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ABSTRACT

This article presents a new approach to modal synthesis for
rendering sounds of virtual objects. We propose a generic method
that preserves sound variety across the surface of an object, at dif-
ferent scales of resolution and for a variety of complex geometries.
The technique performs automatic voxelization of a surface model
and automatic tuning of the parameters of hexahedral finite ele-
ments, based on the distribution of material in each cell. The vox-
elization is performed using a sparse regular grid embedding of
the object, which permits the construction of plausible lower res-
olution approximations of the modal model. We can compute the
audible impulse response of a variety of objects. Our solution is
robust and can handle non-manifold geometries that include both
volumetric and surface parts. We present a system which allows
us to manipulate and tune sounding objects in an appropriate way
for games, training simulations, and other interactive virtual envi-
ronments.

1. INTRODUCTION

Our goal is to realistically model sounding objects for animated
real-time virtual environments. To achieve this, we propose a ro-
bust and flexible modal analysis approach that efficiently extracts
modal parameters for plausible sound synthesis while also focus-
ing on efficient memory usage.

Modal synthesis models the sound of an object as a combina-
tion of damped sinusoids, each of which oscillates independently
of the others. This approach is only accurate for sounds produced
by linear phenomena, but can compute these sounds in real-time.
It requires the computation of a partial eigenvalue decomposition
of the system matrices of the sounding object, which can be expen-
sive for large complex systems. For this reason, modal analysis is
performed in a preprocessing step. The eigenvalues and eigenvec-
tors strongly depend on the geometry, material and scale of the
sounding object. In general, complex sounding objects, i.e., with
detailed geometries, require a large set of eigenvalues in order to
preserve the sound map, that is, the changes in sound across the
surface of the sounding object. This processing step can be sub-
ject to robustness problems. This is even more the case for non-
manifold geometries, i.e., geometries where one edge is shared by
more than two faces. Finally, available approaches manage mem-
ory usage in real-time by only pruning part of modal parameters
according to the characteristics of the virtual scene (e.g., fore-
ground vs background), without specific consideration regarding

the objects’ sound modelling. Additional flexibility in the modal
analysis itself is thus needed.

We propose a new approach to efficiently extract modal pa-
rameters for any given geometry, overcoming many of the afore-
mentioned limitations. Our method employs bounding voxels of a
given shape at arbitrary resolution for hexahedral finite elements.
The advantages of this technique are the automatic voxelization
of a surface model and the automatic tuning of the finite element
method (FEM) parameters based on the distribution of material in
each cell. A particular advantage of this approach is that we can
easily deal with non-manifold geometry which includes both volu-
metric and surface parts (see Section 5). These kinds of geometries
cannot be processed with traditional approaches which use a tetra-
hedralization of the model (e.g., [1]). Likewise, even with solid
watertight geometries, complex details often lead to poorly shaped
tetrahedra and numerical instabilities; by contrast, our approach
does not suffer from this problem. Our specific contribution is
the application of the multi-resolution hexahedral embedding tech-
nique to modal analysis for sound synthesis. Most importantly, our
solution preserves variety in what we call the sound map.

The remainder of this paper is organized as follows. Related
work is presented in Section 2. Our method is then explained in
Section 3. A validation is presented in Section 4. Robustness and
multi-scale results are discussed in Section 5, then real-time ex-
perimentation is presented in Section 6. We finally conclude in
Section 7.

2. BACKGROUND

2.1. Related Work

The traditional approach to creating soundtracks for interactive
physically based animations is to directly play-back pre-recorded
samples, for instance, synchronized with the contacts reported from
a rigid-body simulation. Due to memory constraints, the num-
ber of samples is limited, leading to repetitive audio. Moreover,
matching sampled sounds to interactive animation is difficult and
often leads to discrepancies between the simulated visuals and
their accompanying soundtrack. Finally, this method requires each
specific contact interaction to be associated with a corresponding
pre-recorded sound, resulting in a time-consuming authoring pro-
cess.

Work by Adrien [2] describes how effective digital sound syn-
thesis can be used to reconstruct the richness of natural sounds.
There has been much work in Computer music [3, 4, 5] and com-
puter graphics [6, 1, 7] exploring methods for generating sound
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based on physical simulation. Most approaches target sounds emit-
ted by vibrating solids. Physically based sounds require signifi-
cantly more computation power than recorded sounds. Thus, brute-
force sound simulation cannot be used for real-time sound synthe-
sis. For interactive simulations, a widely used solution is to apply
vibrational parameters obtained through modal analysis. Modal
data can be obtained from simulations [1, 7] or extracted from
recorded sounds of real objects [6]. The technique presented in
this paper is more closely related to the work of O’Brien et al. [1],
which extends modal analysis to objects that are neither simple
shapes nor available to be measured.

