
Vision, Modeling, and Visualization (2010)

Proxy-Guided Texture Synthesis for
Rendering Natural Scenes

Nicolas Bonneel1,2, Michiel van de Panne2,1, Sylvain Lefebvre 1,3, George Drettakis1

1 REVES/INRIA Sophia-Antipolis 2 University of British Columbia 3 ALICE/INRIA Nancy

Abstract

Landscapes and other natural scenes are easy to photograph but difficult to model and render. We present a
proxy-guided pipeline which allows for simple 3D proxy geometry to be rendered with the rich visual detail found
in a suitably pre-annotated example image. This greatly simplifies the geometric modeling and texture mapping
of such scenes. Our method renders at near-interactive rates and is designed by carefully adapting guidance-
based texture synthesis to our goals. A guidance-map synthesis step is used to obtain silhouettes and borders that
have the same rich detail as the source photo, using a Chamfer distance metric as a principled way of dealing
with discrete texture labels. We adapt an efficient parallel approach to the challenging guided synthesis step we
require, providing a fast and scalable solution. We provide a solution for local temporal coherence, by introducing
a reprojection algorithm, which reuses earlier synthesis results when feasible, as measured by a distortion metric.
Our method allows for the consistent integration of standard CG elements with the texture-synthesized elements.
We demonstrate near-interactive camera motion and landscape editing on a number of examples.

1. Introduction

Modeling and rendering natural scenes using computer
graphics remains a difficult problem. Creating such a scene
using textured geometry involves a tedious modelling step,
typically by an expert user, to create interesting geometry
and then to create textures mapped to this geometry. The
considerable effort that is entailed in each of these steps pre-
cludes the fast prototyping of natural landscapes, in partic-
ular by novice users. This constrasts sharply with the abun-
dance of available images of natural scenes which contain
a wealth of image detail, such as rock textures, and shape
detail, such as the jagged silhouette of a craggy mountain-
top. Our goal is to develop a method to exploit example im-
ages so that novice users can avoid the most painful steps
in modeling a natural scene, i.e., modeling of detailed ge-
ometry and the creation and mapping of surface textures.
This supports applications such as previsualization, requir-
ing lightweight, easily modifiable models in order to support
rapid exploration of possibilities. As an example (see Fig. 1
and video), imagine a director or game level designer wants
to create a mountain scene with a lake. Using our system
she can rapidly create a simple proxy and test the “look-and-

feel” of two different example landscape styles, and walk
through the scenes in 3D at near-interactive rate.

Three key challenges need to be overcome in realizing
our proxy-guided rendering approach: (1) Complex natural
scenes often exhibit visually detailed boundaries between
texture regions. These need to replace the smooth bound-

Figure 1: Previsualization of a proxy (bottom left) using two
different source images (top middle, top right). The render-
ings are shown below their respective source images.

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

Input and PreprocessingInput and Preprocessing Guidance Synthesis
Final Image Synthesis
 and Compositing

Temporal CoherenceGuidance Synthesis
 and Compositing
Final Image Synthesis
 and Compositing and Compositing

(a)

(b)

(c)

(d)

(e)
input image and

guide
simple geometric

proxy

synthesized
guide

Temporal Coherence

(f)

(g)

Figure 2: Rendering rich visual depictions from simple proxy geometry using texture synthesis. Given a source photo and
rapidly-modeled proxy geometry the goal is to produce depictions of the 3D proxy rich in detail and that mask the simple nature
of the proxy. Temporal coherence is achieved using reprojection and texture resynthesis for disoccluded/distorted areas.

aries that arise from using simple proxy geometry. (2) Proxy-
guided texture synthesis for rendering should be fast. How-
ever, state-of-the-art parallel texture synthesis techniques do
not directly work with guidance maps or with metrics such as
Chamfer distance. (3) Temporal coherence is required as the
camera moves through the scene. However previous texture
synthesis approaches do not provide temporal coherence.

In our pipeline (Fig. 2), the user first selects a source
photo, (a), from a pre-annotated set, having the desired de-
tailed visual style. The associate guide image provides cate-
gory annotations, such as sky, mountain etc. The user then
creates a simple 3D model of the desired geometry (the
proxy) (b). The proxy is rendered from a desired viewpoint
to create a guidance map, (c). Detail is added to the silhou-
ettes using texture synthesis to create a final guidance map,
(d), based on the Chamfer distance as a principled way to
treat labels. A fast texture synthesis stage, possibly compos-
ited with CG elements, produces the final image, (e). When
the camera moves, temporal coherence is achieved using
reprojection, shown in (f), followed by distortion flagging
and guidance-based hole-filling resynthesis. The final image
from the new view is shown in (g).

