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In recent years, computer generated complex audiovisual scenes have become more
and more present in our everyday life, mainly when watching animation movies or movies
with digital effects, and when playing 3D games. Indeed, since the first entirely synthetic
3D movie Toy Story in 1995, the level of realism and complexity of synthetic scenes in films
has never ceased to increase. At the same time, very realistic 3D games have been released
(e.g., Crysis, NBA 2K7, Call of Duty 5, Fallout 3) and encounter great success. Also, with
the development of the Internet, complex virtual worlds are currently emerging allowing
users to share the same large virtual environment (e.g., Second Life, Google Earth). These
recent developments have a number of important consequences. In particular the increasing
complexity of these scenes makes them:

• Hard to design: The authoring of very complex virtual scenes is a long, tedious and
costly task. For example, the design of the movie WALL-E required up to 50 anima-
tors as well as the creation of 2400 sounds effects for the environment [Disney 2009].
Similarly, the recent videogame Crysis contains 1Gb of texture data and 85,000
shaders [InCrysis 2009].

• Hard to render: Realistic rendering of highly complex scenes is difficult. The
realtime constraint of games currently only allows limited realism in complex en-
vironments; in contrast film makers spend a large amount of computation time for
rendering (about 6 hours per frame at Pixar [Pixar 2009]). In addition, the techni-
cal complexity of these systems is very high. For example, the same game Crysis
contains a million lines of code [InCrysis 2009].

The increasing complexity of virtual environments, and the increasing demand for highly
realistic rendering introduces a number of challenging research problems. In this thesis we
concentrate on the two issues we mentioned previously: content creation, and audiovisual
rendering. We will address the first using real world data such as photographs, which
already contain a large amount of information; the goal is to allow non expert artists (or
casual users) to create rich content. We also address the issue of audiovisual rendering by
exploiting the limitations of human audiovisual perception to simplify computation.

Computer graphics applications rely on the use of rendering models and real world ex-
ternal data to produce images and sounds which will be perceived by the end user. Real
world data can be used directly or can be used to infer parameters of a model. For example,
textures can be extracted from photographs and directly applied to 3D models created by
artists. However, more expensive and more complex setups are commonly used (such as
light stages [Debevec et al. 2000, Paris et al. 2008, Matusik et al. 2003] or 3D scanners) to
obtain a faithful reconstruction of our real world. Using these techniques allows the re-
alistic reproduction of the real world, but lacks the flexibility of creating novel, entirely
synthetic, scenes. Laser scanners are very expensive, and light-stage setups, in addition to
their cost, are very complex and specialized systems, consisting in thousands of lights in a
very large dome. Although these setups are used in the film industry, or for very high-end
games, they are neither appropriate nor affordable for typical low-end games or for casual
users.
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As a last step of the content creation process, it is interesting to note that the final re-
sult is perceived by an observer. This means that most of the real physically measur-
able information will by discarded by the human observer due to the limits of our percep-
tion [Ramanarayanan et al. 2007].

In the first part of this thesis (Chapters 2 to 5, published as [Moeck et al. 2007,
Bonneel et al. 2008, Bonneel et al. 2010, Grelaud et al. 2009]), we thus study the possibil-
ities for algorithmic improvements in visual rendering and in the generation of 3D sounds
taking into account both audio and visual perception combined. For example, a well-known
perceptual effect due to the combination of audio and visual perception (or crossmodal per-
ception) is ventriloquism [Hairston et al. 2003]: a sound does not need to be played at the
exact location of its visual representation to be associated with it, and a small shift of the
sound is not perceived at all. This tolerance is commonly used by ventriloquists to make
their puppet speak, and one of our initial motivations was to use such effects to improve
algorithms.

In the second part (Chapter 6, published as [Bonneel et al. 2009a], and Chapter 7, sub-
mitted for reviews [Bonneel et al. 2009b]), we automatically learn the visual appearance
of a photograph in order to produce images using its style. We have concentrated on two
examples. In the first case, we learn hair appearance using a statistical approach to pro-
duce plausible hair renderings. Hair rendering is a difficult topic in itself due to multiple
scattering of light in the hair. Our chosen inverse problem is thus even more difficult, and
we solve it by finding an appropriate perceptual metric in conjunction with state of the art
rendering and reflectance model. In our second example, we learn the style of a photograph
to provide a tool for fast creation and rendering of a sketched 3D scene using texture syn-
thesis. A user can then rapidly create a 3D “casual model”, and have it quickly rendered
with the style of the chosen photograph.

We illustrate the components of our work in Fig.1. The first part uses the knowledge
in human perception to improve audio and visual algorithms. In Part 2, Chapter 6, hair
appearance is obtained from photographs and is then used in a rendering algorithm, with
perceptual validation. Finally, in Part 2, Chapter 7, we use a photograph to produce render-
ings in the style of the photo.

Audio-Visual Crossmodal Algorithms using Perception

The use of perception in computer graphics to improve algorithms has become more and
more common in recent years. Indeed, with the increasing complexity of today’s virtual
environments, we should strive to only render what the user can perceive and discard in-
formation which will not be seen or heard. In previous work, this has been done mainly to
accelerate graphics in (visual) algorithms [O’Sullivan et al. 2004, Luebke et al. 2002]. For
example, in [Ramasubramanian et al. 1999], visual perception is used to control the sam-
pling of a path tracer through the use of a Visual Difference Predictor resulting in significant
speedup. In our work [Drettakis et al. 2007], not presented in this thesis, the Visual Dif-
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Figure 1: The three main components defining audiovisual algorithms. A human perceives
the real world and the results of rendering algorithms. However, we can also use real
world data to directly improve rendering algorithms.

ference Predictor is used to interactively control levels of detail of complex scenes, using
spatial and contrast masking. Less work has been done in the audio community for inter-
active 3D sound rendering. An interesting case is the work of [Tsingos et al. 2004], where
audio perception is used to handle hundreds of sound sources in a virtual environment.