The computation time required by current methods to prepro-
cess the modal analysis prevents it from being used for real-time
rendering. As an example, the actual cost of computing the par-
tial eigenvalue decomposition using a tetrahedralization in the case
of a bowl with 274 vertices and generating 2426 tetrahedra is 5
minutes with a 2.26 GHz Intel Core Duo. Work of Maxwell and
Bindel [8] address interactive sound synthesis and how the change
of the shape of a finite element model affects the sound emission.
They highlight that it is possible to avoid the recomputation of the
synthesis parameters only for moderate changes. There has been
much work in controlling the computational expense of modal syn-
thesis, allowing the simultaneous handling of a large variety of
sounding objects [9, 10]. However, to be even more efficient, flex-
ibility should be included in the design of the model itself, in order
to control the processing. Thus, modal synthesis should be further
developed in terms of parametric control properties. Our technique
tackles computational efficiency by proposing a multi-scale reso-
lution approach of modal analysis, managing the amount of modal
data according to memory requirements.

The use of physics engines is becoming much more widespread
for animated interactive virtual environments. The study from
Menzies [11] address the pertinence of physical audio within phys-
ical computer game environment. He develops a library whose
technical aspects are based on practical requirements and points
out that the interface between physics engines and audio has of-
ten been one of the obstacles for the adoption of physically based
sound synthesis in simulations. O’Brien et al. [12] employed finite
elements simulations for generating both animated videos and au-
dio. However, the method requires large amounts of computation,
and cannot be used for real-time manipulation.

2.2. Modal Synthesis

Modal sound synthesis is a physically based approach for mod-
elling the audible vibration modes of an object. As any kind of
additive synthesis, it consists of describing a source as the sum of
many components [13]. More specifically, the source is viewed
as a bank of damped harmonic oscillators which are excited by
an external stimulus and the modal model is represented with the
vector of the modal frequencies, the vector of the decay rates and
the matrix of the gains for each mode at different locations on the
surface of the object. The frequencies and dampings of the oscil-
lators are governed by the geometry and material properties of the
object, whereas the coupling gains of the modes are determined by
the mode shapes and are dependent on the contact location on the
object [6].

Modes are computed through an analysis of the governing
equations of motion of the sounding system. The natural fre-
quencies are determined assuming the dynamic response of the
unloaded structure, with the equation of motion. A system of n

degrees-of-freedom is governed by a set of n coupled ordinary dif-
ferential equations of second order. In modal analysis, the de-
formation of the system is assumed to be a linear combination
of normal modes, uncoupling the equations of motion. The so-
lution for object vibration can be thus easily computed. To decou-
ple the damped system into single degree-of-freedom oscillators,
Rayleigh damping is generally assumed (see, for instance, [14]).

The response of a system is usually governed by a relatively
small part of the modes, which makes modal superposition a par-
ticularly suitable method for computing the vibration response.
Thus, if the structural response is characterized by k modes, only
k equations need to be solved. Finally, the initial computational
expense in calculating the modes and frequencies is largely offset
by the savings obtained in the calculation of the response.

Modal synthesis is valid only for linear problems, that is, sim-
ulations with small displacements, linear elastic materials, and no
contact conditions. If the simulation presents nonlinearities, sig-
nificant changes in the natural frequencies may appear during the
analysis. In this case, direct integration of the dynamic equation of
equilibrium is needed, which requires much more computational
effort. For our approach, the calculations for modal parameters
are similar to the ones presented in the paper of O’Brien et al. [1].

3. METHOD

In the case of small elastic deformations, rigid motion of an ob-
ject does not interact with the objects’s vibrations. On the other
hand, we assume that small-amplitude elastic deformations will
not significantly affect the rigid-body collisions between objects.
For these reasons, the rigid-body behavior of the objects can be
modeled in the same way as animation without audio generation.

3.1. Deformation Model

In most approaches, the deformation of the sounding object typi-
cally need to be simulated. Instead of directly applying classical
mechanics to the continuous system, suitable discrete approxima-
tions of the object geometry can be performed, making the prob-
lem more manageable for mathematical analysis. A variety of
methods could be used, including particle systems [3, 7] that de-
compose the structure into small pair-like elements for solving the
mechanics equations, or Boundary Element Method (BEM) that
computes the equations on the surface (boundary) of the elastic
body instead of on its volume (interior), allowing reflections and
diffractions to be modeled [15, 16]. The Finite Element Method
(FEM) is commonly used to perform modal analysis, which in
general gives satisfactory results. Similar to particle systems, FEM
discretizes the actual geometry of the structure using a collection
of finite elements. Each finite element represents a discrete por-
tion of the physical structure and the finite elements are joined by
shared nodes. The collection of nodes and finite elements is called
a mesh. The tetrahedral finite element method has been used to
apply classical mechanics [1]. However, tetrahedral meshes are
computationally expensive for complex geometries, and can be
difficult to tune. As an example, in the tetrahedral mesh gener-
ator Tetgen1, the mesh element quality criterion is based on the
minimum radius-edge ratio, which limits the ratio between the ra-
dius of the circumsphere of the tetrahedron and the shortest edge

1http://tetgen.berlios.de/
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length. Based on this observation, we choose a finite elements ap-
proach whose volume mesh does not exactly fit the object.

