced by Levin et al. [Levin 2008] for scribble-based matting. The former assumes a
linear relationship between the unknowns and the image channels and the latter an affine
relationship. We experimented with both, and while the intrinsic image prior captures vari-
ations of illumination at a long distance from the constrained pixels, we found that the
matting prior yields smoother illumination in regions with varying reflectance, especially
in our context where many pixels are constrained. We show a comparison between these
priors in Section 5.4.2.1.

Our prior translates into a local energy for each pixel neighborhood that relates the
color at a pixel x with the illumination value in each channel Sjc(x) using an affine model:

∑
c∈{r,g,b}

∑
y∈Wx

j

(
Sjc(y)− axjc · Ij(y)− bxjc

)2
+ ε (axjc)2 (5.11)

where Wx
j is a 3 × 3 window centered on x, axj and bxj are the unknown parameters of

the affine model, constant over the window, and ε = 10−6 is a parameter controlling the
regularization (axj )2 that favors smooth solutions. Levin et al. [Levin 2008] showed that axj
and bxj can be expressed as functions of Sj and removed from the system. Then, summing
over all pixels and all images yields an energy that only depends on the illumination, and
can be expressed in matrix form:

Esmoothness =
∑

c∈{r,g,b}

∑
j

ŜT
jcMjcŜjc (5.12)

where the vectors Ŝj stack the unknown illumination values in image j and the matrices
Mj encode the smoothness prior over each pixel neighborhood in this image (see the paper
by Levin et al. [Levin 2008] for the complete derivation).

We found that it is beneficial to add a grayscale regularization for scenes with small
concavities in shadow. Because these areas often have no (or very few) reconstructed
3D points, they are influenced by their surrounding lit areas and illumination tends to be
overestimated. For such scenes, we add the term below to favor illumination values close
to the image luminance:

∑
x

∑
c∈{r,g,b}

(
Sjc(x)− 1

3
[
Ijr(x) + Ijg(x) + Ijb(x)

])2
(5.13)

We use a small weight (10−3) so that this term affects only regions with no other con-
straints. We show in Section 5.4.2.1 that although results are satisfactory without it, this
term helps further improve the decomposition.
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82 Chapter 5. Coherent Intrinsic Images from Photo Collections

5.3.3 Coherent reflectance

For photo collections, it is important to ensure that the intrinsic image decomposition is co-
herent across images from the collection. We impose additional constraints across images
by enforcing the reflectance of a 3D point to be constant over all views where it appears.

Consider the case where a given point p is visible in two images Im and In. For each
such pair (m,n) of images we want to force the pixels corresponding to p to have the same
reflectance, and thus infer a constraint on their illumination:

Rm(p) = Rn(p)⇒ Im(p)
Sm(p) = In(p)

Sn(p)
⇒ Im(p) Sn(p) = In(p) Sm(p)

(5.14)

We denote I(p) ⊂ {Ii} the subset of images where the point p is visible. Summing the
contribution of every pair of images where a point appears gives us an additional energy
term Ecoherence that encourages coherent reflectance across images:

Ecoherence =
∑
p

∑
m∈I(p)

∑
n∈I(p)
n>m

(
Im(p) Sn(p)− In(p) Sm(p)

)2 (5.15)

This term generates a large number of constraints. We found that applying them only at the
points selected in Section 5.2.2 yields equivalent results while reducing the complexity of
the system. In addition, we describe an efficient solver in Section 5.3.4.

5.3.4 Solving the system

We combine the energy terms defined above with weights wconstraints = 1, wsmoothness = 1
and wcoherence = 10, fixed for all our results. Minimizing this global energy translates into
solving a sparse linear system where the unknowns are the illumination values at each pixel
of each image. We obtain the reflectance at each pixel by dividing the input images by the
estimated illuminations.

Our system is large because it includes unknowns for all the pixels of all the images
to decompose. To make things tractable, we use an iterative approach akin to a blockwise
Gauss-Seidel solver, where each iteration solves for the illumination of one image with the
values in all the other images fixed. The advantage of this approach is that we can reduce
Equation 5.15 to a single term per point p, at each iteration. To show this, we first write
the energy Ekcoherence(m,p) for point p in image m at iteration k:
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5.4. Implementation and Results 83

Ekcoherence(m,p) =
∑

n∈I(p)
n<m

(
Im(p) Skn(p)− In(p) Skm(p)

)2
+

∑
n∈I(p)
n>m

(
Im(p) S(k−1)

n (p)− In(p) Skm(p)
)2 (5.16)

In this energy, the only variable is Skm(p), everything else is fixed. Since all the terms in
Equation 5.16 are quadratic functions depending on the same variables, the energy can be
rewritten as a single least-squares term, plus a constant which does not depend on Skm(p):

(∑
n∈I
n6=m

I2
n

)Skm −
Im
(∑

n∈I
n6=m

In Sk̃n
)

∑
n∈I
n6=m

I2
n


2

+ constant (5.17)

where for clarity, we use the notation Sk̃n = Skn(p) when n < m and S(k+1)
n (p) when n >

m, and omit the dependency on p. Equation 5.17 expresses the inter-images constraints
on Skm(p) as a single least-squares term, which shows that these constraints are tractable
even though there is a quadratic number of them. Further, when we derive this term to
obtain the corresponding linear equation used in our solver, the factor (

∑
n∈I
n6=m

I2
n) and the

denominator cancel out, ensuring that our system does not become unstable with small
values of

∑
n∈I
n6=m

I2
n.

To initialize this iterative optimization, we compute an initial guess of the illumination
in each image with an optimization where we only use the single-image terms Econstraints,
Esmoothness, and the grayscale regularization. The energy decreases quickly during the first
few iterations of the optimization process, then converges to a plateau value.

5.4 Implementation and Results

3D Reconstruction. We first apply bundle adjustment [Wu 2011] to estimate the pa-
rameters of the cameras and patch-based multi-view stereo [Furukawa 2009b] to generate
a 3D point cloud of the scene. For each point, this algorithm also estimates the list of
photographs where it appears. We compute normals over this point cloud using the PCA
approach of Hoppe et al. [Hoppe 1992]. We used 103 images per scene on average to per-
form reconstruction, but this varies significantly depending on the scene (e.g., we used 11
viewpoints to reconstruct the “Doll” scene).
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84 Chapter 5. Coherent Intrinsic Images from Photo Collections

Point cloud resampling. Multi-view reconstruction processes full-sized photographs,
while we apply our decomposition on smaller images for efficiency. Multiple nearby 3D
points may project to the same pixels on the resized images. We downsample the point
cloud so that at most one 3D point projects at each pixel in each image, using a greedy
algorithm which keeps in priority points that are visible in most images. To do so, we visit
every pixel of every image, creating the point set as we proceed. At a given pixel, we first
test if a point of the set already projects to it. If not, we choose the point which is visible
in the largest number of images, and we add it to the set. We limit the point cloud to 200k
points since we did not observe a significant quality improvement with more points. We
also discard points that project on strong edges because their radiance tends to result from
a mixture of reflectances that varies among images: we discard a point if the variance of
the radiance in adjacent pixels is greater than 4× 10−3.