It is interesting to note that, in the context of virtual environments, most of the prior
work relies on the use of perception in a single modality at any given time. However,
a human being is multimodal by nature, relying on multiple senses at the same time to
make a decision. The ventriloquism effect discussed above [Hairston et al. 2003] is such
an example. Another interesting case is temporal window tolerance (or tolerance in asyn-
chrony) [Guski & Troje 2003]. Previous work also shows that a dim sound could influence
the perceived light intensity, contrast or threshold [Stein et al. 1996, Odgaard et al. 2003,
Lippert et al. 2007, Bolognini et al. 2005, Vroomen et al. 2000] or that a dim light could
change the auditory threshold [Lovelace et al. 2003]. Other work shows that perceived
visual quality can be influenced by sound [Storms & Zyda 2000]. A key intuition that
motivated work for the first part of this thesis, is that we could actually use the mutual in-
fluence of several modalities to improve performance of algorithms. This intuition is sup-
ported by the literature in the neuroscience community which states that humans perform
faster [Kinchla 1974] when multiple senses are excited at the same time, and by prelimi-
nary work in the computer graphics/sound community [Tsingos et al. 2004]. In particular,
we focused on the audio and the visual modalities, and we will call an algorithm using both
combined, a crossmodal algorithm. Also, during this thesis, we will use the word ‘render’
to refer both to audio rendering (the generation of an audio stream) and visual rendering
(the generation of images), depending on the context. In most case we deal with interactive
rendering.
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We will first show how human spatial tolerance between a sound and its visual
representative can be used in a crossmodal clustering algorithm for 3D audio render-
ing ([Moeck et al. 2007], Chapter 2). In particular, it allows us to group nearby sound
sources depending on whether they are visible or not. This first contribution follows the
work of [Tsingos et al. 2004] where they present an initial pilot study of the influence of
visuals on audio quality. Using a perceptually based audio engine where auditory mask-
ing is used to speed up computation by removing inaudible sound sources, and where
sound sources are clustered together, the goal is to determine an algorithm which uses the
audiovisual spatial tolerance to cluster sound sources in a perceptually meaningful way.
However, more natural scenarii with numerous sounding events occur when objects are
colliding and thus generate sounds of impacts. We thus introduce the major contribution
of this part: an efficient way to generate hundreds of collision sounds at the same time
([Bonneel et al. 2008], Chapter 3). This chapter presents a new way to use the sparsity of
modal sounds in the frequency domain to efficiently render them, and uses human toler-
ance in asynchrony between the visual impact event and its generated sound in a scheduling
algorithm. These two chapters make use of the spatio-temporal integration windows, we
mentioned above.

Realistic materials are now commonly used in audio and in visual rendering, through
physically based audio simulation and physical measurements of material visual prop-
erties (Bidirectional Reflectance Distribution Function, BRDF). Also, material percep-
tion has been well studied for visuals [Rushmeier 2008, Vangorp et al. 2007] and au-
dio [Klatzky et al. 2000] separately. We thus present an experimental study on the cross-
modal perception of materials when varying visual quality and audio quality simultane-
ously. This work shows that a given material can be well depicted with high quality visuals
and lower quality audio ([Bonneel et al. 2010], Chapter 4), or lower quality visuals and
high quality audio. The key intuition is that the cost of visual rendering is much higher
than that of audio rendering. Reducing visual quality while increasing audio quality is thus
preferable to reduce the overall visual rendering cost.

Finally, we conclude this part by merging our crossmodal contributions into a com-
plete framework used in a internally developed game, and presenting practical usage of
the results of our crossmodal material perception study in a crossmodal level-of-detail se-
lection algorithm ([Grelaud et al. 2009], Chapter 5). This last contribution demonstrates
the practical interest of using the crossmodal algorithms developed in the first part of this
thesis.

Visual Rendering using a single Photograph

Designing virtual environments of natural scenes traditionally involves talented, highly
trained artists and realistic rendering models. However, artists are not always available at
design time, and can be very expensive. For example, a typical game costs millions of
euros to produce. Use of artists is not appropriate when the end user wants to cheaply
create his own art (such as in game avatar customization, e.g., Second Life, or for ca-
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sual art); in addition, such users are usually not particularly skilled. This is also the case
when the content creator is an engineer or technician and not an artist, which is the case
in many applications such as urban planning, architectural design etc. Similarly, some ap-
plications cannot afford the use of realistic (and complex) rendering algorithms. This can
be the case of lightweight devices such as PDAs or mobile phones, which do not have the
computational power of today’s high-end computers, and which are also used for game
applications. Lightweight rendering is also important for prototyping applications, where
a fast preview of the scene is needed. The key intuition in the second part of this thesis is
that a huge amount of information is already present in the natural world, and in particular
in photographs. The use of digital cameras is becoming more and more common, which
facilitates the retrieval of a huge amount of information. Although some work exists to cre-
ate virtual environments from photographs in computer graphics [Snavely et al. 2006] and
computer vision [Hartley & Zisserman 2004], they mainly focus on creating digital repre-
sentations of the real world. In many cases, a user may want to be inspired by a photograph
while creating his own environment.

