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Figure 1: Existing noise functions either introduce discontinuities of the solid noise at sharp edges, which is the case for wavelet noise (b.1)
and Gabor noise (c.1), or result in detail loss when anti-aliased, which is the case for Perlin noise (a.2) and wavelet noise (b.2). We present
a new noise function that preserves continuity over sharp edges (d.1) and supports high-quality anti-aliasing (d.2).

Abstract

Solid noise is a fundamental tool in computer graphics. Surpris-
ingly, no existing noise function supports both high-quality anti-
aliasing and continuity across sharp edges. In this paper we show
that a slicing approach is required to preserve continuity across
sharp edges, and we present a new noise function that supports
anisotropic filtering of sliced solid noise. This is made possible by
individually filtering the slices of Gabor kernels, which requires the
proper treatment of phase. This in turn leads to the introduction of
the phase-augmented Gabor kernel and random-phase Gabor noise,
our new noise function. We demonstrate that our new noise func-
tion supports both high-quality anti-aliasing and continuity across
sharp edges, as well as anisotropy.

CR Categories: I.3.3 [Picture/Image Generation]: Antialiasing;
I.3.7 [Three-Dimensional Graphics and Realism]: Color, shading,
shadowing, and texture

Keywords: anti-aliasing, filtering, procedural texturing, render-
ing, shading, solid noise, solid texturing, texturing

1 Introduction

Solid texturing [Perlin 1985; Peachy 1985] is a popular method for
objects that are sculpted or carved out of a solid material (e.g., a
marble statue). To avoid excessive storage requirements, solid or
3D textures are typically procedural, and are often based on pro-
cedural solid noise (e.g., Perlin Noise [Perlin 1985]). To achieve
high-quality rendering, solid textures must be properly anti-aliased,
similarly to traditional textures.

In recent years, there has been renewed interest in the problem
of anti-aliasing procedural textures. This has resulted in the in-
troduction of several new noise functions that support filtering
[Hart et al. 1999; Cook and DeRose 2005; Goldberg et al. 2008;
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Lagae et al. 2009]. However, despite these recent advances, no ex-
isting noise function supports both high-quality anti-aliasing and
continuity across sharp edges. We illustrate this in Fig. 1. Please
also refer to the videos in the supplemental material, which illus-
trate this more clearly. More specifically, Perlin noise [Perlin 1985]
results in detail loss when filtered (Fig. 1(a.2)). Wavelet noise
[Cook and DeRose 2005] integrates solid noise perpendicularly to
the surface of the object, which introduces discontinuities at sharp
edges (Fig. 1(b.1)), since the normal changes discontinuously. Ga-
bor noise [Lagae et al. 2009] projects 3D points onto the surface
of the object along the surface normal, which, similarly to wavelet
noise, does not preserve continuity over sharp edges (Fig. 1(c.1)).
For an in-depth discussion and comparison of these noise functions,
please refer to the recent survey of Lagae et al. [2010a].

In this paper we show that a slicing approach is required to preserve
continuity across sharp edges, and we present a new noise function
based on Gabor noise [Lagae et al. 2009] that supports anisotropic
filtering of sliced solid noise. We individually filter the slices of
Gabor kernels. This requires the proper treatment of the phase of
the kernel. We therefore introduce a new Gabor kernel, the phase-
augmented Gabor kernel. This, in turn, leads to our new noise func-
tion, random-phase Gabor noise. We also discuss how our deriva-
tions result in a generalization of the Projection-Slice Theorem as
used by Cook and DeRose [2005]. We demonstrate that our new
noise function supports both high-quality anti-aliasing and continu-
ity across sharp edges, as well as anisotropy.

2 Motivation

Texturing the surface of an object with filtered solid noise is con-
ceptually a two-step process. In the first step, the 3D solid noise
is mapped onto the 2D surface. This is done either by slicing
the solid noise, i.e., evaluating the noise at the surface of the ob-
ject (Fig. 2(a)) [Perlin 1985], or by projecting the solid noise, i.e.,
integrating the noise perpendicularly to the surface of the object
(Fig. 2(b)) [Cook and DeRose 2005]. In the second step, the noise
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on the 2D surface is filtered. This is typically done using fre-
quency clamping [Norton et al. 1982], a general approach, or using
a method-specific approach.