Performance. The average running time of our method is 90 minutes for the 9 scenes in
this chapter, on a 2.80Ghz Xeon machine with 8 cores. Our unoptimized single-core Matlab
implementation of the sampling algorithm (Section 5.2.2) takes 52 minutes on average,
and the selection of reliable constraints takes less than a minute. Each iteration of the
optimization takes 6 minutes on average; we use Matlab’s backslash operator to solve for
each image within one iteration. We could greatly speed up our method by parallelization
and a multi-scale approach.

5.4.1 Intrinsic Decompositions

We demonstrate our coherent intrinsic image decomposition on three types of data. First,
we apply our method to synthetic data which allows an evaluation with respect to ground
truth, and thorough comparison to the results which were kindly provided by authors of
previous work. We then show results of our method for scenes that we capture indoors, in
which we have placed cameras and lights around objects in a room. We finally apply our
method to online photo collections.

5.4.1.1 Synthetic dataset

We evaluate our method on a synthetic dataset that we have created. This dataset consists
of realistic renderings of a complex outdoor scene, from multiple viewpoints and under
varying illuminations, along with a ground truth decomposition for each image. We use a
diffuse model of the St. Basil Cathedral because it contains complex geometric details and
a colorful spatially varying reflectance, in addition to occluded areas that are challenging
for our approach (Section 5.2.1).
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5.4. Implementation and Results 85

(a) Synthetic environment map (b) Captured environment map

Figure 5.5: Examples of sky environment maps used for two renderings shown in Figure 5.6. (a)
Synthetic sky created with a parametric sky model [Preetham 1999], around 1pm on a summer day.
(b) Captured sky at dusk time (source: CGSkies).

Dataset construction. We render the scene and compute ground truth illumination using
path-tracing. We use a physically-based sun and sky model [Preetham 1999] for daylight,
and captured environment maps for sunset/sunrise and night conditions (Figure 5.5). We
rendered 30 different viewpoints over the course of three days (in summer, autumn and
winter).

We use a modified version of PBRT [Pharr 2010] to obtain ground truth reflectance and
illumination (as irradiance) at each pixel. There is one caveat, however: in Section 2.3.1,
we showed that the intrinsic illumination is equivalent to the irradiance under the assump-
tion that the radiance towards the camera is constant over each pixel. This does not neces-
sary hold when a pixel straddles a reflectance edge, or on curved surfaces. Without loss of
generality, let us analyze the case of a pixel Ipixel which observes two radiances I1 and I2,
received in equal proportions:

Ipixel = (I1 + I2) / 2
Rpixel ∗ Spixel = (R1 ∗ S1 + R2 ∗ S2) / 2 (5.18)

We can distinguish three cases:

• when the reflectance is constant over the two regions, Rpixel = R1 = R2 and the
pixel illumination is a blend of the individual irradiances: Spixel = (S1 + S2) / 2

• when the illumination is constant over the two regions, Spixel = S1 = S2 and the
pixel reflectance is a blend of the individual reflectances: Rpixel = (R1 + R2) / 2

• when both the reflectance and the illumination change, we cannot identify separately
Rpixel and Spixel from Equation 5.18. This case occurs in particular at occlusion
boundaries, because object changes may involve orientation and material variations.
Averaging the reflectance and illumination separately (i.e., Spixel = (S1+S2) / 2 and
Rpixel = (R1 + R2) / 2) would lead to an invalid intrinsic decomposition, because:

(R1 ∗ S1 + R2 ∗ S2) / 2 6= ((S1 + S2) / 2) ∗ ((R1 + R2) / 2). (5.19)
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86 Chapter 5. Coherent Intrinsic Images from Photo Collections

Informed with this analysis, we create ground truth illumination images by averaging the
irradiance of primary rays within each pixel. We then create ground truth reflectance im-
ages by dividing the rendering with the ground truth illumination: R = I/S.

We select three representative images of the scene, which are illustrated in Figure 5.6.
The first view exhibits mostly monochromatic illumination, and few shadows. The second
view corresponds to a morning appearance, with slightly colored lighting and significant
shadows. In the third view, we used a dusk sky and added point light sources on the
ground to simulate urban lights; this results in colored lighting, with blue shadows cast
on the cathedral towers. We provided the authors of single-image intrinsic decomposition
methods with the input images (in two versions: gamma-encoded JPEG, and linear EXR)
and the associated ground truth.

Sampling the geometry. In order to apply our method, we sample the 3D model to gen-
erate a 3D point cloud. We could not apply our standard reconstruction pipeline on the
synthetic dataset because structure-from-motion fails to estimate the camera parameters;
this also allows us to evaluate the performance of our algorithm independently of the qual-
ity of multi-view reconstruction. We cast rays from the camera centers to each pixel of the
evaluation images Figure 5.6. We create a sparse oriented point cloud from the intersection
of these rays with the geometry. We uniformly downsample the point cloud to 100k points
for the first evaluation (this corresponds to 1 reconstructed point every 16 non-sky pixels,
on average), and we later study the influence of the point density on the decomposition
results.

Quantitative evaluation and comparisons. We evaluate the results of our approach,
as well as several state-of-the-art single-image automatic and user-assisted methods, all
kindly provided by the authors of the previous work. We also implemented an extension
of [Weiss 2001] to multiple views: inspired by [Liu 2008], we first align all images with
the viewpoint of the photograph to decompose. While Liu et al. use a global homography
or warp a mesh based on detected feature points, we avoid mesh folding by exploiting
the reconstructed sparse geometry. We construct a height field for each image and use
it to project all images on the viewpoint to decompose. We then compute the intrinsic
decomposition as in [Liu 2008], ignoring pixels from views where they are not visible or
occluded by the geometry.

We estimate the Local Mean Squared Error (LMSE) of each method with respect to
ground truth, as in [Grosse 2009], and average it over the three comparison views. We
report the error in Table 5.1 and plot it in Figure 5.7. We also provide a visual comparison
of all methods and ground truth for one view in Figure 5.8.

For this benchmark, our approach produces results that closely match ground truth and
quantitatively outperforms all the tested methods. In particular, we successfully decom-
pose the night picture while automatic methods fail to handle the yellow spot lights and
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5.4. Implementation and Results 87

blue shadows; only the multi-image approach (extended [Weiss 2001]), and to a certain ex-
tent the user-assisted approach of [Bousseau 2009] are able to extract some of the colored
illumination. Our method extracts most of colored texture from the illumination layer in
this challenging case; it also disambiguates regions of same reflectance chromaticity, such
as the white balconies and grey brick arches, whereas single-image approaches estimate
those as similar reflectances and different illuminations. In addition, our method also pro-
duces coherent reflectance between all views (shown in accompanying materials) despite
the drastic change of lighting.