The second part of this thesis thus treats the problem of using photographs to give a
(visual) rendering a given appearance. We cast this as an inverse problem solved with
machine learning in our first contribution, and we use a texture synthesis method in our
second result.

Our first example of improving rendering using photographs is for the rendering of hair.
In the context of the avatar customization scenario mentioned above, recent work shows
that hair appearance is the main feature modified by users [Ducheneaut et al. 2009]. Our
first contribution thus consists in the retrieval of hair appearance (the reflectance and small
scale noise of the hair) from a single flash photograph. For this, we use a database of fea-
tures extracted from pre-rendered images with carefully sampled appearance parameters,
and find the best match between the photograph and the database ([Bonneel et al. 2009a],
Chapter 6). This solution is appropriate where very expensive setups are not available and
where the high dimensionality of the problem and the high hair rendering cost makes it
impractical for a user to use manual searching to obtain a desired appearance.

The second example is in the context of “casual modeling”, i.e., allowing naive users
to create 3D content and CG renderings rapidly. We describe how a high quality rendering
of a roughly modeled 3D scene can be achieved through the use of an example photograph
and a guided texture synthesis approach. Specifically, using our solution, a user can draw a
3D scene in about 30 seconds using rough proxy geometries and obtain a realistic natural
rendering based on a photograph of the desired style ([Bonneel et al. 2009b], submitted for
reviews, Chapter 7). We first infer the missing details of the sketched scene from a detailed
segmentation and then infer the colors from the photograph. This can be used for rapid
prototyping of 3D scenes by non artists, or for lightweight games when the computational
power needed to solve an expensive rendering model is not available. We believe that such
an approach is a promising direction for fast content creation in the near future.
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Structure of the thesis

This thesis adopts the following structure. In the first part, a shared previous work chapter
on sound rendering and perception is presented (Chapter 1), and our four main crossmodal
contributions follow (Chapters 2 to 5). In the second part, we present two results related to
the use of a single photograph to infer the style of a rendering (Chapters 6 and 7). Related
previous work is presented separately in these chapters.



Part I

Perceptually based Audio-visual
rendering





11

Preface

In this part, we present our contributions on crossmodal experiments using virtual re-
ality and their practical use in algorithms. By observing that a human is multimodal by
nature, and examining the previous work performed in neuroscience and for unimodal per-
ceptual audio and visual rendering algorithms, we develop crossmodal audio-visual algo-
rithms.

This part is organized as follows. We first describe the common previous work related
to this part in Chapter 1, which mainly relates to audio rendering (for recorded and modal
sounds), and perception for both sounds and graphics. We then present our four main con-
tributions: an audio-visual clustering algorithm for sound spatialization (Chapter 2), the
fast frequency domain generation of impact sounds using crossmodal simultaneity percep-
tion (Chapter 3), a perceptual experiment on the evaluation of the quality of audiovisual
materials (Chapter 4), and a combined crossmodal pipeline demonstrating the practical
interest of our crossmodal algorithms (Chapter 5).





CHAPTER 1

Previous work

An extensive review of the literature on audio and visual rendering as well as perception is
far beyond the scope of a single thesis. In this section, we have chosen a small selection of
work very closely related to our projects. In particular, we will describe research on audio
rendering and spatialization of large-scale environments, including both recorded sounds
and sounds generated on the fly such as impact sounds. We finally describe crossmodal
perceptual results mainly found in the neuroscience literature since we will make use of
these to further improve our algorithms.

1.1 Audio rendering

1.1.1 Audio rendering of recorded sounds

Rendering spatialized sound for 3D virtual environments has been a subject of research
for many years. These include techniques permitting real-time rendering of sound reflec-
tions [Funkhouser et al. 2004, Funkhouser et al. 1999, Lokki et al. 2002], mainly for pre-
recorded sounds.

We mainly describe the work in [Tsingos et al. 2004] which we use as a basis for many
of our results. In order to render and spatialize multiple sound sources simultaneously,
they first cull inaudible sound sources. To do this, they first precompute the energy in
each frame of all sound sources in the scene individually. Then, at runtime, for each frame
of the simulation, sounds are ordered by decreasing energy and their energy is greedily
accumulated. The accumulation stops when the auditory masking threshold is reached,
and the remaining sound sources are not played at all since they are inaudible. In practice,
the auditory masking threshold is updated each time a sound source is accumulated, since
the human hearing threshold depends on the overall audio level of the environment.

The remaining sound sources are then clustered together (Fig.1.1): depend-
ing on their angular position relative to the listener, and their distance to the lis-
tener, as well as their loudness, a clustering step is performed using the Hochbaum-
Shmoys algorithm [Hochbaum & Schmoys 1985] or using a recursive cluster split-
ting [Moeck et al. 2007]. In each cluster, the sounds are pre-mixed, and only clusters need
to be spatialized.

The spatialization for headphones, consists in applying two personalized filters, one for
each ear, which depends on the angular location of the object. These filters are called Head
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Figure 1.1: Left: Resulting clusters from [Tsingos et al. 2004, Moeck et al. 2007]. Sound
sources are in blue, the listener in red, and the cluster representative in magenta. Right: An
application of the clustering in a real demo [Tsingos et al. 2004]. The sounds are dynami-
cally clustered (blue boxes) depending on the listener position. Each cluster is pre-mixed,
and are then spatialized at its center (green sphere).

Related Transfer Functions (HRTF) and can be measured [IRCAM 2009] by placing small
microphones in each ear of a listener and recording impulse responses of chirp signal (a
sound sweeping all frequencies). HRTFs can also be simulated using the Kirchoff approx-
imation [Tsingos et al. 2007] or other boundary element methods [Katz 2001] to compute
the sound scattering on a 3D head model [Dellepiane et al. 2008]. Other methods do exist,
and a good overview of these methods can be found in [Larcher 2001]. Spatialization can
also be done for many loudspeakers [Larcher 2001].