Filtering the noise on the surface using frequency clamping works
better if the power spectrum of the noise on the surface is band-
pass. The relation between the power spectrum of the 3D solid
noise and the 2D noise on the surface is given by the Fourier Slice
Theorem [Cook and DeRose 2005], which states that projecting in
the spatial domain corresponds to slicing in the frequency domain
(Fig. 2(a,c)), and vice versa (Fig. 2(b,d)).

Perlin [1985] uses slicing in his noise, which is typically filtered
using frequency clamping. However, filtering introduces an aliasing
vs. detail loss trade-off (Fig. 1(a.2)), since the power spectrum of
Perlin noise is not band-pass (Fig. 2(c)) [Cook and DeRose 2005].

Cook and DeRose [2005] use projection and frequency clamping
in their wavelet noise. However, even though the power spectrum
of the noise on the surface is band-pass (Fig. 2(d)), filtering does
not fully solve the aliasing vs. detail loss trade-off. This is because
frequency clamping works at the level of entire octaves at once (see
supplemental material for the exact method we use), and because
frequency clamping is limited to isotropic filtering (Fig. 1(b.2)).
Moreover, projecting solid noise introduces discontinuities in the
noise on the surface at sharp edges (Fig. 1(b.1)), since the normal
changes discontinuously (Fig. 2(b)).

Lagae et al. [2009] use projection and a filtering approach spe-
cific to Gabor noise in their surface Gabor noise. They project
Gabor kernels onto the surface and filter the resulting 2D Gabor
kernels analytically. This results in high-quality anisotropic filter-
ing (Fig. 1(c.2)), since the filtering approach works at the level of
individual Gabor kernels. However, similarly to wavelet noise, pro-
jection introduces discontinuities at sharp edges (Fig. 1(c.1)).

In this paper, we present solid random-phase Gabor noise, a new
noise function based on Gabor noise [Lagae et al. 2009]. Our
new noise uses slicing, which preserves continuity at sharp edges
(Fig. 1(d.1)). Since filtering is inherently a 2D operation (i.e., it de-
pends on surface orientation) [Heckbert 1989], we have to explic-
itly model the slicing of the 3D Gabor kernels to be able to filter
the resulting 2D Gabor kernels. This requires the introduction of a
new Gabor kernel, the phase-augmented Gabor kernel, and a new
Gabor noise, random-phase Gabor noise. Our new noise uses a fil-
tering approach based on that of Lagae et al. [2009], which supports
high-quality anisotropic filtering (Fig. 1(d.2)).

In Sec. 3 we discuss slicing solid Gabor noise; the principal result
is Eqn. 6, which shows how to slice a 3D phase-augmented Gabor
kernel. In Sec. 4 we discuss filtering sliced solid Gabor noise; the
principal result is Eqn. 10, which shows how to filter the resulting
2D phase-augmented Gabor kernel.

3 Slicing Solid Gabor Noise

In this section, we introduce a solid Gabor noise that supports slic-
ing. We first show that the Gabor kernel of Lagae et al. [2009]
is not closed under slicing (Sec. 3.1). We consequently introduce
the phase-augmented Gabor kernel, a new kernel that is closed
under slicing (Sec. 3.2), and random-phase Gabor noise, a new
noise using the phase-augmented Gabor kernel (Sec. 3.3). We fi-
nally show that solid random-phase Gabor noise supports slicing
(Sec. 3.4). We also present a generalization of the Projection-Slice
Theorem [Cook and DeRose 2005] (Sec. 3.5).
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Figure 2: Slicing and projecting a band-pass noise. Slicing in the
spatial domain (solid green line) (a) corresponds to projecting in
the frequency domain (integration in the direction of the dashed
green line, resulting in the red curve) (c), which does not result in
a band-pass power spectrum. Projecting in the spatial domain (in-
tegration in the direction of the dashed green line) (b) corresponds
to slicing in the frequency domain (solid green line) (d), and intro-
duces discontinuities at sharp edges.