Image 1 Image 2 Image 3 Average
[Shen 2011a] 0.0422 0.0432 0.0441 0.0432
[Garces 2012] 0.0346 0.0417 0.0408 0.0390

[Bousseau 2009] 0.0305 0.0344 0.0500 0.0383
[Zhao 2012] 0.0275 0.0226 0.0343 0.0281
[Shen 2011b] 0.0200 0.0158 0.0262 0.0207

Extended [Weiss 2001] 0.0201 0.0216 0.0199 0.0205
Ours 0.0159 0.0119 0.0116 0.0131

Table 5.1: Local Mean Squared Error of several intrinsic image decomposition methods, on the
three comparison images of our synthetic dataset. The average error is plotted on Figure 5.7.
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88 Chapter 5. Coherent Intrinsic Images from Photo Collections

Rendering Reflectance Illumination Sky mask

Figure 5.6: Renderings of the synthetic StBasil scene. We provided authors of concurrent methods
with the input images on the left, as well as the ground truth reflectance and illumination images
(second and third column). All the results are then evaluated on non-sky pixels (right column).

0 0.01 0.02 0.03 0.04 0.05

Ours

Extended [Weiss 2001]

[Shen and Yeo 2011]

[Zhao et al. 2012]

[Bousseau et al. 2009]

[Garces et al. 2012]

[Shen et al. 2011]

Average LMSE

Figure 5.7: Numerical evaluation of seven intrinsic decomposition methods on our synthetic
dataset. Grey bars indicate the LMS error averaged over all comparison images, while red bars
illustrate the standard deviation of LMSE across the three comparison images.
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5.4. Implementation and Results 89

Input and scribbles [Bousseau 2009] [Shen 2011a] [Garces 2012] [Zhao 2012]
for [Bousseau 2009]

[Shen 2011b] Extended Our results Ground truth
[Weiss 2001]

Figure 5.8: Comparison to existing methods and ground truth on one view of our synthetic dataset.
Reflectance and illumination images have been scaled to best match ground truth; sky pixels have
been removed. For each decomposition, the top row contains the reflectance and the bottom row
shows the illumination. The error of each method is reported in Figure 5.7.
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90 Chapter 5. Coherent Intrinsic Images from Photo Collections
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Influence of reconstruction density We
study the robustness of our algorithm by
varying the number of 3D points in the
sparse point cloud. We uniformly subsam-
ple the original point cloud and select be-
tween 2500 and 240k points. We show the
resulting LMS error in the side graph: our
approach still outperforms the best single-
image based technique when only 15000
points are used (i.e., one 3D point every
110 non-sky pixels on average).

We perform another experiment and vary the number and distribution of 3D points.
Instead of sampling the geometry, we specify ground truth camera parameters to replace
the output of structure-from-motion (since those techniques fail on our synthetic images)

Sampling with Sampling with Sampling with Sampling with PMVS
240k points 50k points 15k points 2.5k points reconstruction

(LMSE 0.013) (LMSE 0.014) (LMSE 0.019) (LMSE 0.041) (LMSE 0.014)

Figure 5.9: Influence of the point cloud density and reconstruction method. Top row: constrained
3D points and their estimated reflectance. Middle row: estimated reflectance. Bottom row: esti-
mated illumination. For each setting, we report the LMS error on this view.
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5.4. Implementation and Results 91

then apply PMVS to reconstruct the oriented point cloud. Our decomposition using this
reconstruction yields an average LMSE of 0.01564, still significantly lower than all the
approaches compared on Table 5.1. This slight decrease in performance could be due to
inaccurate estimation of 3D position and normals, and differences in the spatial distribution
of reconstructed points. In particular, PMVS tends to yield an irregularly sampled point
cloud, where some regions are densely reconstructed while others contain large holes (see
Figure 5.9, top right).

We show a visual comparison of the results with different reconstructions on Figure 5.9,
and illustrate the density of the 3D point cloud in the top row. When fewer 3D points
are reconstructed, only few pairwise and coherence constraints can be imposed and the
decomposition mostly relies on our image-guided smoothness prior.

5.4.1.2 Captured scenes

We set up two indoors scenes containing small objects and use two light sources: a camera-
mounted flash with low intensity, which adds ambient light in shadows (fill light), while
a remote-controlled flash produces strong lighting from a separate direction. This setup
allows us to validate our algorithm on real photographs, while avoiding the difficulties
inherent in internet photo collections, such as the use of different camera settings or con-
trast and color manipulation that affect the validity of our assumptions. We shoot RAW
photographs, from which we recover linear images.

Figure 5.10 shows our decomposition for
the “Doll” and “Temple” scenes. We used 11
and 10 viewpoints respectively, and 7 different
lighting conditions. Both scenes contain col-
ored reflectances (cloth of the baby doll, texture
of the tabletop) and strong hard shadows that
are successfully decomposed by our method.
Non-lambertian components of the reflectance
(such as the specularities on the tablecloth) are
assigned to the illumination layer, since co-
herency constraints enforce similar reflectance
across images.

We also provide a visual comparison to previous work on a similar “Doll” scene, shown
in Figure 5.11. Our results are on par with the best previous decompositions, and we handle
the complex background textures and strong cast shadows which did not appear in the
image used in previous work.

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



92 Chapter 5. Coherent Intrinsic Images from Photo Collections

Input images Reflectance Illumination

Figure 5.10: Results of our decomposition on scenes captured with a flash (“Temple” and “Doll”).
Note that the colored illumination on the doll is due mainly to indirect light, and the reflectance is
coherent across views.

Scribbles for
[Bousseau 2009]

[Bousseau 2009] [Tappen 2005] [Weiss 2001] [Shen 2008] [Zhao 2012]

Figure 5.11: Results of existing single-image methods on pictures of a doll. We captured our
own version of a similar doll from different viewpoints with a moving light source (flash) and show
our results in Figure 5.10. Although our input photographs are more challenging due to the back-
ground texture and shadows cast on the doll, our automatic method successfully recovers a smooth
illumination layer and a shading-free reflectance layer.
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5.4. Implementation and Results 93

5.4.1.3 Internet photo collections

The last set of results we show is on internet photo collections of famous landmarks; we
chose challenging scenes with interesting lighting and shadowing effects. We download
images from Flickr c©or Photosynth c©, avoiding pictures that have been overly edited. We
use 45 images on average to compute the pairwise reflectance ratios (Equation 5.4), and
perform the intrinsic decomposition on around 10 images per dataset. Table 5.2 lists the
number of images used for each scene.