In [Tsingos et al. 2004], the audio processing is done in the Fourier domain by pre-
computing the short time Fourier Transform of each sound in a precomputation step. This
allows for efficient HRTF spatialization by performing the time domain convolution as a
product in the frequency domain.

In [Moeck et al. 2007], we further included a perceptual pre-mixing in clusters based
on [Tsingos 2005], using the sparseness of the audio signal in the Fourier domain to pro-
vide scalable or progressive rendering of complex mixtures of sounds. As a result, audio
spatialization of several thousands of sound sources can be handled via clustering.

One drawback related to precomputed metadata, such as per-frame sound energy, is
that sounds synthesized in real time, such as modal sounds, cannot be directly supported.

1.1.2 Audio rendering of impact sounds

While computer games typically employ recorded sounds, physically based synthesis of
impact sounds [van den Doel & Pai 1998, O’Brien et al. 2002] often provides much better
results. Various techniques have been developed to optimize this approach, notably recur-
sive evaluations [van den Doel & Pai 2003] and mode-culling [Raghuvanshi & Lin 2006]
which is very effective in reducing the computational overhead.

In what follows we will use the term impact sound to designate a sound generated as a
consequence of an event reported by the physics engine (impact, contact etc.); we assume
that this sound will be synthesized on-the-fly.
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Modal representation of sounds

Figure 1.2: A top and side view of a bowl, with 3 of its vibrational modes
[O’Brien et al. 2002].

A common way to efficiently generate contact sounds physically is “modal synthesis”,
to produce a “modal sound”. Such a sound is produced by decomposing the initial object
into several vibrational modes (Fig.1.2) in a precomputation step and exciting these modes
at runtime when the object collides with a surface.

Using the approach proposed by [O’Brien et al. 2002], one can compute these modes
as follows. The goal is to decouple the linear elasticity equation:

∇ · σ + F = ρü

with u the shape of the deformed object, with body forces F and density ρ. σ is the stress
tensor, and we will assume the relationship given by Hooke’s law: σ = c : ε, where ε is
the strain tensor, c is a stiffness tensor which only depends on the material, and : designates
the tensor product. ε and σ are represented by 3x3 matrices varying at each point in 3D
space, and c is a constant 3x3x3x3 tensor. This relationship holds for small deformations
which is the case when objects only vibrate. For isotropic materials, this relationship can
be expressed in a simpler way:

σ(u) = λ tr ε(u)I + 2µε(u) (1.1)

Where I is the identity matrix, tr the trace operator, and λ and µ are Lamé coefficients.
Tabulated values for λ and µ are given in [O’Brien et al. 2002].

Using a finite element discretization, and adding a damping term, we can obtain a linear
system of the following form [O’Brien et al. 2002]:

Ku+ Cu̇+Mü = f

where K, C and M are the stiffness, damping and mass matrices. This can be obtained by
assembling small 12x12 matrices at each tetrahedron of a tetrahedralization of the mesh (we
can make use of the freely available TetGen [Si 2003] to generate a relatively good quality
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tetrahedral meshing of the object with Delaunay triangulation). Specifically, using linear
basis elements, and noting p[1],p[2],p[3] and p[4] the object space 3D coordinates (at rest
position) of the 4 vertices (called nodes) of each tetrahedron, we obtain the basis elements
β [O’Brien & Hodgins 1999] by :

β =
�
p[1] p[2] p[3] p[4]

1 1 1 1

�−1

The elementary matrices (representing the mutual influence of node [i] and node [j]) and
vectors (evaluated at each node [i]) are computed for each tetrahedron of volume vol. Not-
ing a and b one of the x,y,z component of each computed value, and δa,b the Kronecker
delta, they are formulated by:

f[i]a = −vol
2

4X
j=1

p[j]a

3X
k=1

3X
l=1

βj,lβi,kσk,l (1.2)

k[ij]ab = −vol
2

 
λβi,aβj,b + µβi,bβj,a + µ

3X
k=1

βi,kβj,kδa,b

!

m[ij]ab =
ρvol

20
(1 + δi,j)δa, b

To produce a damping of the oscillations, a stiffness damping term can be used, which
replaces Equation 1.1 by:

σ(u) = λ tr ε(u+ α1u̇)I + 2µε(u+ α1u̇)

where α1 represents a stiffness damping parameter. An inertial damping coefficient α2 is
also added, thus leading to the Rayleigh damping formulation:

C = α1K + α2M

where tabulated values of α1 and α2 are found in [O’Brien et al. 2002]. This leads to :

K(u+ α1u̇) +M(α2u̇+ ü) = f

To decouple the above linear system, we then compute a Cholesky factorization
M = LLt. We perform an eigen value decomposition of the matrix L−1K L−t = V ΩV ,
where V is the matrix of the eigen vectors and Ω the diagonal matrix of the eigen values.
The mode frequency ωi and decay αi are respectively the imaginary (in rad/s) and the real
part of these eigen values. Note that the 6 lowest eigen modes represents the rigid transfor-
mations and should not be used since they do not make the object vibrate, and that usually
a small subset of these modes is necessary to produce a sound (and in particular, no modes
below 20Hz and above 20kHz will be heard). These values only depend on the geometry
and material of the objects, and not on the current position in space. These values can thus
be precomputed.
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Also, at each impact reported by a rigid physic simulation engine (e.g., PhysX 1),
all modes are given an amplitude. By noting g = V t L−1 f , and assuming no coupling
between air and the surface of the object, the mode amplitudes are given by ai = 2∆tgi

wi
.