We use the method of Nesme et al. [17] to model the small
linear deformations that are necessary for sound rendering. In this
approach, the object is embedded in a regular grid where each cell
is a finite element, contrary to traditional FEM models where the
elements try to match the object geometry as finely as possible.
Tuning the grid resolution allows us to easily trade off accuracy for
speed. The object is embedded in the cells using barycentric coor-
dinates. Though the geometry of the mesh is quite different from
the object geometry, the mechanical properties (mass and stiffness)
of the cells match as closely as possible the spatial distribution and
the parameters of material. The technique can be summarized as
follows. An automatic high-resolution voxelization of the geo-
metric object is first built. The voxelization initially concerns the
surface of the geometric model, while the interior is automatically
filled when the geometry represents a solid object. The voxels
are then recursively merged (8 to 1) up to the desired coarser me-
chanical resolution. The merged voxels are used as hexahedral
(boxes with the same shape ratio as the fine voxels) finite elements
embedding the detailed geometric shape. The voxels are usually
cubes but they may have different sizes in the three directions. At
each step of the coarsification, the stiffness and mass matrices of
a coarse element are computed based on the eight child element
matrices. Mass and stiffness are thus deduced from a fine grid to
a coarser one, where the finest depth is considered close enough
to the surface, and the procedure can be described as a two-level
structure, i.e., from fine to coarse grid. The stiffness and mass
matrices are computed bottom-up using the following equation:

Kparent =

7∑
i=0

LT
i KiLi (1)

where K is the matrix of the parent node, the Ki are the matrices
in the child nodes and the Li are the interpolation matrices of the
child cell vertices within the parent cell. Since empty children have
null Ki matrices, the fill rate is automatically taken into account,
as well as the spatial distribution of the material through the Li

matrices. As a result, full cells are heavier and stiffer than partially
empty cells, and the matrices not only encode the fill rate but also
the distribution of the material within each cell. With this method,
we can handle objects with geometries that simultaneously include
volumetric and surface parts; thin or flat features will occupy vox-
els and will thus result in the creation of mechanical elements that
robustly approximate their mechanical behavior (see Section 5.1).

3.2. Modal Analysis

The method for FEM model [17] is adapted from real-time defor-
mation to modal analysis. In particular, the modal parameters are
extracted in a preprocessing step by solving the equation of mo-
tion for small linear deformations. We first compute the global
mass and global stiffness matrices for the object by assembling the
element matrices. In the case of three-dimensional objects, global
matrices will have a dimension of 3m×3m where m is the num-
ber of nodes in the finite element mesh. Each entry in each of
the 24×24 element matrices for a cell is accumulated into the cor-
responding entry of the global matrix. Because each node in the
hexahedral mesh shares an element with only a small number of
the other nodes, the global matrices will be sparse. If we assume
the displacements are small, the discretized system is described on

a mechanical level by the Newton second law:

Md̈ + Cḋ + Kd = f (2)

where d is the vector of node displacements, and a derivative with
respect to time is indicated by an overdot. M, C and K are re-
spectively the system’s mass, damping and stiffness matrices, and
f represents external forces, such as impact forces that will pro-
duce audible vibrations. Assuming Rayleigh damping, i.e., C =
α1K + α2M with some α1 and α2, we can solve the eigenproblem
of the decoupled system leading to the n eigenvalues and the n×m
matrix of eigenvectors, with n the number of degrees of freedom
and m the number of nodes in the mesh. The sparseness of M and
K matrices allows the use of sparse matrix algorithms for the eigen
decomposition. We refer the reader to Appendix 9 for more details
on the calculation.

Let λi be the ith eigenvalue and φi its corresponding eigen-
vector. The eigenvector, also known as the mode shape, is the
deformed shape of the structure as it vibrates in the ith mode.
The natural frequencies and mode shapes of a structure are used
to characterize its dynamic response to loads in the linear regime.
The deformation of the structure is then calculated from a combi-
nation of the mode shapes of the structure using the modal super-
position technique. The vector of displacements of the model, u,
is defined as:

u =
∑

βiφi (3)

where βi is the scale factor for mode φi. The eigenvalue for each
mode is determined by the ratio of the mode’s elastic stiffness to
the mode’s mass. For each eigen decomposition, there will be six
zero eigenvalues that correspond to the six rigid-body modes, i.e.,
modes that do not generate any elastic forces.

Our preprocessing step that performs modal analysis can be
summarized as follows:

ALGORITHM 1. Algorithm for modal parameters extraction.
1. Compute mass and stiffness at desired mechanical level
2. Assemble the mass and the stiffness matrices
3. Modal analysis: solve the eigenproblem
4. Store eigenvalues and eigenvectors for sound synthesis

Our model approximates the motion of the embedded mesh
vertices. That is, the visual model with detailed geometry does not
match the mechanical model on which the modal analysis is per-
formed. The motion of the embedding uses a trilinear interpola-
tion of the mechanical degrees of freedom, so we can nevertheless
compute the motion of any point on the surface given the mode
shapes.