Our overarching contribution is the presentation of a new
visual enrichment pipeline using the power of guided tex-
ture synthesis to render natural scenes with a crude proxy.
To achieve this goal, we present the following contributions:

• An efficient guidance-map synthesis step to explicitly in-
troduce silhouette detail where required. Because guid-
ance maps involve discrete labels and not colors, we in-
troduce a principled Chamfer distance metric and use this
throughout our texture synthesis pipeline wherever guid-
ance maps are involved.
• A fast guided texture synthesis approach. We substantially

adapt the fast parallel approach of [LH05] to our hard-
to-handle non-homogeneous input images, by introducing
patch-based initialization, carefully treating repetitions in
synthesis as well as the processing of patch/label bound-
aries during gradient transfer.
• A reprojection-based solution for local temporal coher-

ence, which reuses previous frames, resynthesizes a small
number of pixels in parallel, based on a distortion metric
and includes Poisson stitching to handle difficult seams.

We illustrate our approach on numerous examples with rich
visual detail created from pre-annotated images, shown in
Sect. 7, additional material and the accompanying video.

2. Previous work

Texture synthesis from an example image has attracted
much interest over the past two decades (see survey in
[WLKT09]). Our work is most closely related to guided tex-
ture synthesis [Ash01, HJO∗01]. In particular, in [HJO∗01]
the idea of texture–by–numbers is introduced. The input to
the system is a color image and a map segmenting its con-
tent through shades of basic RGB colors, called labels in the
following. Given a guide — a new map using similar labels
but a different layout — the algorithm synthesizes a new im-
age with a corresponding layout. Synthesis is performed by
matching square neighborhoods in a coarse to fine process.
The similarity metric is an L2 norm comparing both colors
and labels. The algorithm produces impressive results on a
variety of images. Global energy minimization methods have
also been proposed, via graph-cut [Ash01] or dynamic pro-
gramming [EF01], while still relying on L2 norms on guides.

Much of the visual richness of natural scenes stems from
the complex boundary shapes as well as the texture itself.
We thus introduce a guidance synthesis step, which allows
the enrichment of boundaries from a rendered proxy geom-
etry using details from a source image. Aspects of guidance
synthesis can be found in [ZZV∗03], where binary guid-
ance maps are created. The more recent work of Rosen-
berger [RCOL09] focusses on ordered layers of textures and
[RLC∗06] on binary masks. Our guidance synthesis works
with unordered multi-label guidance maps and is orders of
magnitude faster than the synthesis times of [RCOL09].

The Deep Photo pipeline [KNC∗08] uses such a texture-
by-number approach to synthesize surface texture for re-
gions that are occluded when backprojecting from pho-
tographs, but requires precisely registered images and

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

knowledge of the 3D geometry. We only know a labeling
of the source image, without knowledge of its 3D geome-
try, allowing the creation of novel 3D geometry without a
real world-reference. In CG2Real [PFA∗09] renderings are
enhanced with photos from large image collections. The dif-
ference with our approach is that neither camera motion nor
enhanced silhouettes are provided. A detailed comparison is
presented in the additional material. Ritter et al. [HRRG08]
proposes temporally coherent zooming with unguided tex-
ture synthesis and multiple input images but no 3D informa-
tion is used thus lacking parallax effects.

For fast high-quality texture synthesis we rely on a paral-
lel algorithm [LH05], which exploits spatial coherence using
only local information around each synthesized pixel dur-
ing the neighborhood matching process (k-coherent candi-
dates [TZL∗02]). The algorithm proceeds in a coarse-to-fine
fashion, by iteratively refining the solution of the synthesis.
The refinement works by selecting among precomputed k-
candidate neighborhoods of each pixel of the input texture
for the one best matching the neighborhood of the current
pixel. Adapting such an algorithm for guided synthesis is
non-trivial since the guide precludes a local search approach,
and has not been attempted before.

Reprojection is important to ensure temporal coherence
in our approach. Previous reprojection approaches reuse
expensive-to-generate pixels of previous frames by repro-
jecting them in the current view, thus avoiding expensive
generation. Such techniques have been used in image-based
rendering (e.g., [CW93]), ray-tracing (e.g., [AH95]) and in
interactive rendering (e.g, [WDP99], [SW08]). In our case,
the expensive process per pixel is texture synthesis; we use
reprojection to limit the number of pixels resynthesized at a
given frame.

3. Input and Preprocessing
As input, we require simple proxy geometry for scene ele-
ments shaded with texture-synthesis, a source image with the
desired texture categories, and any desired 3D CG elements.

Proxy geometry: We provide a set of basic tools to
quickly model an approximate scene. Since we focus our
efforts on the rendering process, we restrict ourselves to the
use of a simple terrain tool and sphere tool to create the
proxy geometry for our examples (see video). This limited
toolset could be augmented or replaced by many other alter-
natives. The terrain tool simply pushes and pulls vertices of a
heightfield with a Gaussian region of influence with the dis-
tance to the cursor. The sphere tool instances spheres along a
given path, thereby enabling the easy creation of topologies
that are not possible with the heightfield model, such as the
arches shown in Fig. 9 (top row).