However, a far field approximation of the surface-air coupling can be modeled by mul-
tiplying each mode amplitude (or in a more efficient way, the columns of the precomputed
matrix V t L−1) by the sum over all surface triangular elements of centroid c:

I =
ρω2

4πr

X
c

( ~nc · ~uc)Areac

where ~nc is the normal of the triangle, Areac its area, and ~uc the displacement of the mode
at the centroid, which is given by the rows of matrix V t L−1. ρ is the air density and r the
distance to the object (which can be factored out). This approximation is the Cremer far
field approximation which can be found in [James et al. 2006]. However, a more accurate
radiation factor is also provided in [James et al. 2006].

Other methods for computing the modes do exist. For example,
in [Raghuvanshi & Lin 2006] a spring-mass system at the surface of the object is
presented, and analytic solutions for simple cases are shown in [van den Doel et al. 2004].
Modes can also be extracted from recordings and measurements: several sounds are
recorded by striking different locations on the object. Modes and gains are then fitted for
each impact location [Pai et al. 2001].

Note that only the amplitude of each mode is computed at runtime, depending on the
position of the impact on the object, and all frequencies and decays are precomputed offline,
depending only on the object’s material and geometry. This makes modal sounds very
attractive for efficiently generating impact sounds. They also require a small amount of
memory storage.

Modal sound synthesis

The acoustic response of an object to an impulse is then given by:

s(t) =
X
k

ake
−αkt sin(ωkt), (1.3)

where s(t) is the time-domain representation of the signal (see Fig.1.3), ωk is the angular
frequency and αk is the decay rate of mode k; ak is the amplitude of the mode, which
is calculated on the fly (see above). However, the force applied to an object during an
impact is rarely stricly impulsive, and smoother force profiles are usually preferred, such
as Gaussian profiles. This is handled by convolving Equation 1.3 by this profile, often
resulting in a low-pass filter.

Equation 1.3, with the force profile convolution, can be efficiently implemented using a
recursive formulation [van den Doel & Pai 2003] which makes modal synthesis attractive
to represent contact sounds, both in terms of speed and memory. Given an amplitude, a

1http://www.ageia.com
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Figure 1.3: A single mode at 440Hz rapidly decaying (30 s−1)
.

mode frequency and decay, and a force profile, the computation of the resulting sound only
requires 5 floating point operations per sample per mode.

In particular, assuming a vector s containing the mode values sampled at the sampling
rate SR, they use the following recursive formulation:

s(t) = 2R cos(θ) s(t− 1)−R2 s(t− 2) + akR sin(θ)F (m− 1)

with:
R = e−αk/SR

θ = ωk/SR

This handles a force profile F to allow for smooth events (a soft impact, using a Gaussian F
for example), or rolling sounds (a noisy F ). By precomputing R2, 2R cos(θ), akR sin(θ)
for each mode, this makes the generation of modal sounds very efficient.

We recall that the only quantities which must be computed at run-time are the gains ak
since they depend on the contact position on the objects, the applied force, and the listening
position.

Modal sounds for complex soundscapes

There has also been some work on modal sound synthesis for complex scenes.
In [van den Doel et al. 2004] a method is presented handling hundreds of impact
sounds. Although their frequency masking approach was validated by a user
study [van den Doel et al. 2002], the mode culling algorithm considers each mode inde-
pendently, removing those below audible threshold.

[Raghuvanshi & Lin 2006] proposed a method based on mode pruning which they call
mode compression and sound sorting by mode amplitude. However, they base their modes
compression on a perceptual experiment which studies the frequency discrimination of
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consecutively played frequencies, although they use it as a way to remove nearby modes
which are played at the same time. This is not exactly the same scenario, since in the
last case, beating due to nearby frequencies is removed. They also use a scalable modes
mixing step. However, using a recursive time domain formulation of modes, recursion
coefficients can only be obtained by computing the entire sound at previous frames thus
possibly defeating the purpose of scalability. No perceptual validation of the approximation
was finally presented.

For both, the granularity of progressive modal synthesis is the mode; in the examples
they show, a few thousand modes are synthesized in real time.

1.2 Audio-visual perception

We first present a short overview on unimodal audio or visual perception used for computed
graphics algorithms. This overview helps to introduce our crossmodal work and is thus very
brief. More details are given in each chapter, when appropriate.

We then review the literature on audio-visual perception related to our projects, mainly
published in the neuroscience community. However, neurosciences describe reproducible
experiments in highly restricted setups in order to study brain or neural mechanisms. It is
thus unclear how these results generalize to more complex (or “ecological”) scenes such as
the ones encountered in virtual environments. In our work, although we will be inspired by
neuroscience results, we will re-perform experiments in virtual environments to validate
these intuitions. Please see [Spence & Driver 2004] for an extensive review on crossmodal
results in the neuroscience literature.

We finally review material perception literature related to our own work.