We correct radial distortion using camera parameters estimated from scene reconstruc-
tion. We assume a gamma correction of 2.2 which is common for jpeg images. However,
noise and non-linearities in the camera response can generate unreliable pixels which have
very low values in some channels; in such cases we recover reliable information from other
channels when available.

Results on downloaded scenes. Figure 5.12 illustrates our results on several scenes,
namely St. Basil, Knossos, RizziHaus, and Moldovita. Our method successfully decom-
poses the input image sets into intrinsic images, despite the complex spatially-varying re-
flectance and strong cast shadows.

Comparison on St. Basil. In Figure 5.13 we present a side-by-side comparison with
several existing single-image methods on a real picture of the St. Basil cathedral. We
provide coherent reflectance (compare our result to Figure 5.12, top row), which was not in
the scope of single-image approaches. Our reflectance layer is comparable in quality to the
best previous work. Enforcing coherent reflectance across views results in some residual
color in the illumination layer; this is discussed in Section 5.4.2. However, color residuals
are attenuated in other views (see Figure 5.12, top row). Also, note that the illumination is
completely monochromatic in the results of some of the other methods.

te
l-0

07
61

11
9,

 v
er

si
on

 1
 - 

5 
D

ec
 2

01
2



94 Chapter 5. Coherent Intrinsic Images from Photo Collections

Input images Reflectance Illumination

Figure 5.12: Results of our method on internet photocollections. First row: another view of the
StBasil scene. The reflectance we extract is coherent with the one shown in Figure 5.13. Second
row: Knossos. Third row: RizziHaus. The thin specular objects which cast shadows on the façade
are a challenging case for multi-view stereo. Our method is able to extract their shadows despite
the lack of a complete and accurate 3D reconstruction. Bottom row: Moldovita. Our decomposition
successfully separates the complex paintings and recovers a smooth illumination.
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5.4. Implementation and Results 95

Input and scribbles [Bousseau 2009] [Shen 2008] [Tappen 2005] [Shen 2011a]
for [Bousseau 2009]

[Garces 2012] [Gehler 2011] [Shen 2011b] [Zhao 2012] Our decomposition

Figure 5.13: Comparison between our approach and existing single-image methods on a picture
from an online collection. For each decomposition, the top row contains the reflectance and the
bottom row shows the illumination. Note that the method by Bousseau et al. [Bousseau 2009] is
user-assisted. All results have been provided by the respective authors or come from [Garces 2012].
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96 Chapter 5. Coherent Intrinsic Images from Photo Collections

Comparison to single-image methods. In Figure 5.14b, our decomposition assigns a
similar reflectance to the steeple and roof of the monastery because very few 3D points are
reconstructed in these areas (see Figure 5.14a, bottom). In the absence of 3D points, the
decomposition lacks pairwise and coherence constraints to disambiguate reflectance and
illumination and relies mostly on the smoothness prior. In contrast, our algorithm success-
fully disambiguates the complex texture on the lower facade where sparse 3D information
is available. Additional pictures of the steeple and roof can be used to improve the 3D
reconstruction and our decomposition.

A common assumption of single image methods is to constrain pixels with similar
chrominance to share similar reflectance, which is likely to produce the same greyish re-
flectance as ours over the white steeple and dark roof. For example, the method by Zhao et
al. [Zhao 2012] produces a similar greyish reflectance as ours on the steeple and roof, while
their reflectance contains residual blue shadows and their illumination contains residual
texture on the facade (Figure 5.14c). In addition, while this assumption on chrominance
works well in many situations, it fails in the presence of colored lighting. Our method
does not rely on such assumption and handles mixed lighting conditions well; compared
to existing approaches, our method leverages geometric and multi-lighting information to
disambiguate complex reflectance-illumination patterns.

Comparison to an user-assisted approach. In Figure 5.15, we show additional com-
parisons to the user-assisted approach of Bousseau et al. [Bousseau 2009]. Our automatic
approach produces comparable results, and superior results in cases such as the painted
façade of Moldovita (first row) or the underexposed shadow of Florence (third row).
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5.4. Implementation and Results 97

(a) Input image (b) Our decomposition (c) Result from [Zhao 2012]
and constrained points

Figure 5.14: Comparison to a single-image method on the Moldovita scene. Our approach suc-
cessfully separates the complex painted texture from the smooth illumination (b), in regions which
are well reconstructed (a). In the absence of 3D points (e.g., steeple and rool, left part of the façade),
our decomposition relies on the image-guided smoothness prior. In comparison, the method by
Zhao et al. [Zhao 2012] shares similar artifacts on the steeple and roof due to their assumption on
chrominance, but does not extract the shadow cast on the façade (c).

Scribbles for [Bousseau 2009] [Bousseau 2009] Our reflectance Our illumination
[Bousseau 2009] reflectance illumination

Figure 5.15: Comparison to a user-assisted approach on three scenes: Moldovita, Manarola, Flo-
rence. Input scribbles were kindly provided by the authors. The coherence constraints ensure that
the reflectance is similar in every view and allows the recovery of reflectance values even in shad-
owed areas where the single image approach of Bousseau et al. [Bousseau 2009] produces noisy
results. In addition, we recover a smoother illumination in textured planar regions.
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98 Chapter 5. Coherent Intrinsic Images from Photo Collections

5.4.2 Analysis and Limitations

5.4.2.1 Analysis

Synth. Captured Internet Photo Collections
Scene 1 2 3 4 5 6 7 8 9
Nd 6 5 10 9 11 8 11 8 17
Nr 30 32 48 56 60 34 61 28 53
Prec 100k 467k 1.3M 1M 888k 2.0M 1.4M 591k 552k
Psel 68k 200k 199k 200k 196k 192k 199k 200k 196k
Ccand 1.4M 1.5M 1.5M 1.3M 1.4M 1.3M 1.5M 1.5M 1.5M
Cpair 260k 724k 709k 197k 392k 241k 155k 272k 192k
Ccoher 39k 105k 142k 66k 65k 57k 46k 54k 53k

Table 5.2: Nd Number of images to decompose for each scene,Nr number of images for reflectance
ratio estimation (Equation 5.4), Prec number of reconstructed 3D points, Psel number of points
after downsampling, Ccand number of candidate pairs for reflectance constraints before applying
the statistical criterion, Cpair number of reliable pairwise constraints, Ccoher number of coherency
constraints. 1: Synthetic St. Basil; 2: Doll; 3: Temple; 4: St. Basil; 5: Knossos; 6: Moldovita; 7:
Florence; 8: RizziHaus; 9: Manarola.