3.3. Sound Generation

In essence, efficiency of modal analysis relies on neglecting the
spatial dynamics and modelling the actual physical system by a
corresponding generalized mass-spring system which has the same
spectral response. The activation of this model depends on where
the object is hit. If we hit the object at a vibration node of a mode,
then that mode will not vibrate, but others will. This is what we
refer to as the sound map, which could also be called a sound exci-
tation map as it indicates how the different modes are excited when
the object is struck at different locations.

From the eigenvalues and the matrix of eigenvectors, we are
able to deduce the modal parameters for sound synthesis. Let λi
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be the ith eigenvalue and ωi its square root. The absolute value
of the imaginary part of ωi gives the natural frequency (in radi-
ans/second) of the ith mode of the structure, whereas the real part
of ωi gives the mode’s decay rate. The mode’s gain is deduced
from the eigenvectors matrix and depends on the excitation loca-
tion. We refer the reader to the Appendix 9 for more details on
modal superposition.

The sound resulting from an impact on a specific location j on
the surface is calculated as a sum of n damped oscillators:

sj(t) =

n∑
i=1

aij sin(2πfit)e
−dit (4)

where fi, di, and aij are respectively the frequency, the decay rate
and the gain of the mode i at point j in the sound map. An ob-
ject characterised with m mesh nodes and n degrees-of-freedom is
described with the vectors of frequencies and decay rates of di-
mension n, and the matrix of gains of dimension n×m.

3.4. Implementation

Our deformation model implementation uses the SOFA Frame-
work2 for small elastic deformations. SOFA is an open-source
C++ library for physical simulation and can be used as an exter-
nal library in another program, or using one of the associated GUI
applications. This choice was motivated by the ease with which it
could be extended for our purpose.

Regarding sound generation, we synthesize the sounds via a
reson filter (see, for example, Van den Doel et al. [6]). This choice
is made based on the effectiveness for real-time audio processing.
Sound radiation amplitudes of each mode is also estimated with a
far-field radiation model (Equation 15 in [15]). As the motions of
objects are computed with modal analysis, surfaces can be easily
analyzed to determine how the motions induce acoustic pressure
waves in the surrounding medium. However, we decide to fo-
cus our study on effective modal synthesis. Finally, our approach
does not consider contact-position dependent damping or changes
in boundary constraints, as might happen during moments of exci-
tation. Instead we use a uniform damping value for the sounding
object.

4. VALIDATION OF THE MODEL

4.1. A Metal Cube

In order to globally validate our method for modal analysis, we
study the sound emitted when impacting a cube in metal. Due to
its symmetry, the cube should sound the same when struck at any
of the eight corners, with an excitation force whose direction is the
same to the face (see Appendix in Section 9 for more details on the
force amplitude vector). We use a force normal to the face cube in
order to guarantee the maximum energy in all excited modes. The
sound emitted should also be similar when hitting with perpendic-
ular forces that are both normal to one pair of the cube faces.

We suppose the cube is made of steel with Young’s modulus
21×1010 Pa, Poisson ratio 0.33, and density 7850 kg/m3. The
Raleigh coefficients for stiffness and mass are set to 1x10−7 and
0 respectively. The use of a constant damping ratio is a simplifi-
cation that still produces good results. The cube model has edges

2http://www.sofa-framework.org/

which are 1 meter long. A Dirac is chosen for the excitation force.
In this case, no radiation properties are considered.

In this example, a 3×3×3 grid of hexahedral finite elements
is used, leading to 192 modes. However, to adapt the stiffness of a
cell according to its content, the mesh is refined more precisely
than desired for the animation. The information is propagated
from fine cells to coarser cells. For this example, the elements
of the 3×3×3 cells coarse grid resolution approximates mechani-
cal properties propagated from a fine grid of 6×6×6 cells and 216
elements (see Section 3.1 for more details on the two-level struc-
ture).

Figure 1: A sounding metal cube: sound synthesis is performed
for excitation on 4 different corners and forces normal to one pair
of cube faces (top); the power spectrum of the emitted sounds is
given (bottom).

We observe in Figure 1 that the resulting sounds when im-
pacting on different corners of the cube are identical. Also, this
is true when exciting with perpendicular forces that are normal to
cube faces. This shows that our model respects the symmetry of
objects, as expected.

4.2. Position Dependent Sound Rendering

To properly render impact sounds of an object, the method must
preserve the sound variety when hitting the surface at different lo-
cations. We consider a metal bowl, modeled by a triangle mesh
with 274 vertices, shown in Figure 2.

The material of the bowl is aluminium, with the parameters
69×109 Pa for Young’s modulus, 0.33 for Poisson ratio, and 2700
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Figure 2: A sounding metal bowl: sound synthesis is performed
for excitation on 3 specific locations on the surface.

kg/m3 for the density. The Rayleigh damping parameters for stiff-
ness and mass are set to 3×10−6 and 0.01 respectively. The bowl
has a width of 1 meter. No radiation properties are considered; our
study focuses specifically on modal synthesis.