1.2.1 Unimodal preliminaries

In recent years there have been many efforts to exploit perception to reduce computation
for interactive virtual environments, ultimately with the goal to “render only what you can
perceive”. A survey of the early work in this domain can be found in [Luebke et al. 2002]
and [O’Sullivan et al. 2004]. Examples of such work in graphics include use of frequency
based raytracing ([Bolin & Meyer 1995], Fig.1.4), visual differences predictors for ray-
tracing acceleration (e.g., [Ramasubramanian et al. 1999, Myszkowski 1998]), or percep-
tually based level-of-detail (LOD) control [Luebke & Hallen 2001, Williams et al. 2003,
Drettakis et al. 2007]. These algorithms using visual perception outperform bruteforce
methods which compute information which will not be perceived at all. However, the cost
of predicting the eyes’ response to visual stimuli using VDP is generally high, which make
these algorithms interesting for very complex scenes [Drettakis et al. 2007] or to acceler-
ate very slow rendering algorithms [Bolin & Meyer 1995, Ramasubramanian et al. 1999].
They also allow graceful degradations using LODs or progressive rendering in a perceptu-
ally meaningful way.
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Figure 1.4: Using visual perception to accelerate a raytracer. Depending on the image
spatial frequency content (left/right) our visual system is more or less tolerant to quanti-
zation artifacts. Bottom row is quantized to 4 bits, and fewer artifacts are visible at high
frequencies (right). [Bolin & Meyer 1995]

.

Although much effort has been made to use perception for graphics applications, less
work has been done for interactive audio rendering. Tsingos et al. use perception to opti-
mize masking and clustering ([Tsingos et al. 2004]), as discussed above.

Conversely, in our work we will address the perceptual audio-visual rendering using
both modalities at the same time rather than performing a separate treatment for visuals
and for sounds.

1.2.2 Spatio-temporal integration windows

Temporal integration window

Neuroscience extensively studied the perception of simultaneity between a visual event
and a corresponding audio event, typically using beeping loudspeakers and flashing LEDs.
These studies led to different delays for human’s tolerance in asynchrony. Also, during the
synthesis of impact sounds in virtual environments, modal sounds are usually computed at
the exact moment of the impact. Our goal is to use this tolerance in asynchrony in order to
delay the introduction of new impact sounds when the computer is already overloaded.

Different physical and neural delays in the transmission of signals can result in “con-
tamination” of temporal congruency. This results in a tolerance in the asynchrony be-
tween the signals coming from different senses, in particular between auditive and vi-
sual signals. For example [Fujisaki et al. 2004] have shown that brain recalibrates in the
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presence of a fixed audio-visual time lag presented for several minutes, thus shifting the
subjective simultaneity toward this time lag. Therefore, the brain needs to compensate
for temporal lags to recalibrate audiovisual simultaneity. For this reason, it is difficult
to establish a time window during which perception of synchrony is guaranteed, since it
depends both on the nature of the event (moving or not) and its position in space (dis-
tance and direction) [Alais & Carlile 2005]. Some studies report that delaying a sound
may actually improve perception of synchrony with respect to visuals [Begault 1999]. One
study [Guski & Troje 2003] (among others [Sekuler et al. 1997, Sugita & Suzuki 2003]),
reports that a temporal window of 200 ms represents the tolerance of our perception for a
sound event to be considered the consequence of the visual event. We will therefore adopt
this value as a threshold for our temporal scheduling algorithm.

Spatial integration window.

While the primary application of 3D audio rendering techniques is simulation and gam-
ing, no spatial audio rendering work to date evaluates the influence of combined visual and
audio restitution on the required quality of the simulation. However, a vast amount of
literature in neurosciences suggest that cross-modal effects, such as ventriloquism, might
significantly affect 3D audio perception [Hairston et al. 2003, Alais & Burr 2004]. This
effect tells us that in presence of visual cues, the location of a sound source is perceived
as shifted toward the visual cue, up to a certain threshold of spatial congruency. Above
this threshold, there is a conflict between the perceived sound location and its visual rep-
resentation and the ventriloquism effect no longer occurs. The spatial window (or angular
threshold) of this effect seems to depend on several factors (e.g., temporal synchronicity
between the two channels and perceptual unity of the bimodal event) and can vary from a
few degrees [Lewald et al. 2001] up to 15◦ [Hairston et al. 2003].

Also, in [Fouad et al. 1997], the visual gaze of the listener is used in the prioritization
of sound rendering and [Tsingos et al. 2004] presents an initial pilot study of the influence
of visuals on the perceived sound quality. Although [Tsingos et al. 2004] shows that per-
ceived quality is degraded when visuals are added, no further investigation was proposed.

1.2.3 Material perception

Rendering plausible materials interactively in virtual environments (VE) is a challenging
task ([Brainard et al. 2008]). Improving material perception in this context requires the
study of the influence of both visual quality and audio quality on the perception of materi-
als.

Material perception has received significant attention in recent years in computer
graphics. Notably, [Vangorp et al. 2007] studies the effect of geometry shape and lighting
on perception of material reflectance (Figure 1.5). They design an experiment showing that
the shape of the objects affects the impression of the material, and that the sphere often used
for picking materials in 3D softwares is not the best choice. [Fleming et al. 2003] studied
the influence of the illumination on the perception of materials, and reported that materi-
als were best depicted with real world illumination (Figure 1.6). This draws the attention
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to be ported on the illumination and geometry to be used when designing experiments on
material recognition (Chapter 4).

In [Ramanarayanan et al. 2007], the concept of visual equivalence is introduced, based
on material properties, geometry and illumination. They provide a key definition for visual
equivalence: two images are visually equivalent if the object shape and material are judged
to be the same in both images, and if, in a side-by-side comparison, a person is unable to
tell which image is the reference. This definition differs with respect to previous low-level
image quality metrics focusing on pixel by pixel differences, allowing for a higher level
comparison.

A more complete exposition on material perception from renderings can be found
in [Rushmeier 2008]. However, these works only focused on visual cues and do not ad-
dress other modalities.

Figure 1.5: The left image shows tessellated spheres with two different materials, yet they
are perceived as made from the same material. The right image show objects with the same
material, yet their appearance is very different [Vangorp et al. 2007]

.