Source photo: Given the geometry, the user selects a
photo providing rich details for texture-synthesis shading.
The photo should have the suitable texture categories and
have a roughly similar point of view as in the proxy scene.

The texture categories in the source photo need to be labeled,
which we accomplish through a segmentation process. In our
case this involves about 30min of manual work, which is a
one-time preprocessing overhead per source image. In large
scale application, we envisage users selecting from a library
of pre-segmented images. While a semi automatic labelling
approach can be envisaged [RKB04], in our experience fully
automated solutions do not always adequately capture the
semantics. Although the accuracy of the segmentation is not
critical, details in the boundaries will be transfered to a syn-
thesized smooth guide. Thus details should be present in the
input segmentation but do not always need to represent the
boundary between regions with great accuracy.

Proxy guide: An image of texture category labels is ob-
tained by rendering the 3D proxy geometry into a proxy
guide, with no lighting computation and with the appropriate
texture label associated with each component of the proxy.
The labels should match those assigned to the segmented
source image. In the illustrated images of the proxy guide,
e.g., Fig. 2(a), we visualize the discrete texture category la-
bels using distinctive colors. However, all processes in the
shading pipeline will treat labels as having strictly discrete
semantics, rather than continuously-valued colors. A proxy
depth map (Fig. 5, mid right) is created at the same time
as the proxy guide, and will be leveraged later to allow for
depth-consistent compositing into the rendered scene.

4. Guidance synthesis
At this stage, the user has created a proxy guide with sim-
ple geometry; however this guide has smooth, unnatural
borders and silhouettes. We now add rich border structure
from the source photo via the source guide. We have chosen
to use guided texture synthesis; however, the standard L2-
norms commonly used are ill-adapted to this problem be-
cause the image pixels represent discrete texture category
labels, and not continuously-valued colors. Addressing this
issue requires a number of modifications to state-of-the-art
texture synthesis algorithms. The guidance synthesis phase
also needs to produce a depth map corresponding to the syn-
thesized guide, used to integrate CG elements into the scene
and to move the camera through the scene. Both stages em-
ploy texture synthesis using guides consisting of labels, not
colors. As we describe next, we propose methods based on
Chamfer distances to address this issue.

4.1. Chamfer distance
A Chamfer distance computes a generalized distance be-
tween edges, or more generally, sets of points, and it
is applied in many variations in shape matching applica-
tions [BTBW77, Bor88]. It is given by the mean of the min-
imal distances of each point in one set to the closest point in
another set. Here, we define it as the sum over each pixel in
neighborhood A of the L∞-distance between the pixel in A
and the closest pixel in neighborhood B sharing the same la-
bel. If no pixel in B shares the same label, a distance of twice

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

the neighborhood size is given, which penalizes this match-
ing. The symmetric Chamfer distance that we use is the sum
of the Chamfer distance between neighborhoods A and B,
and the distance between neighborhoods B and A. This al-
lows us to account for differences in the geometry of the
labels and for the fact that classes are intrinsically discrete.

The Chamfer distance provides a measure of proximity
while the L2 metric with colors to represents labels provides
a measure of overlap, and is thus less meaningful. When de-
tails contain narrow features, overlap becomes a poor proxy
for measuring similarity: a one-pixel wide vertical line will
have a zero overlap with the same line displaced one pixel
left or right. A second problem is that colors-as-labels allow
only three texture labels to be conveniently represented in-
dependently in RGB. However, the majority of our examples
have more than three texture labels. Any choice of colors
to represent labels will thus lead to some pairs of dissimi-
lar labels to be arbitrarily more distant than other dissimi-
lar pairs. Finally, blending of color-based texture labels, in
texture synthesis pyramids, creates mixed labels that can be
problematic. We present an example in Fig. 3 (simplified to
3 labels for clarity) where the extra land that appears with the
L2 metric and colors (bottom) is an artifact of values color
bleeding at coarse scales during multiresolution synthesis.

Figure 3: Comparing a Chamfer distance on IDs with a vot-
ing pyramid (top) vs an L2 distance on colors during mul-
tiresolution synthesis (bottom). The latter creates new unde-
sired magenta regions between the red sky and the blue sea.
Left to right: Proxy guide, Synthesized IDs, Synthesis result.

4.2. Synthesis process

Our guidance map texture synthesis uses an approach sim-
ilar to [LH05]. However, the use of discrete identifiers pre-
cludes building a multiresolution Gaussian stack or a Gaus-
sian pyramid [HJO∗01]. We thus build a voting stack from
which we can extract a voting pyramid. This step is per-
formed by keeping the identifier which is the most present in
a N×N kernel around each pixel. The kernel size is scaled
by a factor of two at each level of the stack. The pyramid

is extracted from the stack by sampling the stack every 2l

pixels, where l is the stack level. This filtering process cor-
responds to median filtering when we only have two labels.