We compare our approach to modal analysis performed first
using tetrahedralization with Tetgen3 with 822 modes. Our method
uses hexahedral finite elements and is applied with a grid of 6×6×6
cells, leading to 891 modes. For this example, the elements of
the 6×6×6 cells coarse grid resolution approximates mechanical
properties propagated from a fine grid of 12×12×12 cells.

We first compare the extracted modes from both methods. We
observe that the ratio between frequencies and decays is the same
for both methods. We then compare the synthesized sounds from
both methods. We take 3 different locations, i.e., top, side and
bottom, on the surface of the object where the object is impacted,
see Figure 2. The excitation force is modeled as a Dirac, such as a
regular impact. The frequency content of the sound resulting from
impact at the 3 locations on the surface is shown in Figure 3.

Figure 3: Sound synthesis with a modal approach using classical
tetrahedralization with 822 modes (green) and our method with a
6×6×6 hexahedral FEM resolution, leading to 891 modes (blue):
power spectrum of the sounds emitted when impacting at the 3
different locations shown in Figure 2.

3http://tetgen.berlios.de/

Each power spectrum is normalized with the maximum am-
plitude in order to factor out the magnitude of the impact. The
eigenvalues that correspond to vibration modes will be nonzero,
but for each free body in the system there will be six zero eigen-
values for the body’s six rigid-body freedoms. Only the modes
with nonzero eigenvalue are kept. Thus, 816 modes are finally
used for sound rendering with the tetrahedralization method and
885 with our hexahedral FEM method.

We provide with the sounds synthesized with the tetrahedral
FEM and the hexadedral FEM approaches (see additional mate-
rial4). Figure 3 highlights the similarities in the main part of the
frequency content. The difference when impacting at the bottom
(location 3) of the object is due to the difference in distribution of
modes and we believe this is due to the size of the finite elements
used in our method. However, we notice in listening to the synthe-
sized sounds that those generated by our method are comparable
to those created with the standard tetrahedralization.

5. ROBUSTNESS AND MULTI-SCALE RESULTS

The number of finite elements determine the dimension of the
system to solve. To avoid this expense, we provide a method
that greatly simplifies the modal parameter extraction even for
non-manifold geometries. An important sub-class of non-manifold
models are objects that include both volumetric and surface parts.
Our technique consists of using multi-resolution hexahedral em-
beddings.

5.1. Robustness

Most approaches for tetrahedral mesh generation have limitations.
In particular, an important requirement imposed by the applica-
tion of deformable FEM is that tetrahedra must have appropriate
shapes, for instance, not too flat or sharp. By far the most pop-
ular of the tetrahedral meshing techniques are those utilizing the
Delaunay criterion [18]. When the Delaunay criterion is not satis-
fied, modal analysis using standard tetrahedralization is impossi-
ble. In comparison with tetrahedralization methods, our technique
can handle complex geometries and adequately performs modal
analysis. Figures 4 and 5 give an example of sound modelling on
a problematic geometry for tetrahedralization because of the pres-
ence of very thin parts, specifically the blades that protrude from
either side.

We suppose the object is made of aluminum (see Section 4.2
for the material parameters). The object has a height of 1 meter.
We apply a coarse grid of 7×7×7 cells for modal analysis. The
coarse level encloses the mechanical properties of a fine grid of
14×14×14 cells (see Section 3.1 for more details on the two-level
structure). In this example, sound radiation amplitudes of each
mode are also estimated with a far-field radiation model (Eq. 15,
[15]). Figure 5 shows the power spectrum of the sounds resulting
from impacts, modeled as a Dirac, on 6 different locations. Each
power spectrum is normalized with the maximum amplitude of the
spectrum in order to factor out the magnitude of the impact.

We provide with the sounds resulting when hitting on the 6
different locations (see additional material, link referred in Sec-
tion 4.2). Figure 5 shows the variation of impact sounds at dif-
ferent surface locations due to the sound map since the different

4http://www-sop.inria.fr/members/Cecile.Picard/
Material/AdditionalMaterialEurasip.zip
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Figure 4: An example of a complex geometry that can be handled
with our method. The thin blade causes problems with traditional
tetrahedralization methods.

modes have varying amplitude depending on the location of exci-
tation. The frequency content is related to the distribution of mass
and stiffness along the surface and more precisely to the ratio be-
tween stiffness and mass. The similarities in the resulting sounds
when hitting on location 1 and location 3 are due to the similar-
ities of the local geometry. However, the stiffness at location 3
is smaller, allowing more resonance when being struck which ex-
plains the predominant peak in the corresponding power spectrum.
When hitting the body of the object at location 2, the stiffness is
locally smaller in comparison to locations 1 and 3, leading to a
larger amount of low frequency content. Also, it is interesting to
examine the quality of the sound rendered when hitting the wings
(locations 4, 5 and 6). Because wings are thin and light in com-
parison to the rest of the object, the higher frequencies are more
pronounced. Finally, impacts on locations 2 and 4 gives compara-
ble sounds since the impact locations are close on the body of the
object.