Figure 1.6: Two spheres rendered with the same material. The left image uses
a single point light source whereas the right image uses a captured environment
map. Most observers report that material quality is better depicted in the right im-
age [Fleming et al. 2003]

.

Similarly, auditory cues for material perception have also been used experimentally. In
particular, material classification has been studied by [Giordano & McAdams 2006] where
subjects had to determine the material an object was made from (wood, plexiglass, steel
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or glass), by striking real physical objects. They show that two main categories of ma-
terial were correctly classified (wood and plexiglass vs. steel and glass). We will also
use these categories in order to use well distinguished material classes when designing an
experimental protocol on materials (Chapter 4).

Perception of material depending on contact sounds is also studied
in [Klatzky et al. 2000]. In one experiment, subjects were asked to rate similarity of
the material of two sounding objects using audio only. A second study asked participants
to classify the sounds into groups of materials. Whereas they do not include visual cues
in the material perception, we have been inspired by some aspects of their experimental
methodology.

While we are unaware of work on audio-visual material perception, there has been
work on combining haptics and audio for material perception (e.g., [Guest et al. 2002]).
However, we consider the haptic and visual modalities to be very different, and will not
review this literature here.

Nonetheless, earlier work [Storms & Zyda 2000] has found some improvement in over-
all perception of visual image quality in the presence of better sound. This experimen-
tal study of static images and sounds showed that the perceived quality of a high qual-
ity visual display evaluated alone was enhanced when coupled with high quality sound.
The study further showed that the perceived quality of a low quality auditory display
evaluated alone was reduced when coupled with a high quality visual display. Visual
degradations were varied by resampling images or adding noise, while audio degradation
was varied by changing sampling rates or by adding Gaussian noise. In other previous
work, Mastoropoulou et al. have studied the effect of sound on rendering animations
(e.g., [Mastoropoulou et al. 2005]); while this work does study the joint effect of sound
and graphics on quality perception, it does not treat the case of materials which is the focus
of our study (Chapter 4).





CHAPTER 2

Progressive Perceptual Audio
Rendering of Complex Scenes

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Cross-modal effects for sound scene simplification . . . . . . . . . . . . 26

2.2.1 Experimental setup and methodology . . . . . . . . . . . . . . . . 27

2.2.2 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 An audio-visual metric for clustering . . . . . . . . . . . . . . . . 30

2.3 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.1: A subject performing our crossmodal perceptual experiment on the workbench.
The participant is asked to judge the audio quality of VR scenes with different cluster
distributions. We show that in the audio-visual condition, more clusters are needed in the
viewing frustum.

The contributions in this chapter were published in the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games [Moeck et al. 2007].
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2.1 Introduction

Spatialized audio rendering is a very important factor for the realism of interactive vir-
tual environments, such as those used in computer games, virtual reality, or driving/flight
simulators, etc. The complexity and realism of the scenes used in these applications has
increased dramatically over the last few years.

Recent research has proposed solutions to the computational limitations due to the
handling of numerous sound sources, both in audio rendering and spatialization. Percep-
tual masking with sound source clustering [Tsingos et al. 2004], or other clustering meth-
ods [Herder 1999, Wand & Straßer 2004] do resolve some of the issues. However, the clus-
tering algorithms proposed to date for sound spatialization are either restricted to static
scenes, or add an unacceptable computation overhead due to a quadratic step in cluster
construction when the number of sources is large. In addition, the cost of per source com-
putation, sometimes called premixing, can quickly become a bottleneck, again for complex
soundscapes.

Also, virtual environments rarely consist only in sounding objects, but also display
their visual 3D representation. Although much effort has been made in either visual or
audio perception in virtual environments, very little work has been done considering both
the audio and the visuals at the same time. In [Tsingos et al. 2004], a preliminary study is
reported but is inconclusive. However, being able to use both audio and visual information
should allow for better quality soundscapes. In particular, audio-visual spatial tolerance
has been extensively studied in neuroscience, exhibiting a spatial “integration window”.
This should improve the quality of audio clustering algorithms, taking into account visual
information.

The contributions presented in this chapter have been published as part
of [Moeck et al. 2007], which also resolved the high premixing cost issue and proposed
a recursive clustering algorithm. In [Moeck et al. 2007], a perceptual validation of the pre-
mixing strategy is also provided. In this chapter, in the context of crossmodal algorithms,
we will only present the investigation of crossmodal perceptual issues related to cluster-
ing, based on pilot user studies we conducted. In particular, we investigate the influence
of visuals on audio clustering for audio-visual scenes, and propose a modified clustering
metric taking into account the indication that it is probably better to have more sources in
the view frustum.

2.2 Cross-modal effects for sound scene simplification

The previous use of perception for audio rendering does not consider visual information of
corresponding sound sources. Intuitively, it would seem that such interaction of visual and
audio rendering should be taken into account, and play a role in the choice of metrics used
in the audio clustering algorithm. A first attempt was presented in [Tsingos et al. 2004],
but was inconclusive presumably due to the difficulties with speech stimuli, which are
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Figure 2.2: Overview of our overall sound rendering pipeline. In particular, we introduce
a sound source clustering metric that better handles visible sources.

generally considered to be a special case.

Research in ventriloquism (see Section 1.2.2), could imply that we should be more
tolerant to localization errors for sound rendering when we have accompanying visuals.
If this were the case, we could change the weighting terms in the clustering algorithm to
create fewer clusters for sound sources in the visible frustum. However, a counter argument
would be that in the presence of visuals, we are more sensitive to localization, and we
should favor more clusters in the viewing frustum.