3.1 Slicing The Gabor Kernel

The Gabor kernel g of Lagae et al. [2009] (Fig. 3(a), image) is de-
fined as

g (x; a, ω) = e−πa2|x|2 cos (2πω · x) , (1)

the multiplication of a Gaussian (Fig. 3(b), image) and a harmonic
(Fig. 3(c), image), where a ∈ R

+ is the bandwidth and ω ∈ R
n is

the frequency. Note that we wrote the kernel in vector notation and
extended it to n dimensions. Slicing is denoted as the operator S
subscripted by the hyperplane along which is sliced. We slice the
kernel with a hyperplane Π (Fig. 3, solid green line), which results
in

SΠ [g (x; a, ω)] = SΠ

[

e−πa2|x|2
]

SΠ [cos (2πx · ω)] , (2)

the product of a sliced Gaussian and a sliced harmonic. This is be-
cause S is a multiplicative linear operator (i.e., for every pair of
functions f and g and scalar t, S [fg] = S [f ]S [g] and S [tf ] =
tS [f ]). The hyperplane Π is specified by its unit normal n and its
signed distance to the origin d (Fig. 3, dashed green line). Quanti-
ties in Π, such as the (n−1)-dimensional vector x′, are expressed
relative to an arbitrary coordinate system, whose origin is the per-
pendicular projection of the origin of the n-dimensional space. We
continue by slicing the n-dimensional Gaussian (Fig. 3(b), image),
which results in

SΠ

[

e−πa2|x|2
]

(

x
′) = e−πa2d2e−πa2|x′|2 , (3)

a weighted (n− 1)-dimensional Gaussian (Fig. 3(b), red curve),

where the weight e−πa2d2 depends on the distance from the hyper-
plane to the center of the Gaussian. We also slice the n-dimensional
harmonic (Fig. 3(c), image), which results in

SΠ [cos (2πx · ω)]
(

x
′)=cos

(

2πprojΠω · x′ − 2πdn · ω
)

, (4)

a phase-shifted (n−1)-dimensional harmonic (Fig. 3(c), red curve),
where projΠω is the perpendicular projection of ω onto Π, and the
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Figure 3: Slicing the Gabor kernel and the phase-augmented Ga-
bor kernel: (a) Slicing the 2D Gabor kernel; (b) Slicing the 2D
Gaussian; (c) Slicing the 2D harmonic; (d) Slicing the 2D phase-
augmented Gabor kernel. Note the phase shift φs introduced by
slicing.

phase shift 2πdn · ω depends on both the distance from Π to the
origin and the relative orientation of n and ω. Note that projΠω is
the component of ω parallel toΠ, and n ·ω is the length of the com-
ponent of ω perpendicular to Π. We now observe that, because of
the phase shift (Fig. 3(a,c), φs), the product of the sliced Gaussian
(Eqn. 3) and the sliced harmonic (Eqn. 4) cannot be expressed as a
Gabor kernel (Eqn. 1). In other words, the Gabor kernel of Lagae
et al. [2009] is not closed under slicing.

3.2 The Phase-Augmented Gabor Kernel

In order to overcome the problem with the phase shift, we now
introduce the phase-augmented Gabor kernel, a new kernel that can
accommodate the phase shift introduced by slicing.

Following the derivation of the previous section, we define the
phase-augmented Gabor kernel g as

g (x; a, ω, φ) = e−πa2|x|2 cos (2πx · ω + φ) (5)

(Fig. 3(d), image), where φ ∈ [0, 2π) is the phase of the harmonic.
Note that the Gabor kernel of Lagae et al. [2009] is a special case
of our kernel with zero phase (φ = 0), and that, in contrast to
the kernel of Lagae et al., Gabor filters used in image processing
typically have a phase parameter as well. We now observe that
slicing the n-dimensional phase-augmented Gabor kernel g results
in

SΠ [g (x; a, ω, φ)]
(

x
′) = wsg

(

x
′; a, ωs, φs

)

, (6)

a weighted (n− 1)-dimensional phase-augmented Gabor kernel

(Fig. 3(d), red curve), where ws = e−πa2d2 , ωs = projΠω and
φs = φ − 2πdn · ω. Note that all quantities introduced by or af-
fected by slicing are indicated with a superscript s. In other words,
in contrast to the Gabor kernel of Lagae et al. [2009], the phase-
augmented Gabor kernel is closed under slicing.

3.3 Random-Phase Gabor Noise

With the phase-augmented Gabor kernel, we can now introduce
random-phase Gabor noise, a new noise that supports slicing.