We show the number of constraints estimated for each scene in Table 5.2. The size of
the downsampled point cloud Psel and the number of candidate pairs for reflectance con-
straints Ccand are approximately the same for all captured and downloaded scenes. How-
ever, on average 52% of the pairs are discarded for captured scenes, and 83% for down-
loaded scenes. Moving from a single-camera, controlled capture setting to online photo
collections introduces errors due to different cameras, temporal extent (e.g., repainted
façades), and image editing. Our robust statistical criterion detects some of these errors
and discards the corresponding pairs.

Influence of pairwise constraints. Figure 5.16 illustrates the importance of our pair-
wise constraints for disambiguating reflectance and illumination. In regions with complex
texture, they allow us to recover smooth illumination (Figure 5.16b). Disabling these con-
straints introduces strong texture residuals in the illumination layer (Figure 5.16a).

Influence of coherency constraints. In Figure 5.17, we first show the decomposition for
a single image without the coherence term Ecoherence, and then the result with coherence
constraints to all other images. This image is hard to decompose since it contains mixed
lighting conditions, i.e., the blue sky is dominant in the shadow while the bright sun is
dominant elsewhere. As a result, the reflectance without coherence constraints contains a
residual shadow, which is removed when coherence constraints are added. In addition, en-
forcing a coherent reflectance across images enables new applications which combine mul-
tiple views, such as model texturing (Section 5.5.2) and image-based illumination transfer
(Section 5.5.3).
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5.4. Implementation and Results 99

(a) Illumination without pairwise constraints (b) Illumination with pairwise constraints

(c) Input (d) Without pairwise constraints (e) With pairwise constraints

Figure 5.16: Influence of the pairwise relative constraints on another image of the Doll scene.
(a) Without pairwise reflectance constraints, texture cannot be successfully separated from lighting
and the resulting illumination layer contains large texture variations. (b) Enabling these constraints
allows us to recover a smooth illumination on the tablecloth, despite the complexity of its texture.
Similar observations can be made on the painted façade of Moldovita (bottom).

Input image Reflectance without coherence Reflectance with coherence

Figure 5.17: Comparison between the decomposition, before and after multi-view coherence in the
Florence scene. The coherence constraints between multiple views allow our method to recover a
coherent reflectance even under mixed lighting conditions such as this bright sun with blue shadows.
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100 Chapter 5. Coherent Intrinsic Images from Photo Collections

(a) Input rendering (b) Reflectance (c) Reflectance (d) Ground truth
without correction with correction reflectance

Figure 5.18: Effect of compensating for ambient occlusion on the decomposition of a synthetic
image (a). Without special treatment, the reflectance under the arches appears darker (b) because
these regions systematically receive less illumination. Correcting the pairwise reflectance con-
straints by compensating for ambient occlusion (Section 5.2.1) yields a reflectance (c) closer to
ground truth (d).

Influence of ambient occlusion. Figure 5.18 shows the effect of correcting pairwise re-
flectance constraints with the ratios of ambient occlusion (Section 5.2.1). This correction
yields a better estimation of reflectance in regions which are systematically in shadow, such
as the arches in the synthetic example. While we applied it on all scenes, this correction
is optional; disabling it has little effect on scenes without concavities (such as RizziHaus,
Figure 5.12, third row).

Influence of grayscale regularization. Figure 5.19 shows an example where the
grayscale regularization term introduced in Section 5.3.2 improves the results of our de-
composition, in highly occluded regions which are not well reconstructed.

Influence of smoothness prior. Bousseau et al. [Bousseau 2009] applied their linear
model channel per channel to estimate colored illumination, which is critical to handle
nighttime pictures and mixed sun/sky lighting. In Section 5.3.2, we relaxed this model by
adding a per-window constant term, leading to an affine model similar to that of Levin et
al. [Levin 2008]. We found that this prior captures well smooth illumination on complex
textured surfaces, such as the tablecloth on the Doll scene. On such a scene, the prior from
Bousseau et al. produces texture residuals in the illumination layer (Figure 5.20).

5.4.2.2 Limitations

We designed our method to estimate coherent reflectance over multiple views of a scene.
However, images in photo collections are often captured with different cameras and can be
post-processed with different gamma and saturation settings. Since we enforce coherent
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5.4. Implementation and Results 101

Input image and Without regularization With regularization Ground truth
constrained points

Figure 5.19: While our method produces a high quality decomposition in most regions of the
image, adding the grayscale regularization further improves the results in regions with ambient
occlusion. The regularization helps to capture the shadowing effects in areas where only few 3D
points are reconstructed, such as the arches in the lower part of the cathedral.

Input image

With prior of [Bousseau 2009] With our smoothness prior

Figure 5.20: Influence of the smoothing prior. We compare results of our decomposition us-
ing the image-guided prior of [Bousseau 2009] (middle), with ours based on the Matting prior
of [Levin 2008]. Our prior better disambiguates texture from shading in complex regions and re-
covers a smoother illumination layer.
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102 Chapter 5. Coherent Intrinsic Images from Photo Collections

reflectance, residues of these variations are sometimes visible in our illumination compo-
nent, (e.g., Figure 5.13). We argue that some reflectance residues in the illumination are
acceptable as long as reflectance is plausible and coherent. For example they will be re-
combined with a coherent (thus similar) reflectance layer when transferring lighting, in
Section 5.5.3. An automated way to identify and correct for camera responses and image
transformations is a promising direction for future work. We expect such corrections to
remove the remaining artifacts in our intrinsic image decompositions.

We rely on multi-view stereo for correspondences between views. Consequently in
poorly reconstructed regions (such as very dark regions; e.g., just below the roof in Fig-
ure 5.12, bottom), we rely only on the smoothness energy for our decomposition. Since
no correspondences exist between views, reflectance in these regions is not coherent across
images. If such regions are systematically darker in all views, this is fine for lighting
transfer because low illumination values mask the reflectance discrepancy. However, since
reflectance is computed by dividing the input image with illumination, very small illumi-
nation values can result as very bright pixels in the reflectance. Thin features are also
problematic since radiance is blended in the input images. This could be treated with a
change of scale, i.e., using close up photos.

5.5 Applications

5.5.1 Image editing

Input image Reflectance Illumination

Edited reflectance Final composite

Figure 5.21: We use our method to replace the texture of the tablecloth while preserving the
illumination variations such as folds and shadows.
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5.5. Applications 103

Our intrinsic decomposition separates the effects of reflectance and illumination in pho-
tographs, thus allowing lighting-aware manipulations in image editing software. In Fig-
ure 5.21, we modify the reflectance layer and recombine it with the original illumination
layer, resulting in an image with new material colors but coherent illumination.

Note that in this simple editing example, we ignored indirect lighting: altering the
materials colors should affect the illumination on other parts of the scene, because of inter-
reflections. Our automatic decomposition provides the input required in [Carroll 2011] to
tackle this issue.