We initialize the synthesis at a level which is not too
coarse in order to preserve the large scale structure of the
proxy guide. To synthesize a 256× 256 guide, we start the
synthesis at the 64× 64 level. Starting at a coarser resolu-
tion gives more freedom in the silhouettes, but can result
in a loss of semantic meaning. We do not use the jittering
step of [LH05], to enforce coherence. We use 5× 5 neigh-
borhoods and k = 5 coherent matches, for a good tradeoff
between quality and speed. These k coherent matches are
found by choosing the k pixels that are furthest apart in im-
age space to avoid repetitions, and which are closest in fea-
ture space to the current pixels in a set of 4k candidates. This
is performed using a Hochbaum-Shmoys heuristic [HS85].

Figure 4: Guidance synthesis. Guide and final result with-
out (top) and with (bottom) enriched silhouettes. The input
annotated photograph can be seen in Fig. 5 of the additional
material.

Fig. 4 illustrates the resulting image synthesis with and
without the guide. The smooth silhouette of the proxy guide
remains evident when guide synthesis is not used. The guide
synthesis adds the necessary detail, resulting in the addition
of trees and small rocks surrounding the main island.

4.3. Depth Synthesis

Consistent depth values are needed for all pixels to enable
temporal coherence (§6) and compositing of 3D CG ele-
ments (§7). We use the available depth map for the proxy
guide (Fig. 5(far left)) to develop a depth map corresponding
to the synthesized guide. First, the pixels in the synthesized
guide that have the same labels as the corresponding pixels
in the proxy guide are assigned the proxy depth. The remain-
ing pixels are assigned the depth of the closest pixel having
the same label both in the proxy and the synthesized guide.
This results in an extended depth map (Fig. 5 far right).

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

proxy guide synthesized
 guide

depth extended
 depth

Figure 5: Left to right: proxy guide without detail; synthe-
sized guide; initial depth; extended depth.

5. Fast Guided Texture Synthesis

We now have synthesized a detailed guide containing de-
tailed silhouettes visually similar to the example, following
the layout of the proxy rendering. The second challenge we
address is developing a fast and high-quality guided texture
synthesis approach, similar in spirit to [HJO∗01]. To provide
fast feedback and state-of-the-art synthesis quality we use a
parallel texture synthesis algorithm [LH05], which uses lo-
cal neighborhood information.

However, it is not straight-forward to use the algorithm
for guided synthesis. A first difficulty is that in an area with
poor label matching the local search will only find neighbor-
hoods with incorrect labels. To overcome this, we initialize
synthesis with an approximate result already enforcing la-
bels. This ensures that, locally, neighborhoods with appro-
priate labels are found, while synthesis essentially improves
colors. A second difficulty is that, contrary to the textures
typically used in texture synthesis approaches, our images
have non-homogeneous regions. This requires specific treat-
ment to avoid repetitions, and careful processing of bound-
aries when applying gradient transfer.

Our fast texture synthesis algorithm proceeds in three
steps: We initialize the synthesis process by growing color
patches (Fig. 6(c)), perform parallel neighborhood matching
using the Chamfer distance (Fig. 6(e)) and finally remove
seams (Fig. 6(g)). We describe each step in detail below.

Similarly to [LH06] we enrich the neighborhoods with the
distance of each pixel to the closest contour in the label map,
computed using [Dan80]. This helps synthesis better capture
the image appearance around boundaries in the label map.
The distance map is used in neighborhood comparisons.

Step 1: Patch growth for initialization The purpose of this
step is to grow patches on top of the synthesized guide (B in
Fig. 6(d)). We randomly pick a pixel to grow in the synthe-
sized guide and find its closest match in the original guide
(A), using a weighted combination of the Chamfer distance
between labels and the distance map. We use distance d:

d(pA, pB) = ||NDA(pA)−NDB(pB)||2 +w C(pA, pB) (1)

where DA,B are the distance maps, NDA(pA) the 5× 5
neighborhood around pA in DA, and C(pA, pB) the Chamfer
distance between neighborhoods around pA and pB in the la-

First pass (256x256),
Patches growth

b) r aC r to esponding p chesc)

Third pass (1024x1024), Supersampling+Poissong)

c
-c rent synthesisohe

Se ond pass (256x256),
k

e) r af) Co responding p tches

A (256x256)a)

B (256x256)d)

Figure 6: Our parallel three-step guided synthesis pipeline.
Image A represents the labels in the input photo, while B
are the synthesized labels from the proxy guide. The input
photograph can be seen in Fig.7 of the additional material.

bel maps A and B, in image space. w is a weight enforcing
the respect of the guide, dependant of the neighbor size. We
set w = 60 to largely enforce silhouettes to be respected, thus
reducing flickering of silhouettes during camera motion. We
use the best match as a seed to perform a flood fill in both A
and B which stops either at already covered pixels or when
d is larger than a given threshold. We use a threshold of 25%
more than the distance of the best match to the seed + 5,
to avoid very small incoherent patches at boundaries. This
gives us a patch around the uncovered pixel in B. Each patch
defines a mapping between pixels in B and pixels in the ex-
ample image (color and labels). This process iterates until all
pixels in B are covered.