The most important aspect of random-phase Gabor noise is how the
phase parameter φ is handled. Since φ was introduced only to ac-

commodate slicing, it does not make sense to expose it as a noise
parameter to the user, nor to fix it to a specific value, since it will be
affected by subsequent slicing. We instead assign a random value
to φ, i.e., the phases {φi} of the kernels are distributed according
to a uniform distribution in the interval [0, 2π). The full motiva-
tion for this choice is provided in the next subsection. The phase-
augmented Gabor kernel with a random phase is called the random-
phase Gabor kernel. The adjective random-phase is used when
the phases are random, otherwise the adjective phase-augmented
is used. We do not use the random weights {wi} used by Lagae
et al. [2009], since the noise has a zero mean due to the random
phases. We thus define n-dimensional random-phase Gabor noise
n as

n (x; a, ω) =
∑

i

g (x− xi; a, ω, φi) , (7)

where the random positions {xi} are distributed according to a n-
dimensional Poisson process with mean λ, and {φi} are the random
phases.

(a) (b) (c)

Figure 4: Different kinds of solid random-phase Gabor noise: (a)
anisotropic; (b) isotropic; (c) hybrid anisotropic/isotropic.

In its most basic form (Eqn. 7), solid random-phase Gabor noise is
an anisotropic solid noise parameterized by a (3D) frequency ω and
a bandwidth a (Fig. 4(a)). Other kinds of solid noise are obtained
depending on how the parameters {ai} and {ωi} vary for different
kernels. We obtain an isotropic solid noise parameterized by a (1D)
radial frequency f and a bandwidth a (Fig. 4(b)) using ωi,r = f ,
ωi,θ ∼ U [0, 2π] and ωi,φ ∼ cos−1 {U [−1, 1]}. We obtain an
interesting hybrid anisotropic/isotropic solid noise (Fig. 4(c)) sim-
ilarly but with ωi,φ = 0. A greater variety of solid noise patterns
could be obtained by compositing solid noise patterns using wid-
gets, as in [Lagae et al. 2009], or by using spatially varying solid
noise parameters, as in [Lagae et al. 2011].

The statistical properties of a noise, i.e., its variance and power
spectrum, determine its aspect, and are needed for several textur-
ing operations, such as color mapping and filtering. We provide
a complete set of analytical expressions for random-phase Gabor
noise in the supplemental material. Note that our new noise results
in a more elegant overall formulation in comparison with the noise
of Lagae et al. [2009] since many expressions are simplified.

3.4 Slicing Random-Phase Gabor Noise

In addition to the statistical properties of the 3D solid noise, textur-
ing an object with solid noise also requires the statistical properties
of the 2D noise on the surface, i.e., the sliced noise.

We show in the supplemental material that slicing an n-dimensional
random-phase Gabor noise n with a hyperplane Π results in

SΠ [n (x; a, ω)]
(

x
′) =

√
wsn

(

x
′; a, ωs

)

, (8)

an (n−1)-dimensional random-phase Gabor noise, i.e., random-
phase Gabor noise is closed under slicing. This means that the sta-
tistical properties of a sliced solid random-phase Gabor noise are
obtained using the analytical expressions for the statistical proper-
ties of a 2D random-phase Gabor noise.

We were able to perform this derivation only when using random
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Figure 5: The Slice-Projection Theorem for Stochastic Processes:
The power spectrum of X is SXX ; therefore, the power spectrum
of Y is SY Y .

phases. Intuitively, this is because the random phases ensure invari-
ance w.r.t. slicing: since the phases of the Gabor kernels are ran-
dom, the phase-shifted phases of the sliced kernels are random as
well. In other words, the random phases allow us to both strengthen
and simplify the Gabor noise model of Lagae et al. [2009].

3.5 The Slice-Projection Theorem for Stochastic Pro-

cesses

By combining insight gained from Eqn. 8 with the definition of
noise as a stochastic process [Lagae et al. 2010a, Sec. 2.2], we were
able to generalize the Fourier Slice Theorem as used by Cook and
DeRose [2005]. More specifically, we generalize from a single
noise instance and its Fourier transform to the stochastic process
corresponding to the noise and its power spectrum.