5.5.2 Texturing

(a) Input photographs (b) Reconstructed 3D mesh

(c) Textured with projected radiance (d) Textured with projected reflectance

Figure 5.22: From a set of multi-view photographs (a), we automatically reconstruct a 3D mesh
(b). Applying projective texture mapping with the input photographs yields a textured mesh which
contains shadows from the original images (c). In contrast, applying texture mapping with the co-
herent reflectance obtained with our method yields an illumination-free model of the object (d). The
resulting model contains no shading or shadows, and can be integrated into virtual environments.

Our decomposition yields reflectance images which are coherent over all views of a
scene. These images do not contain shading or shadows, and can be exploited to facilitate
texturing and compositing. In Figure 5.22, we reconstruct a 3D model and automatically
produce illumination-free textures using projective texture mapping.
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104 Chapter 5. Coherent Intrinsic Images from Photo Collections

5.5.3 Lighting transfer

(a) Input image 1

(b) Input image 2

Project and
interpolate

illumination
(c) Illumination from image 1 

transferred on viewpoint 2
(e) Naive radiance transfer

(d) Reflectance from image 2 (f) Relit image synthesized 
by our method

Figure 5.23: Given two views of the same scene under different lighting conditions (a,b), we trans-
fer the illumination from one view into the other view (c). We then multiply the transferred illumina-
tion by the reflectance layer (d) to synthesize the relit image (f). Transferring the radiance directly
fails to preserve the fine details of the reflectance (e).

As a novel application of our multi-view decomposition, we transfer illumination be-
tween two pictures of a scene taken from different viewpoints under different lighting
conditions. We use the 3D point cloud as a set of sparse correspondences for which the
illumination is known in the two images. We then propagate the illumination of one image
to the other image using the smoothness prior of Section 5.3.2. In areas visible only in
the target view, the propagation interpolates the illumination values from the surrounding
points visible in both images. We finally generate a radiance image by multiplying the
reflectance layer with the transferred illumination layer. Since multi-view stereo does not
produce 3D points in sky regions, we use the sky detector of Hoiem et al. [Hoiem 2005],
correct the segmentation if necessary, and apply standard histogram transfer on sky pixels.

In Figure 5.23(e) we compare our illumination transfer with direct transfer of radi-
ance. Propagating the radiance produces smooth color variations in-between the correspon-
dences. In contrast, our combination of transferred illumination with the target reflectance
preserves fine details.

We apply our approach to harmonize lighting for multiple viewpoints (figure 5.24),
and produce illumination-coherent view transitions for applications such as Photo-
Tourism [Snavely 2006]. In our accompanying video we show image-based view transi-
tions [Roberts 2009] with harmonized photographs. Our method produces stable transitions
between views, despite strong shadows in the original images that could not be handled by
simple color compensation [Snavely 2008].

We also transfer all illumination conditions to a single viewpoint (Figure 5.25). This
results in artificial images which show the scene from a fixed view, under a variety of
different appearances, and allows us to create artificial timelapse sequences of a scene.
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5.5. Applications 105

(a) Source lighting

(b) Source viewpoints (c) Relit images

Figure 5.24: We use our lighting transfer to harmonize the illumination over multiple images.
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106 Chapter 5. Coherent Intrinsic Images from Photo Collections

Figure 5.25: We transfer the lighting of several input images to a single viewpoint. The variations in
scene appearance can be assembled into an artificial “timelapse” sequence (best viewed in video).

5.6 Conclusion

We introduced a method to compute coherent intrinsic image decompositions from photo
collections. Such collections contain multiple lighting conditions and can be used to auto-
matically calibrate camera viewpoints and reconstruct a 3D point cloud. We leverage this
additional information to automatically compute coherent intrinsic decompositions over
the different views in the collection. We demonstrated how sparse 3D information allows
automatic correspondences to be established, and how multiple lighting conditions are ef-
fectively used to compute the decomposition. Our automatic solution shows that the use of
coherence constraints can improve the extracted reflectance significantly, and that we can
produce coherent reflectance even for images with extremely different lighting conditions,
such as night and day.

We introduced a complex synthetic benchmark with ground truth, and compared our
method to several previous approaches. Our approach outperforms previous methods nu-
merically on the synthetic benchmark and is comparable visually in most cases. In addi-
tion, our method ensures that the reflectance layers are coherent among the images. We
presented results on a total of 9 scenes and have automatically computed intrinsic image
decompositions for a total of 85 images. We include those decompositions in the accom-
panying materials.

Our coherent intrinsic images enable lighting transfer and illumination-coherent tran-
sitions between views. It allows the creation of artificial images with combinations of
viewpoint and lighting which did not exist in the original photo collection.
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CHAPTER 6

Conclusion and Future Work

Lighting is a key element in all photographs, but is difficult to control in many scenes.
Manipulating the lighting after pictures have been taken is a difficult task, which requires
skilled artists. Our work has focused on extracting lighting from photographs to enable
advanced image editing.

This thesis describes a new approach to tackling the intrinsic image decomposition
problem, which aims to separate photographs into independent reflectance and illumina-
tion layers. We show that multiple views of the scene provide relevant information for
guiding the decomposition. We leverage the geometric information provided by automatic
3D reconstruction in order to constrain the decomposition, and image-guided propagation
algorithms to interpolate information in non-reconstructed or unreliable regions. We de-
scribe two classes of methods which exploit multiple photographs, either captured at a
single time of day (Chapters 3 and 4) or gathered from photo collections with varying
lighting (Chapter 5).

Decoupling the reflectance from the illumination enables advanced image editing, such
as manipulating material colors while preserving coherent lighting, inserting virtual ob-
jects, and relighting photographs. We demonstrate such manipulations in image editing
software, simply by modifying and recombining independent layers generated by our meth-
ods. Our multi-view decomposition further allows for constructing illumination-free tex-
tures for 3D models, and for transferring lighting between photographs of a scene. This
opens the way for image-based applications which simplify digital content creation and
manipulation.

Our work on multi-view intrinsic image decomposition opens a number of potential
research directions. We classify these directions in two categories, based on their high-
level goal. The first concentrates on the capture and simplifying the manipulation of scenes,
while the second focuses on understanding and exploring the appearance of a given scene
under real-world conditions.

6.1 Improving capture and manipulation of scenes

The ultimate goal is to make digital content creation as quick and as easy as possible,
for casual users. This can involve capturing an object or scene with simple equipment,
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108 Chapter 6. Conclusion and Future Work

modifying it with intuitive tools which do not require artistic training, and inserting it into
virtual environments in a plausible manner. In future work, we would like to leverage the
diverse and heterogeneous information which can be acquired about real-world scenes, in
order to simplify their capture and manipulation.