The result is a set of patches as shown color-coded in
Fig. 6(d). These patches define an image correct in terms
of labels, but with many artifacts in the color channels
(Fig. 6(c)). This first step is performed at an intermediate
resolution, typically 256x256.

Step 2: Pixel-Based Guided Synthesis The second step
performs guided synthesis, similar in spirit to [HJO∗01] but

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

using a parallel algorithm. We synthesize colors (Fig. 6(e))
using k-coherent synthesis, following [LH05]. Similarly to
guidance synthesis, we use a voting stack for the Chamfer
distances to perform multi-scale synthesis.

The distance metric is the same as in Eq. 1, augmented
with the RGB color channels:

d(pS, pE) = ||NFS(pS)−NFE (pE)||2
+w C(pS, pE)

(2)

where pS is the pixel being synthesized and pE the candidate
in the example image, FS,E the feature vector containing the
distance map and RGB pixel values and N are 5×5 neigh-
borhoods. Synthesis starts at a coarse resolution of 32x32.

As mentioned above, the non-homogeneous nature of our
images can result in repetitions. To overcome this limita-
tion we reject candidates which are already present in a 9x9
neighborhood around the current pixel in the image being
synthesized. To further limit repetitions, we also reject the
candidate if any of its neighbors is present in a radius of
2l−1, where l is the current synthesis level. We use 12 cor-
rection subpasses at each level of the pyramid, except the
highest resolution where only 6 are performed for efficiency.

Step 3: Gradient transfer In the first two steps, we synthe-
size images at a resolution of 256x256 for efficiency. In the
final pass we perform a synthesis magnification to the reso-
lution of the input image (typically 1024x1024) by upsam-
pling patches without correction passes. We then perform a
final Poisson synthesis step to attenuate remaining artifacts.

The non-homogeneous nature of our input images can re-
sult in visible seams after texture synthesis. This may hap-
pen if a global gradient is present in the example image, for
instance in the sky. In an approach inspired by [ADA∗04]
we transfer gradients instead of colors by solving a Poisson
problem. We magnify the synthesized guide (Sec. 4.2) and
ensure that boundaries between regions of different labels
are left unchanged by using them as Dirichlet boundary con-
ditions. We thus solve independently for each RGB channel:

8<
:

∆u = ∆ f ◦ s in Ω

∇u =~0 in Γ1

u = f in Γ2

(3)

where u is the final image we solve for, f the input image,
s the mapping giving the synthesized pixels location in the
original image, Γ1 the boundary between patches, Γ2 the
boundary between different IDs, and Ω all remaining pixels.

6. Temporal coherence

Full temporal coherence with camera motion is difficult to
achieve using our approach, as for all texture synthesis based
algorithms. As a first solution, we propose a reprojection-
based method, which provides local temporal coherence, and
limits the cost of generating new frames.

frame 0

frame N

3D scene
grid of frame 0

A

B

C

D

Figure 7: The four categories of pixels: (A) Unoccluded pro-
jections of the grid; (B) Occluded by the same proxy as in
frame 0; (C) Occluded by a new proxy; (D) Disoccluded. In
A and B, we can reuse the depth synthesized in frame 0.

To generate the current frame N, we use two sources of
information for reprojection: the initial frame (frame 0), to
provide a detailed guide and extended depth, and frame N−
1 to reproject colors from the previous camera position.

In contrast to previous methods [WDP99,SW08], who re-
project 3D points, we do not have full 3D information every-
where. The first step when moving the camera is to create
consistent depth, reusing as much information as possible
from the synthesized initial frame 0. In a second step, we re-
project frame N− 1 to the current view using the consistent
depth, and decide which pixels need resynthesis. The third
and last step is a modification of our texture synthesis algo-
rithm which is run on pixels flagged for resynthesis. We now
describe each step in more detail.

6.1. Creating Consistent Depth

We first create a mesh, which consists of a grid with each
pixel of the initial frame as a separate small quad. We dis-
connect the mesh along a seam at label boundaries or when
a large depth gradient is detected. . Mesh elements can thus
overlap in depth, and thus occlude each other appropriately.
Each node has coordinates (x′,y′,d) where x′,y′ are the co-
ordinates of pixel (x,y) and d is the depth generated by the
synthesis step in the first camera frame. We project this grid
into the screen space coordinate system of current frame N.
Note that the proxy is also present in the scene, and can oc-
clude the grid (see Fig. 7).