5.2. A Multi-scale Approach

To study the influence of the number of hexahedral finite elements
on sound rendering, we model a sounding object with different res-
olutions of hexahedral finite elements. We have created a squirrel
model with 999 vertices which we use as our test sounding object.
The squirrel model has a height of 1 meter. Its material is pine
wood, which has parameters 12×109 Pa for Young’s modulus, 0.3
for Poisson ratio, and 750 kg/m3 for the volumetric mass. Rayleigh
damping parameters for stiffness and mass are set to 8×10−6 and
50 respectively.

Sound synthesis is performed for 3 different locations of exci-
tation, see Figure 6 (top left). The coarse grid resolution for finite
elements is set to 2×2×2, 3×3×3, 5×5×5, and 7×7×7. In this
example, each grid uses mass and stiffness computed as described
in Section 3.1 from a resolution 4 times finer; that is, the model
with resolution 2×2×2 has properties computed with a grid of
8×8×8.

We provide with the sounds synthesized with the different grid
resolutions for finite elements and for the 3 different locations of
excitation (see additional material, link referred in Section 4.2).
Results show that the frequency content of sounds depend on the
location of excitation and on the resolution of the hexahedral fi-
nite elements. The higher resolution models have a wider range of
frequencies because of the supplementary degrees of freedom. We
also observe a frequency shift as the FEM resolution increases.

Figure 5: The power spectrum of the sounds resulting from im-
pacts at the 3 different locations on the body of the object (top)
and on the 3 different locations on the wing (bottom). Note that
the audible response is different based on where the object is hit.

Note that a 2×2×2 grid represents an extremely coarse embed-
ding, and consequently it is not surprising that the frequency con-
tent is different at higher resolution. Nevertheless, there are still
some strong similarities at the dominant frequencies. Above all,
a desirable feature is the convergence of frequency content as the
resolution of the model increases. While additional psychoacous-
tic experiments with objective spectral distortion measures would
be necessary to validate this result, when listening to the results,
the sound quality for this model at a grid of 5×5×5 may produce
a convincing sound rendering for the human ear. Figure 6 sug-
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Figure 6: A squirrel in pine wood is sounding when struck at 3 different locations (from left to right) . Frequency content of the resulting
sounds with 4 different resolutions for the hexahedral finite elements: (from top to bottom), 2×2×2, 3×3×3, 5×5×5, 7×7×7 cells.
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gests that higher resolutions are necessary before convergence can
be clearly observed in the frequency content. Finally, we note that
the grid resolution required for acceptable precision in the sound
rendering depends on the geometry of the simulated object.

5.3. Discussion

The sound map is influenced by the resolution of the hexahedral
finite elements. This is related to the way stiffnesses and masses of
different elements are altered based on their contents. As a conse-
quence, a 2×2×2 hexahedral FEM resolution would show much
less expressive variation than higher FEM resolution (we report
the reader to the records provided in the additional material, link
referred in Section 4.2). One approach to improving this would
be to use better approximations of the mass and stiffness of coarse
elements [19].

Modelling numerous complex sounding objects can rapidly
become prohibitively expensive for real-time rendering due to the
large set of modal data that has to be handled. Nevertheless, based
on the quality of the resulting sounds obtained with our method,
and given that increased resolution for the finite elements implies
higher memory and computational requirements for modal data,
the FEM resolution can be adapted to the number of sounding ob-
jects in the virtual scene.

Grid Res. T1 T2 T3 Total MEM
(cells) # Modes (s) (s) (s) (s) (MB)

7×7×7 1191 1.81 16.06 3.99 21.89 9.3
6×6×6 846 0.89 5.78 2.39 9.06 6.8
5×5×5 579 0.43 2.07 0.97 3.47 4.7
4×4×4 363 0.24 0.61 0.59 2.88 2.9
3×3×3 192 0.05 0.14 0.16 0.35 1.6
2×2×2 81 0.01 0.03 0.01 0.05 0.69

Table 1: Computation times in seconds and memory usage in
megabytes for different grid resolutions. Computation times are
given for the different steps of the calculation: discretization and
computation of mass and stiffness matrices (T1), eigenvalues ex-
traction (T2), gains computation (T3).

Table 1 gives the computation times and the memory usage
of the modal data, i.e., frequencies, decay rates and gains, when
computing the modal analysis with different FEM resolution on
the squirrel model. In this example, the finer grid resolution is
two levels up to the one of coarse grid, that is, a coarse grid of
2×2×2 cells has a fine level of 8×8×8 cells with 337 degrees
of freedom (3954 for 5×5×5). These are computation times of
an unoptimized implementation on a 2.26 GHz Intel Core Duo.
We highlight the 5×5×5 cells resolution since the results indicate
that this resolution may be sufficient to properly render the sound
quality of the object (see Section 5.2). These results could be im-
proved by reformulating the computations in order to be supported
by graphics processing units (GPU).