Slice-Projection Theorem for Stochastic Processes. Let X be
an n-dimensional stationary stochastic process with power spec-
trum SXX . Then the (n−1)-dimensional stochastic process Y =
SΠ [X], which is the slice of X along the hyperplane Π, has the
power spectrum SY Y = PΠ [SXX ], which is the projection of
SXX onto Π.

For example, in Fig. 5, the 2D noise X (a, image) has the power
spectrum SXX (b, image); therefore, the 1D noise Y (a, red curve),
the slice of X along the line Π (a, green line), has the power spec-
trum SY Y (b, red curve).

Proof. The proof follows from three elements. (i) The fact that
RY Y (the auto-correlation of Y ) is SΠ0

[RXX ], which is the slice
of RXX (the auto-correlation of X) along the hyperplane Π0

through the origin and parallel to Π. This is because X is sta-
tionary, and independent of whether or not Π goes through the
origin. (ii) The Wiener-Khinchin Theorem, which states that the
auto-correlation and the power spectrum of a stochastic process are
a Fourier transform pair [Papoulis and Pillai 2002, Ch. 9]. (iii) The
Projection-Slice Theorem [Bracewell 1999, Ch. 16].

This theorem allows us to validate Eqn. 8, and to explain the aspect
of a 2D slice of noise from the power spectrum of the 3D solid noise
(e.g., in Fig. 4). Note that, although the Fourier Slice Theorem as
used by Cook and DeRose [2005] provides the basic intuition, this
theorem is more general and more complete. For example, the proof
of this theorem explains why the slicing plane Π does not have to
go through the origin, which is not explained by the Fourier Slice
Theorem alone. We believe this theorem might have applications
beyond noise (e.g., 3D solid texture extrapolation from 2D exem-
plar slices).

4 Filtering Sliced Solid Gabor Noise

Now that we have a noise that supports slicing, we introduce a fil-
tering approach for our new noise.

Filtering a sliced solid random-phase Gabor noise n with an

anisotropic filtering Gaussian Gf is equivalent to filtering the sliced
phase-augmented Gabor kernels,

SΠ [n (x; a, ω)]
(

x
′) ∗ Gf

(

x
′;0,Σf

)

=
∑

i

ws
i g

(

x
′ − x

′
i; a, ω

s, φs
i

)

∗ Gf

(

x
′;0,Σf

)

, (9)

where ∗ denotes convolution, and G (x;µ,Σ) is a Gaussian with
mean µ and variance matrix Σ. This is because S and ∗ are linear
operators, and because the phase-augmented Gabor kernel is closed
under slicing (Eqn. 6). Note that n is a 3D function, and S [n], Gf

and g are 2D functions on the planeΠ. We thus derive an analytical
expression for filtering a 2D phase-augmented Gabor kernel g with
an anisotropic filtering Gaussian Gf ,

g (x; a, ω, φ) ∗ Gf (x;0,Σf ) ≈ wfg
(

x; af , ωf , φ
)

, (10)

where wf = cGF , af ≈
√

2π
√

|ΣGF |, ωf = µGF ;

ΣGF =
(

Σ−1

G +Σ−1

F

)−1
, µGF = ΣGFΣ

−1

G µG, cGF =

cFG (µG;0,ΣG +ΣF ); ΣF = 1

4π2Σ
−1

f , cF = 1

2π

√

|Σf |
; and

ΣG = a2

2π
I , µG = ω. Note that all quantities introduced by or

affected by filtering are indicated with a superscript f . Our filter-
ing expression is a generalization of the one of Lagae et al. [2009,
Eqn. 22, Eqn. 23]. Note that the approximate nature of Eqn. 10
(and Eqn. 11 below) is due to the approximation of the anisotropic
filtered Gabor kernel with an isotropic kernel [Lagae et al. 2009,
Eqn. 22, Eqn. 23 and Fig. 6], which works very well in practice.

We now have all the pieces in place to provide the expression for
our new solid random-phase Gabor noise,

SΠ [n (x; a, ω)]
(

x
′) ∗ Gf

(

x
′;0,Σf

)

≈
∑

i

ws
iw

f
i g

(

x
′ − x

′
i; a

f , ωs,f , φs
i

)

,
(11)

where ωs,f is obtained by applying Eqn 6 and then Eqn 10 to ω.
This means that our new noise is evaluated by summing a contri-
bution for each 3D kernel close to the point of evaluation. This
contribution is obtained by slicing the 3D kernel (Eqn. 6), filtering
the resulting 2D kernel (Eqn. 10), and evaluating the filtered 2D
kernel.