After this operation, the current frame N contains four dif-
ferent kinds of pixels, as shown in Fig. 7. First, there are
pixels not covered by the grid (grey area D) and pixels cov-
ered by the grid, which are are either of three cases: unoc-
cluded by the proxy (red area A), occluded by the proxy and
that were previously occluded (green area B), occluded by
the proxy and that were previously not occluded (blue area
C). In categories A and B, we use information from the grid
which contain relevant details for depth and label. In cate-
gories C and D we use the proxy again to provide the missing
depth and label values.

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

Figure 8: Reprojection pipeline. (a) Initial frame. (b) Ad-
vected frame. (c) Distortion measure with noise. (d) new IDs.
(e) new view. Regions to be resynthesized are shown in white.

Each pixel now has a valid depth and label. Next, we use
the depth to perform color reprojection.

6.2. Reprojecting Color and Distortion Computation

We project the 3D coordinates of a given pixel in the cur-
rent frame (N) to the camera position of the previous frame
(N− 1); we copy this color to the pixel of the current im-
age. Evidently, there will be no values available for pixels
which became disoccluded in the current view; these pixels
are flagged for resynthesis.

We next compute pixel distortion, which will determine
when reprojected pixels are no longer reliable. We compute
the determinant of the Jacobian J of the reprojected pixel
coordinates used to access frame N− 1, with respect to the
current x,y screen coordinates [Hec89]. We define distortion
as D = ||det(J)| − 1| which we accumulate across frames.
If D becomes greater than a given threshold, D is reset to 0
and the pixel is flagged for resynthesis. We perturb D with
random noise to avoid a coherent “wave” of pixels requir-
ing resynthesis. This is similar to the reprojection method
of [SW08] which uses a noise function to render different
fragments of consecutive LODs to avoid blending artefacts.

In addition to distorted and disoccluded pixels, pixels pre-
viously visible and now occluded by objects (category C in
Fig. 7) are also tagged for resynthesis.

We now have a new frame in which a subset of pixels
are flagged for resynthesis, i.e., disoccluded pixels, pixels
newly occluded and pixels with excessive distortion. Nu-
merical imprecision may result in isolated pixels being in-
correctly flagged for resynthesis; these produce noticeable
flickering. We remove these isolated pixels in 5x5 neighbor-
hoods. We dilate remaining flagged regions to allow more
freedom for the texture synthesis to correct them.

6.3. Final Synthesis

In areas flagged for resynthesis due to excessive distortion,
texture synthesis is initialized with the existing distorted
pixel colors. In the remaining areas flagged for resynthesis,
floodfill is used (§5). The rest of the texture synthesis process
remains the same, except the Poisson solve being restricted
to the newly synthesized areas with Dirichlet boundary con-
ditions in order to avoid global changes in the image.

Fig. 8 shows the entire process: the reprojection, the effect
of distortion with noise, the new guide and the final view.

7. Implementation, Results and Discussion

Poisson solve is performed with a GPU multigrid method
similar to [MP08]. GPU jump flooding [RT06] is used for
depth extension, with a base metric similar to the distance
transform but including an additional constant term to favour
seeds with the same label as the area to be filled in. We use a
2+JFA+1 scheme [RT06] which gives accurate results in our
test scenes with negligible overhead. The reprojection step
as well as the dilation are also performed on the GPU.

We allow the integration of 3D CG elements, and interac-
tive editing of parameters. The details of these features are
presented in the additional material.

7.1. Results

We demonstrate the method on a number of example scenes.
The results are best viewed in conjunction with the video†.
Fig. 9 shows three examples; a further 11 examples are
shown in the additional material†. Two synthesized views
are shown for each scene exhibiting temporal coherence.
The scenes appear rich in geometric detail and do not betray
the coarse nature of the underlying proxy. In the additional
material, we present results for non-photorealistic rendering
and time-lapse based dynamic lighting.

7.2. Quality and Performance

Our method represents a significant departure from tradi-
tional modelling/texturing/rendering paradigms. As a con-
sequence, many technical problems were encountered and
solved to achieve our goal of proxy-based, texture-synthesis
rendering. However, there are still some artifacts in terms of
visual quality, and some issues with performance. Some of
these are simply related to our implementation while others
require future research.

Quality: There are two sources for the remaining flickering
observed during camera motion. Popping in the interior of

† https://www-sop.inria.fr/reves/Basilic/
2010/BVLD10a/

c© The Eurographics Association 2010.

https://www-sop.inria.fr/reves/Basilic/2010/BVLD10a/
https://www-sop.inria.fr/reves/Basilic/2010/BVLD10a/

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

Figure 9: Results, including integration of 3D objects. Further results provided in the supplemental material and video.

the textures is due to the high rate of distortion, and the ran-
dom noise modulating the distortion metric to avoid “wav-
ing” patterns (§6.2). Flickering around silhouettes is due to
the dilation of synthesized regions (§6.2), giving leeway to
the synthesis but resulting in the appearance of 2-3 pixel
wide resynthesized regions.