Despite the fact that audio is considered a very important as-
pect in virtual environments, it is still considered to be of lower
importance than graphics. We believe that physically modeled au-

dio brings a significant added value in terms of realism and the
increased sense of immersion. Our method is built on a physically
based animation engine, the SOFA Framework. As a consequence,
problems of coherence between physics simulation and audio are
avoided by using exactly the same model for simulation and sound
modelling. The sound can be processed in real-time knowing the
modal parameters of the sounding object.

6. EXPERIMENTING WITH THE MODAL SOUNDS IN
REAL-TIME

To apply excitation signals in real-time to the simulated sounding
objects, we implemented an object, or data processing block, for
Pure Data and Max/MSP, two similar visual programming modular
environments for dataflow processing. We used the flext library5

(API for object development common to both environments), and
the C/C++ code for modal synthesis of bell sounds from van den
Doel [20]. The object in use on a Pure Data patch is illustrated
in Figure 7). We provide the user two different ways for the user
to interact with the model. The user can either choose a specific
mesh vertex number of the geometry model (represented in red in
the figure), or can choose a specific location (in green) where the
nearest vertex is deduced by interpolation.

One advantage of the method is to give the possibility to con-
trol the parameters of the sounding model in order to tune the re-
sulting sounds for the desired effect. For instance, the size of the
geometry can be modified as different dimensions could be pre-
ferred for rendering sounds in a particular scenario. The mesh
geometry is loaded in Alias|Wavefront *.obj format, and we use
Blender to apply geometrical transformations in order to test how
it affects the rendering of the resulting sounds.

As our sound model consists of an excitation and a resonator,
interesting sounds can be easily obtained by convolving modal
sounds with user-defined excitations. The excitation which sup-
plies the energy to the sound system contributes to a great extent to
the fine details of the resulting sounds. Excitation signals may be
produced by various ways: loading recorded sound samples, using
real-time signals coming from live soundcard inputs, connecting
the output of other audio applications with Pure Data through a
sound server.

This interface can be viewed as a preliminary prototyping tool
for sound design. Indeed, by experimenting sounds with pre-defined
objects and interactions types, the parameters of sounding objects
can easily chosen in order to convey specific sensations in games.
Our approach offers a great extent of control regarding the pos-
sibilities of sound modification, towards a wide audience since
its implementation is cross-platform and open source. In [21],
Bruyns proposed an AudioUnit plugin, that is unfortunately no
longer available, for modal synthesis of arbitrarily shaped objects,
where materials could be changed based on interpolation between
pre-calculated variations on the model. Lately, Menzies has in-
troduced VFoley in [22], an opensource environment for modal
synthesis of 3D scenes, with consequent options on parameteriza-
tion (particularly with many collision and surface models), but tied
to physically plausible sounds as opposed to physically-inspired
sounds. This is shown in the movie provided as additional mate-
rial (see link referred in Section 4.2).

5http://puredata.info/Members/thomas/flext/
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Figure 7: Interface for sound design. After having loaded the modal data and the corresponding mesh geometry, the user can experiment
the modal sounds when exciting the object surface at different locations. Excitation signals may be loaded as recorded sound samples or
real-time tracked from live soundcard inputs.

7. CONCLUSION

We propose a new approach to modal analysis using automatic
voxelization of a surface model and computation of the finite el-
ements parameters, based on the distribution of material in each
cell. Our goal is to perform sound rendering in the context of
an animated real-time virtual environment, which has specific re-
quirements, such as real-time processing and efficient memory us-
age.

For simple cases, our method gives results similar to tradi-
tional modal analysis with tetrahedralization. For more complex
cases, our approach provides convincing results. In particular,
sound variety along the object surface, the sound map, is well pre-
served. Our technique can handle complex non-manifold geome-
tries that include both volumetric and surface parts, which can not
be handled by previous techniques. We are thus able to compute
the audio response of numerous and diverse sounding objects, such
as those used in games, training simulations, and other interactive
virtual environments. Our solution allows a multi-scale solution
because the number of hexahedral finite elements only loosely de-
pends on the geometry of the sounding object. Finally, since our
method is built on a physics animation engine, the SOFA Frame-
work, problems of coherence between simulation and audio can be
easily addressed, which is of great interest in the context of inter-
active environment.

In addition, due to the fast computation time, we are hopeful
that real-time modal analysis will soon be possible on the fly, with
sound results that are approximate but still realistic for virtual envi-
ronments. For this purpose, psychoacoustic experiments should be
conducted to determine the resolution level for acceptable quality
of the sound rendering.
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9. APPENDIX

This Appendix gives the mathematical background behind modal
superposition for discrete systems with proportional damping. To
apply modal superposition, we assume the steady state situation,
i.e., the sustained part of the impulse response of an object being
struck. Indeed, the early part, which is of very short duration, con-
tains many frequencies and is consequently not well described by
a discrete set of frequencies. Modal superposition uses the Finite
Element Method (FEM) and determine the impulse response of
vibrating objects by means of a superposition of eigenmodes.