5 Implementation

The implementation of our new solid random-phase Gabor noise
follows the general structure of that of sparse convolution noise
[Lewis 1989; Lagae et al. 2009]. We provide the annotated source
code of the GPU implementation of our new noise in the supple-
mental material. In this section, we only highlight some important
aspects of our implementation.

Coordinate Systems To evaluate our filtered sliced solid Gabor
noise (Eqn. 11), a point x, a unit normal n, and a filtering Gaussian
Gf are required. The point x and normal n are provided in (solid
or 3D) texture space (tex), i.e., the space in which n (x; a, ω) is
defined. The filtering Gaussian Gf is provided to Eqn. 11 in tangent
space (tan), i.e., the space determined by the 2D plane Π, but is
defined in screen space (scr). The 2D plane Π is determined by
xtex and ntex, which, together with two additional orthonormal
vectors in Π, ttex and btex, determine a coordinate system for
tangent space, and the mapping from texture space to tangent space
Mtex→tan. The point xtex and normal ntex are obtained from
their counterparts in object space (obj) and a (solid or 3D) texture
placement matrixMobj→tex.
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Continuity of the Local Coordinate System We note that the
local coordinate system formed by t, b and n does not have to be
continuous over the surface. The tangents t and b do not affect the
final filtered noise value, and therefore they can be chosen arbitrar-
ily. We use an arbitrary normalized vector perpendicular to ntex

for ttex, or the normalized version of ∂xtex/∂xscr,x, which lies in
Π and is needed to compute Mscr→tex anyway.

Definition of the Filtering Gaussian We define the 2D filter-
ing Gaussian Gf in a manner similar to Heckbert [1989]. The fil-
tering Gaussian is defined by its variance matrix in screen space,
Σf,scr , which typically is σ2

f,scrI with σf,scr = 1/2, and it
is propagated to tangent space, in which Gf should integrate to
one, using the local affine approximation of the mapping from
screen space to tangent space Mscr→tan. The filtering Gaussian
in tangent space is thus Gf,tan (xtan;0,Σf,tan) with Σf,tan =
Mscr→tanΣf,scrM

T
scr→tan. We obtain Mscr→tan on the GPU

using the local affine approximation of the mapping of screen
space to texture space, Mscr→tex, which is the matrix determined
by the vectors ∂xtex/∂xscr,x and ∂xtex/∂xscr,y . These are
easily obtained using built-in derivative functions (e.g., dFdx()
and dFdy() in GLSL). Note that this definition also supports
anisotropic screen-space filtering Gaussians (e.g., for motion blur).

Transforming the Phase-Augmented Gabor Kernel Slicing a
3D Gabor kernel (Eqn. 6) involves a transformation between tex-
ture space and tangent space, since the 3D kernel is defined in tex-
ture space but Gf and the 2D sliced kernel are defined in tangent
space. We note that transforming a phase-augmented Gabor kernel
g (x; a, ω, φ) with a special orthogonal matrix M (i.e., a rotation)
results in the phase-augmented Gabor kernel g

(

x
′; a, ωt, φ

)

with

x
′ = Mx and ωt = Mω.

Avoiding Matrix Inversions when Filtering Filtering a Gabor
kernel (Eqn. 10) involves several matrix inversions. We reduce this
number by exploiting the structure of the matrices (e.g., the covari-
ance matrices Σ are symmetric and positive definite, and ΣG is a
scaled identity matrix), and by simplifying the matrix expressions
(see supplemental material for details).