The detailed boundaries synthesized in the first frame are
only partially reused in subsequent frames: no new details
are added to disoccluded regions. For large camera rotations,
boundary detail is lost (see additional material).

The guide synthesis can lead to unnatural results such as
trees with two trunks, given that the method does not model
the abstract constraints needed to prevent this, due to the lack
of semantic information. Artifacts can appear along struc-
tured border regions such as the horizon line when placed at
a different angle in the proxy guide and original image. To
ameliorate this problem, we specify that ID boundaries along
horizon lines should remain unaltered so as to preserve the
original structured boundary during the guidance synthesis
process. When the refinement process corrects these regions,
the original IDs are left unchanged and uncorrected.

We are currently limited to a single source image. An ex-
citing direction for future work is to investigate the use of
texture categories from several source images. Particular tex-
ture labels could be declared as being semantically equiva-
lent, for example. This would provide much wider classes of
texture-synthesis shading, and indexing based on other at-
tributes such as normals or lighting conditions.

Performance: The first frame is fully synthesized and de-
tailed silhouettes are created, thus taking longer to render.
A full 1024× 1024 image needs approximately 7s to ren-

der including 2s for the guide synthesis, on a QuadCore
2.4GHz with a GeForce 9800 GT. As a comparison, the
guide synthesis-based approach in [RCOL09] requires 30
minutes per layer and an additional 5 hours to run Image
Analogies. For all subsequent frames, only an update of the
reprojected scene is needed, reducing the rendering cost. We
summarize the performance of our implementation in Ta-
ble 1. On a higher-end 8-core machine and a FX5800 graph-
ics card, we update frames in approximately 1.2 seconds.

We accelerate Chamfer computation with a partitioning of
space in hyperspheres. We compared the speed of this accel-
eration structure with the optimized ANN library [MA10]
which uses an L2 norm on RGB neighborhoods and a kd-
tree, on 7 scenes. Our method is 20% slower on average,
although the ANN library performance varied significantly
across scenes. In particular, our method varied from 8 times
slower to 3 times faster. If visual artifacts such as those of
Fig. 3 are acceptable for a given application, speedup can
thus be expected by using the L2 distance. Our approach
will still work in such a setting, albeit with lower quality.
We prefer to use the Chamfer distance since it is a principled
solution for labels, and offers better quality.

Further discussion of performace, comparisons with a
trained modeller and with Image Analogies are presented in
the additional material.

8. Conclusions

We have introduced a proxy-guided texture-synthesis ren-
dering technique, allowing the creation of visually rich im-
ages from a simple 3D proxy geometry. Three core issues are
addressed to make this new class of depiction algorithm pos-

c© The Eurographics Association 2010.

N. Bonneel & M. van de Panne & S. Lefebvre & G. Drettakis / Proxy-Guided Texture Synthesis for Rendering Natural Scenes

Op. R&D Feature FF Cor. Poisson
Time (ms) 405 156 73 296 292
#threads GPU GPU 8 8 GPU

Table 1: Speed on 8-cores and FX5800 GPU. Reprojection
and dilation step (R&D), ID maps, distance transform, and
voting pyramids (Feature), floodfill patch initialization (FF),
corrections refining patches (Cor.) and Poisson synthesis.

sible. First, guidance synthesis adds detail to texture bound-
aries, which would otherwise betray the simple nature of
the underlying proxy geometry. We introduce the use of the
Chamfer distance metric to deal in a principled way with the
discrete semantics of labels. Second, we introduced a new
patch-based initialization which enables a fast parallel al-
gorithm to perform guided texture synthesis on the kind of
input photographs we target. In addition we address limita-
tions of previous methods related to repetitions and gradient
transfer for this class of images. Third, we introduce a so-
lution for local temporal coherence, thus enabling camera
motion using a reprojection technique. We demonstrate the
method on 13 different scenes, showing the power of our
approach, for applications such as 3D previsualization.

Acknowledgments

We thank the reviewers for their detailed comments. We
thank Fredo Durand, Kavita Bala and Olga Sorkine for a
number of useful comments and suggestions.