The method presented in Chapter 3 proposes advanced image manipulations made pos-
sible by separating reflectance and illumination layers. However, such editing is performed
in image space and independently for each view. In future work, we would like to pursue
the development of solutions which will simplify advanced manipulation of all the obser-
vations and representations of a scene at once, rather than isolated images. In particular,
edits could be transferred from one image to multiple captured views, to all frames of a
dynamic video, and to 3D models assembled from the input images or scanned.

From multiple observations of a scene, a lot of useful information can be extracted
about the geometry, the materials, and the lighting. While current state-of-the-art 3D recon-
struction methods often yield incomplete and inaccurate geometry, combining the extracted
3D information with captured photographs enables interesting applications such as virtual
tourism [Snavely 2006] or free-viewpoint navigation [Eisemann 2008, Chaurasia 2011].
Compared to existing image-based rendering techniques, our approach provides additional
information, in the form of view-dependent intrinsic decompositions. In the future, we are
interested in designing a new representation of captured scenes, which combines all the
extracted data in a way suitable for image-based rendering techniques, and which enables
relighting virtual environments.

The intrinsic image model exploited in this work assumes Lambertian surfaces (as
shown in Section 2.3.1), which reflect the same amount of light in all directions. In or-
der to handle the wide variety of materials present in real-world scenes, this model should
be generalized to treat effects such as specular highlights and reflections. Photographs with
multiple viewpoints capture the radiance from physical points of the scene towards differ-
ent directions, and could be used to extract such view-dependent effects. An interesting
direction for future work will be the extraction of Lambertian and view-dependent compo-
nents of the reflectance, in the spirit of the lighting separation we proposed in Chapter 3.

Our separation of reflectance and illumination could potentially facilitate tasks which
rely on color constancy, such as segmenting images or matching photographs with drasti-
cally different lighting conditions. In addition, the illumination layer captures subtle vari-
ations of shading which are due to local orientation changes. This can be used to extract
geometric details, as shown in recent work [Luo 2012]. A 3D reconstruction pipeline could
re-inject the result of intrinsic image decomposition into the pipeline in order to refine the
estimated geometry.

We have shown in this thesis that knowledge of partial geometry, reconstructed with
multi-view stereo, can help with the problem of intrinsic decomposition. Recent advances
in computer vision and machine learning, as well as new capture devices such as cheap
depth sensors (e.g., Kinect) and light-field cameras, now provide additional information
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6.2. Exploring the space of scene appearance 109

about the scene. An interesting future challenge will consist in identifying which problems
can be simplified thanks to this extra information, and in designing robust algorithms to
compensate for the unreliability of captured data.

6.2 Exploring the space of scene appearance

Community photo and video collections depict scenes under a variety of viewpoints, light-
ing and weather conditions, at different periods of time, and with various imaging devices.
Taken together, these photos and videos span the space of Scene Appearance, defined as
the space of images of a given scene under real-world conditions. Garg et al. studied the
dimensionality of this space under a few limiting assumptions [Garg 2009]. So far, existing
work focused on 3D navigation to explore this space: Snavely et al. proposed transitions
between images based on a sparse 3D model of the scene [Snavely 2006], and chose to
browse photographs with similar illumination [Snavely 2008].

Based on the multiple observations of the scene, i.e., sparse points in the large space
of scene appearance, an interesting challenge will consist in developing new methods to
synthesize plausible images in other regions of this space. As a first step, the work we
described in Chapter 5 allows lighting transfer between images, by first decomposing in-
put photographs into intrinsic images. This enables the exploration of a larger subspace
of scene appearance, as the synthesized pictures exhibit viewpoint/lighting combinations
which did not exist in the original collection. In future work, we would like to identify and
transfer other properties which affect the appearance of the scene.

Figure 5.25 shows several images of a scene with different lighting conditions trans-
ferred to a single viewpoint, i.e., a virtual timelapse created with our approach. Even
though the scene is static and the viewpoint is fixed, these images exhibit some variety in
appearance and mood, due to the changes in lighting. Prior work has focused on defining
scene attributes which describe the appearance of arbitrary scenes, based on their mate-
rials, surface properties, lighting, and functions [Patterson 2012]. In contrast, we would
like to find attributes which discriminate the appearance of a given scene in real-world
conditions. Such attributes will enable the classification of photographs based on their ap-
pearance and the identification of images of interest based on specific criteria. In addition,
we will leverage these attributes to allow users to browse a photo collection based on intu-
itive controls which are mapped to meaningful directions in the space of scene appearance,
such as named sliders which represent the degree of “sunniness” or the time of day.

In summary, this direction of future work aims to better understand and allow the ex-
ploration of the space of scene appearance. We will develop new image-based solutions
which allow users to not only browse photographs from the original collection, but also
easily visualize the scene with new combinations of plausible viewpoints, time, lighting
and weather conditions. The ultimate goal is to allow users to freely navigate in a scene
and manipulate its appearance, using a collection of photographs as input.
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110 Chapter 6. Conclusion and Future Work

6.3 Concluding remarks

We have presented a new approach to extracting material and lighting information in a
scene, using sparse geometry automatically reconstructed from multiple images. We hope
that this thesis is a step forward towards empowering users with tools for advanced image
editing, and manipulation of photo collections. Ultimately, our goal is to make digital
content creation more accessible, which will increase the richness of virtual environments
while enabling the manipulation of their appearance.
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APPENDIX A

Appendix: Rich decomposition
results

We show results of the rich intrinsic decomposition described in Chapter 3 on four scenes,
for a total of 14 views. For each viewpoint, we provide the input (rectified) image, esti-
mated reflectance, as well as the constraints and estimated total illumination, sun illumina-
tion, sky illumination and indirect illumination.

We also show examples of the candidate reflectance curves after clustering, in all of
our scenes.
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114 Appendix A. Appendix: Rich decomposition results

(a) Groups of (b) Curve clusters, (c) Curve clusters, (d) Curve clusters,
normal orientation orientation 1 orientation 2 orientation 3

Table A.1: Clustering and candidate curves. PMVS points are separated into three groups accord-
ing to the orientation of their normals (a, bottom). Within each group, PMVS points are clustered
(b-d, bottom) based on their candidate reflectance curves. Each cluster is then represented by a
single representative curve (b-d, top). The clustering parameters were fixed for all scenes.
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115

Input & reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.2: Constrained pixels and results of our decomposition on the Rocks scene. This scene did
not require inpainting after the illumination separation. The linear images have been scaled for dis-
play, before applying gamma correction with γ = 1/2.2; the scaling values were: 0.7 for the input,
1.8 for the reflectance, 0.12 for total illumination and sun illumination, 0.2 for sky illumination, 0.5
for indirect illumination.
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116 Appendix A. Appendix: Rich decomposition results