Performance Our new random-phase solid Gabor noise runs
at 43.74 and 28.83 megapixels per second for Fig. 4(a) and (b)
(NVIDIA GeForce GTX 580 GPU, 512×512, 98,076 shaded pix-
els, 446 and 294 FPS). We use a simple scene, since the per-
formance figures are optimization-, implementation- and scene-
dependent. Despite the fact that the other noise functions have
a reduced feature set, we also provide an indicative performance
comparison. Our new noise is 1.8 − 1.4× faster than Gabor sur-
face noise (247 and 209 FPS), 2.4− 1.6× faster than wavelet noise
(184 FPS), but up to an order of magnitude slower than Perlin noise
(3050 FPS). Note that, although Perlin noise is faster than our noise,
this extra performance cannot make up for the filtering quality:
even with 256× stratified super-sampling, some of our “ground-
truth” video’s still exhibit aliasing (see e.g., supplemental mate-
rial, Video fig1_c2.avi). Also note that the projection step in
wavelet noise incurs a large performance penalty.

6 Results, Comparisons and Discussion

In Fig. 1, we compare Perlin noise [Perlin 1985], wavelet noise
[Cook and DeRose 2005], surface Gabor noise [Lagae et al. 2009],
and our new solid random-phase Gabor noise. We filter Perlin noise
and wavelet noise using frequency clamping [Norton et al. 1982]
(see supplemental material for details). We obtain ground-truth fil-
tering using 256× stratified super-sampling. Our new noise func-
tion is the only one that supports high-quality filtering and does

not introduce discontinuities at sharp edges. Please also refer to
the videos in the supplemental material, which illustrate this more
clearly. Note that we do not compare with Goldberg et al. [2008]
since they do not support solid noise.

In Fig. 6, we compare a procedural solid texture generated with Per-
lin noise, wavelet noise, surface Gabor noise, and our new random-
phase solid Gabor noise. We use a single scene (Fig. 6(a), a partial
model of the Parthenon), a single texture (Fig. 6(b), a granite-like
material), and two viewpoints (Fig. 6(a), red and green viewpoint).
We compare the continuity at sharp edges (Fig. 6(c), view from
the green viewpoint), and the filtering quality (Fig. 6(d), close-up
from the view from the red viewpoint). We use the procedural
texture model of Lagae et al. [2010b] (without the optional his-
togram matching), with parameters derived from exemplars and/or
edited manually, and anisotropic noise octaves for the anisotropic
examples. We disable lighting in order to avoid the introduction
of lighting discontinuities. This comparison confirms the result
of the previous one: Only our new noise function both supports
high-quality filtering and does not introduce discontinuities at sharp
edges. Please also refer to the images in the supplemental material,
which illustrate this more clearly.

In Fig. 7, we show several solid procedural textures generated with
our new random-phase solid Gabor noise. Our new noise function
enables a variety of isotropic and anisotropic solid noise textures.
Note the continuity across sharp edges (e.g., in Fig. 7(a), at the
sharp edges of the chess pieces), and the high-quality anisotropic
filtering (e.g., in Fig. 7(c), at the far end of the chess board). Perlin
noise and wavelet noise do not support anisotropy. Surface Gabor
noise does support anisotropy, but models a surface texture rather
than a solid texture, which has a different appearance. Also note
that, in contrast to surface Gabor noise, our noise does not require
a continuous vector field over the surface.

Lagae et al. [2009] briefly mention solid Gabor noise as well. How-
ever, their solid noise does not support filtering; they simply evalu-
ate 3D Gabor kernels at the surface.

It may seem that it would be possible to slice zero-phase rather than
random-phase Gabor noise, and avoid the use of (random) phases
altogether. However, this is not true, since slicing zero-phase Gabor
noise introduces phase shifts in the sliced noise as well, and thus
requires derivations similar to those in Sec. 3. Moreover, as pointed
out in Sec. 3.4, the zero-phase-case is actually more complex than
the random-phase case.

7 Conclusion

We have presented a new procedural noise function, random-phase
Gabor noise, that supports continuity across sharp edges, high-
quality anisotropic filtering, and anisotropy. We have achieved this
by augmenting Gabor noise with phase, which allowed us to ex-
plicitly model the slicing of the 3D Gabor kernels, which in turn
allowed us to filter the resulting 2D Gabor kernels. We believe that
Gabor noise should always be used with random phases, since it
both strengthens and simplifies the model.

Interesting opportunities for future work include exploring volu-
metric filtering of solid Gabor noise (e.g., for hyper-texture, when
ray marching through solid noise), further exploring anisotropy in
the context of solid noise, and designing user interfaces for inter-
acting with anisotropic solid noise.
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