References
[ADA∗04] AGARWALA A., DONTCHEVA M., AGRAWALA M.,

DRUCKER S., COLBURN A., CURLESS B., SALESIN D., CO-
HEN M.: Interactive digital photomontage. ACM Trans. Graph.
23, 3 (2004), 294–302. 6

[AH95] ADELSON S. J., HODGES L. F.: Generating exact ray-
traced animation frames by reprojection. IEEE Computer Graph-
ics and Applications 15, 3 (May 1995), 43–52. 3

[Ash01] ASHIKHMIN M.: Synthesizing natural textures. In ACM
I3D ’01: Proceedings of the 2001 Symposium on Interactive 3D
Graphics (2001), pp. 217–226. 2

[Bor88] BORGEFORS G.: Hierarchical chamfer matching: A
parametric edge matching algorithm. IEEE Trans. on pattern
analysis and machine intelligence 10, 6 (1988), 849–865. 3

[BTBW77] BARROW H. G., TENENBAUM J. M., BOLLES
R. C., WOLF H. C.: Parametric correspondence and chamfer
matching: Two new techniques for image matching. In Proc. 5th
Int. Joint Conf. Artificial Intelligence (1977), pp. 659–663. 3

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for im-
age synthesis. In Computer Graphics (SIGGRAPH ’93 Proceed-
ings) (Aug. 1993), Kajiya J. T., (Ed.), vol. 27, pp. 279–288. 3

[Dan80] DANIELSSON P. E.: Euclidean distance mapping. Com-
puter Graphics and Image Processing 14 (1980), 227–248. 5

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In Proc. ACM SIGGRAPH ’01 (2001),
pp. 341–346. 2

[GDB08] GARCIA V., DEBREUVE E., BARLAUD M.: Fast k
nearest neighbor search using gpu. In CVPR Workshop on Com-
puter Vision on GPU (2008), pp. 1–7. 11

[Hec89] HECKBERT P.: Fundamentals of Texture Mapping and
Image Warping. M.sc. thesis (TR. UCB/CSD 89/516), Univ. of
California, Berkeley, 1989. 7

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N., CUR-
LESS B., SALESIN D. H.: Image analogies. In Proceedings of
ACM SIGGRAPH 2001 (Aug. 2001), Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 327–340. 2, 4, 5, 10

[HRRG08] HAN C., RISSER E., RAMAMOORTHI R., GRIN-
SPUN E.: Multiscale texture synthesis. ACM Trans. Graph.
(Proc. SIGGRAPH) 27, 3 (2008), 51. 3

[HS85] HOCHBAUM D., SHMOYS D.: A best possible heuristic
for the k-center problem. Mathematics of Operations Research
10, 2 (1985), 180–184. 4

[KNC∗08] KOPF J., NEUBERT B., CHEN B., COHEN M. F.,
COHEN-OR D., DEUSSEN O., UYTTENDAELE M., LISCHIN-
SKI D.: Deep photo: model-based photograph enhancement and
viewing. ACM Trans. on Graph. 27, 5 (2008), 116. 2

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005),
777–786. 2, 3, 4, 5, 6

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006),
541–548. 5

[MA10] MOUNT D., ARYA S.: Ann: A library for approximate
nearest neighbor searching, 2010. 8

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Trans. on Graphics (SIGGRAPH 2008)
27, 3 (Aug. 2008). 7, 11

[PFA∗09] PFISTER H., FREEMAN W. T., AVIDAN S., DALE K.,
JOHNSON M. K., MATUSIK W.: CG2Real: Improving the Real-
ism of Computer Generated Images using a Large Collection of
Photographs. TR Report MIT-CSAIL-TR-2009-034, 2009. 3, 11

[RCOL09] ROSENBERGER A., COHEN-OR D., LISCHINSKI D.:
Layered shape synthesis: automatic generation of control maps
for non-stationary textures. ACM Trans. Graph. (Proc SIG-
GRAPH Asia) 28, 5 (2009). 2, 8

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: "grabcut":
interactive foreground extraction using iterated graph cuts. ACM
Trans. Graph. 23, 3 (August 2004), 309–314. 3

[RLC∗06] RITTER L., LI W., CURLESS B., AGRAWALA M.,
SALESIN D.: Painting with texture. In 17th EG Workshop on
Rendering (June 2006), pp. 371–376. 2

[RT06] RONG G., TAN T.-S.: Jump flooding in gpu with ap-
plications to voronoi diagram and distance transform. In I3D
’06: Proc. Symp. on Interactive 3D Graphics and Games (2006),
ACM, pp. 109–116. 7

[SW08] SCHERZER D., WIMMER M.: Frame sequential interpo-
lation for discrete level-of-detail rendering. Computer Graphics
Forum (EGSR 2008) 27, 4 (June 2008), 1175–1181. 3, 6, 7

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B.,
SHUM H.-Y.: Synthesis of bidirectional texture functions on ar-
bitrary surfaces. In Proc. SIGGRAPH (2002), pp. 665–672. 3

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using the render cache. In 10th EG Workshop on Ren-
dering (June 1999), pp. 19–30. 3, 6

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-
ics STAR Report (2009). 2

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B., SHUM H.-
Y.: Synthesis of progressively-variant textures on arbitrary sur-
faces. ACM Trans. Graph. 22, 3 (2003), 295–302. 2

c© The Eurographics Association 2010.