9.1. Derivation of the equations

We first consider the undamped system; its equation of motion is
expressed by:

Mẍ + Kx = f (5)

where M and K are respectively the mass and stiffness matrices
of the discrete system. The mass matrix is typically a diagonal
matrix, its main diagonal being populated with elements whose
value is the mass assumed in each degree of freedom (DOF). The
stiffness matrix is symmetric (often a sparse matrix, i.e., only a

6http://www.eden-games.com/
7http://www.numediart.org
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band of elements around the main diagonal is populated and the
other elements are zero). In finite elements, these matrices are
assembled based on the element geometry and properties.

Since the study is in the frequency domain, the displacement
vector x and the force vector f are based on harmonic components,
that is, x = Xejωt, ẋ = jωXejωt, ẍ = - ω2Xejωt and f = Fejωt. X
and F are two amplitude vectors and contain one element for each
degree of freedom (DOF). The elements of X are the displacement
amplitudes of the respective DOF as a function of ω and the el-
ements of F are the amplitudes of the force, again depending on
ω, acting at location and in direction of the corresponding DOF.
Since the harmonic part is available on both sides, we can ignore
it and the equation of motion can be rewritten:

X = (K − ω2M)−1F (6)

where X and F means in practice X(ω) and F(ω), but are shorten
for simplification, and ω is a diagonal matrix. Equation 6 is the
direct frequency response analysis. The term K - ω2M needs to
be calculated for each frequency. To calculate the response to any
excitation force F(ω), we need to solve the eigenvalue problem:

(K − ω2M)X = 0 (7)

or
(M−1K)X = ω2X = λX (8)

This equation says that each sounding object has a structure-related
set of eigenvalues λ, which are simply connected to the system’s
frequencies. To extract the eigenvalues, the following condition
has to be fulfilled:

det(K − ω2M) = 0 (9)

Solving Equation 9 implies finding the roots of a polynomial, which
correspond to the eigenvalues λ. The latter can then be replaced in
the Equation 7:

(K − λM)Ψ = 0 (10)
Ψ is the matrix of eigenvectors, or eigenfunctions, where the col-
umn r is the vector related to the eigenvalue ω2

r . The eigenvectors
define the mode shapes linked to the corresponding frequency of
the system.

If the frequencies are unique, many eigenvectors can be ex-
tracted for a given eigenvalue and all are proportional. Thus, the
information enclosed in the eigenvectors is not the absolute ampli-
tude but a ratio between the amplitudes in the degrees of freedom.
For this reason, the eigenvectors are often normalized according
to a reference. Due to the orthogonal property of the eigenvectors,
ΨT Ψ = I. Consequently, ΨT MΨ and ΨT KΨ are diagonal ma-
trices, and are respectively called the modal mass and the modal
stiffness of the system, because the ratio between modal stiffness
and modal mass gives the matrix of eigenvalues. A very suitable
reference choice is to scale the eigenvectors so that the modal mass
matrix becomes an identity matrix. From Equation 6, we can write:

ΨT (K − ω2M)Ψ = ΨT F(ω)

X(ω)
Ψ

(λ− ω2I) = ΨT F(ω)

X(ω)
Ψ (11)

and finally:
X(ω) = Ψ(λ− ω2I)−1ΨT F(ω) (12)

Equation 12 simply expresses that the response X(ω) can be cal-
culated by surimposing a set of eigenmodes weighted by the exci-
tation frequency, multiplied with an excitation load vector F(ω).

Properties of eigenvalues and eigenvectors

The orthogonality of modes expresses that each mode contains in-
formation which the other modes do not have, and consequently a
given mode can not be built from the others. On the other hand,
solutions of geometrically symmetric systems often give pairs of
multiple eigenmodes.

Boundary conditions are settled simply by prescribing the value
of certain degrees of freedom resolved in the displacement vector.
As an example, a structure rigidly attached to the ground will show
null DOFs around the support point. Consequently, the elements
in the mode shapes corresponding to these DOFs will always be
zero and will not need to be solved.

9.2. Damping

We now consider a damped system, and in particular the propor-
tional damping model which assumes that the damping can be
expressed proportional to the stiffness and mass matrix (Raleigh
damping), that is, C = α1K + α2M. In consequence, the eigen-
values of the proportional damped system are complex and can be
expressed according to the eigenvalues of the undamped case:

λ′r = ω2
r(1 + jηr) (13)

where the imaginary part contains the loss factor ηr .
The modal superposition is thus given by:

X(ω) = Ψ(λ− ω2I + jηλ)−1ΨT F(ω) (14)

Equation 14 enables us to determine entire response velocity fields
that cause the surrounding medium to vibrate and to generate sound.
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