Input & reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.3: Constrained pixels and results of our decomposition on the Statue scene after final
inpainting. The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.6 for the input, 1 for the reflectance, 0.15 for total
illumination and sun illumination, 0.6 for sky illumination, 1 for indirect illumination.
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Reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.4: Results of our decomposition on the Statue scene before (top) and after final inpaint-
ing (bottom). The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.6 for the input, 1 for the reflectance, 0.15 for total
illumination and sun illumination, 0.6 for sky illumination, 1 for indirect illumination.
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118 Appendix A. Appendix: Rich decomposition results

Input & reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.5: Constrained pixels and results of our decomposition on the Ramp scene after final
inpainting. The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.4 for the input, 1 for the reflectance, 0.08 for total
illumination and sun illumination, 0.45 for sky illumination, 0.6 for indirect illumination.
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Reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.6: Results of our decomposition on the Ramp scene before (top) and after final inpaint-
ing (bottom). The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.4 for the input, 1 for the reflectance, 0.08 for total
illumination and sun illumination, 0.45 for sky illumination, 0.6 for indirect illumination.
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120 Appendix A. Appendix: Rich decomposition results

Input & reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.7: Constrained pixels and results of our decomposition on the Stairs scene after final
inpainting. The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.5 for the input, 1.5 for the reflectance, 0.1 for total
illumination and sun illumination, 0.6 for sky illumination, 0.8 for indirect illumination.
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Reflectance Total illumination Sun illumination Sky illumination Indirect illumination

Table A.8: Results of our decomposition on the Stairs scene before (top) and after final inpaint-
ing (bottom). The linear images have been scaled for display, before applying gamma correction
with γ = 1/2.2; the scaling values were: 0.5 for the input, 1.5 for the reflectance, 0.1 for total
illumination and sun illumination, 0.6 for sky illumination, 0.8 for indirect illumination.
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APPENDIX B

Appendix: Description of
accompanying materials

This thesis contains accompanying materials in the form of videos, source code, and image
datasets. We provide a description of these materials in this appendix. All the accompany-
ing materials can be accessed online by visiting the author’s website:

http://thesis.py-laffont.info

B.1 Accompanying materials for Chapter 3

Accompanying video. The rich intrinsic image decomposition method described in
Chapter 3 can separate an input photograph into reflectance, sun illumination, sky illu-
mination, and indirect illumination layers. This separation allows advanced manipulations
in image editing software (Section 3.6.3). The accompanying video shows examples of
such manipulations in Adobe Photoshop CS4.

B.2 Accompanying materials for Chapter 5

Sampling code. We provide reference Matlab code for the sampling algorithm described
in Section 5.2.2. This source code selects candidate pairs in a synthetic example on a 2D
point cloud, and was used to generate Figure 5.3.

Synthetic dataset. We release the synthetic dataset described in Section 5.4.1.1. We pro-
vide the rendering and ground truth images that we generated, and a quantitative evaluation
of the results of previous approaches (kindly provided by the respective authors).

Intrinsic decompositions. We provide the results of our coherent intrinsic decomposi-
tion on 9 different scenes.
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124 Appendix B. Appendix: Description of accompanying materials

Figure B.1: Captures of the accompanying video for Chapter 3.

Figure B.2: Capture of a page containing some of the results obtained with the coherent intrinsic
image decomposition of Chapter 5.
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B.2. Accompanying materials for Chapter 5 125

Accompanying video. The coherent intrinsic image decomposition described in Chap-
ter 5 enables the transfer of lighting across images of a photo collection (Section 5.5.3).
This video shows examples of image-based view transitions with harmonized photographs
on two scenes: Florence and Manarola. We also transfer all illumination conditions to a
single viewpoint, creating artificial timelapses.

Figure B.3: Captures of the accompanying video for Chapter 5.
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Décomposition en images intrinsèques à partir de plusieurs photographies

Résumé :

La modification d’éclairage et de matériaux dans une image est un objectif de longue date
en traitement d’image, vision par ordinateur et infographie.

Cette thèse a pour objectif de calculer une décomposition en images intrinsèques, qui sé-
pare une photographie en composantes indépendantes : la réflectance, qui correspond à
la couleur des matériaux, et l’illumination, qui représente la contribution de l’éclairage à
chaque pixel. Nous cherchons à résoudre ce problème difficile à l’aide de plusieurs pho-
tographies de la scène. L’intuition clé des approches que nous proposons est de contraindre
la décomposition en combinant des algorithmes guidés par l’image, et une reconstruction
3D éparse et incomplète générée par les algorithmes de stéréo multi-vue.

Une première approche permet de décomposer des images de scènes extérieures, à partir
de plusieurs photographies avec un éclairage fixe. Cette méthode permet non seulement
de séparer la réflectance de l’illumination, mais décompose également cette dernière en
composantes dues au soleil, au ciel, et à l’éclairage indirect. Une méthodologie permettant
de simplifier le processus de capture et de calibration, est ensuite proposée. La troisième
partie de cette thèse est consacrée aux collections d’images: nous exploitons les variations
d’éclairage afin de traiter des scènes complexes sans intervention de l’utilisateur.

Les méthodes décrites dans cette thèse rendent possible plusieurs manipulations d’images,
telles que l’édition de matériaux tout en préservant un éclairage cohérent, l’insertion
d’objets virtuels, ou le transfert d’éclairage entre photographies d’une même scène.

Mots-clés : édition d’image, rendu basé image, reconstruction multi-vues
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Intrinsic image decomposition from multiple photographs

Abstract:

Editing materials and lighting is a common image manipulation task that requires signifi-
cant expertise to achieve plausible results. Each pixel aggregates the effect of both material
and lighting, therefore standard color manipulations are likely to affect both components.

Intrinsic image decomposition separates a photograph into independent layers: reflectance,
which represents the color of the materials, and illumination, which encodes the effect of
lighting at each pixel.

In this thesis, we tackle this ill-posed problem by leveraging additional information pro-
vided by multiple photographs of the scene. We combine image-guided algorithms with
sparse 3D information reconstructed from multi-view stereo, in order to constrain the de-
composition.

We first present an approach to decompose images of outdoor scenes, using photographs
captured at a single time of day. This method not only separates reflectance from illumi-
nation, but also decomposes the illumination into sun, sky, and indirect layers. We then
develop a methodology to extract lighting information about a scene solely from a few im-
ages, thus simplifying the capture and calibration steps of our intrinsic decomposition. In a
third part, we focus on image collections gathered from photo-sharing websites or captured
with a moving light source. We exploit the variations of lighting to process complex scenes
without user assistance, nor precise and complete geometry.

The methods described in this thesis enable advanced image manipulations such as
lighting-aware editing, insertion of virtual objects, and image-based illumination transfer
between photographs of a collection.

Keywords: image editing, image-based rendering, image-guided propagation, multi-view
stereo, light estimation
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