Our goal was to see whether we could provide some insight into this question with a
pilot perceptual study. The next step was to develop and test an improved audio clustering
algorithm based on the indications obtained experimentally.

2.2.1 Experimental setup and methodology

We chose the following experimental setup to provide some insight on whether we need
more clusters in the visible frustum or not.

The subjects are presented with a scene composed of 10 animated - but not moving -
objects emitting “ecologically valid” sounds, i.e., a moo-ing sound for the cow, a helicopter
sound, etc. (Figure 2.3).

We have two main conditions: audio only (i.e., no visuals) (condition A) and audio-
visual (AV). Within each main condition we have a control condition, in which sources
follow a uniform angular distribution, and the condition we test, where the proportion of
clusters in the visible frustum and outside the visible frustum is varied.

We ran our test with 6 subjects (male, aged 23-45, with normal or corrected to normal
vision, reporting normal hearing). All were naive about the experiment. Five of them had
no experience in audio. Prior to the test, subjects were familiarized with isolated sound
effects and their corresponding visual representation.

The subject stands 1 meter away from a 136 x 102 cm screen (Barco Baron Work-
bench), with an optical headtracking device (ART) and active stereo glasses (see Fig-
ure 2.1). The field of view in this large screen experiment is approximately 70 ◦.

Headphones are used for audio output and our system uses binaural render-
ing [Blauert 1997, Møller 1992] using the LISTEN HRTF database [IRCAM 2009]. Our
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Figure 2.3: An example view of the experimental setup for the audio-visual pilot user
study.

subjects were not part of the database. Hence, they performed a “point and click" pre-test
to select the best HRTF over a subset of 6 HRTFs selected to be “most representative”
similar to [Sarlat et al. 2006]. The marks attributed for the test are given with a joystick.

The A condition was presented first for three candidates, while AV condition was pre-
sented first for the other three. No significant effect of ordering was observed.

To achieve the desired effect, objects are placed in a circle around the observer; 5 are
placed in the viewing frustum and 5 outside. For both control and main conditions, four
configurations are used randomly, by varying the proportion of clusters. Condition 1/4 has
one cluster in the view frustum and 4 outside, 2/3, has 2 in the view frustum and 3 outside,
etc. A uniform distribution of clusters corresponds to condition 1/4, with only 1 cluster in
the frustum. Each condition is repeated 15 times with randomized object positions; these
repetitions are randomized to avoid ordering effects.

We used the ITU-recommended triple stimulus, double blind with hidden reference
technique [Grewin 1993, International Telecom. Union 1994]: 2 versions of the scene were
presented (“A” and “B”) and a given reference scene which corresponds to unclustered
sound rendering. One of the 2 scenes was always the same as the reference (a hidden ref-
erence) and the other one corresponds to one of our clustering configurations. For each
condition, the subject was presented with a screen with three rectangles (“A", “R" and
“B"), shown in Fig. 2.3. The subjects were given a gamepad, and were instructed to switch
between “A", “B” and “R” using three buttons on the pad, which were highlighted depend-
ing on the version being rendered. The subjects were asked to compare the quality of the
approximations (“A” or “B”) compared to the reference. They were asked to perform a
“quality judgment paying particular attention to the localization of sounds" for the 2 test
scenes, and instructed to attribute one of 4 levels of evaluation “No difference", “Slightly
different”, “Different” and "Clearly different" from the reference, which were indicated in
rectangles next to the letter indicating the scene version (see Fig. 2.3).
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Figure 2.4: Mean values and 95% confidence intervals (N=6) in A and AV conditions
as a function of the number of clusters inside/outside the view frustrum. For AV, the 2/3
configuration gives the best quality scores, which is not the case in the A condition. The
“*" underlines that quality judgements in 1/4 and 2/3 cluster configurations for AV are
significantly different (p<0.05), while the same comparison is non significant (n.s.) in the
A condition.

2.2.2 Analysis and results

We attributed a mark for each evaluation (from 0 to 3). As suggested by this ITU-R standard
protocol, we only kept the difference between the test sample and the hidden reference. We
also normalized the data by dividing each mark by the mean score of the user (the average
of all marks of the candidate over all his tests).

There was no significant difference between the A and AV conditions regarding the re-
spective scores of each cluster configuration. However, the difference of quality ratings
between configurations was not similar in the two conditions. In condition A, 1/4 and 2/3
configurations lead to a similar quality evaluation (see Figure 2.4). In condition AV, the
best quality is perceived in configuration 2/3. While 2/3 and 1/4 configurations are not
perceived differently in condition A (Wilcoxon test, N=90, T=640.5, Z=0.21, p=0,83), the
quality scores of 2/3 configuration are higher than those of 1/4 configuration in condition
AV (Wilcoxon test, N=90, T=306.5, Z=2.56, p=0.01). The low perceived quality of the
1/4 configuration can be explained by the loss of accuracy in the spatialization outside the
viewing frustum: although spatialization is much improved for visible objects, it is signif-
icantly degraded for invisible ones since only one cluster represents most of the sounding
objects.

Overall, we consider the above results as a significant indication that, when we use the
audio clustering algorithm with visual representation of the sound sources, it is better to
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Figure 2.5: Two frames from the walkthrough to test the new audio-visual criterion.

have two clusters in the view frustum, compared to a uniform angular distribution. This
is indicated by the results for the 2/3 configuration, which is statistically different from all
the other configurations in the AV condition. We expect this effect to be particularly true
for scenes where there are visible sound sources in the periphery of the view frustum.

2.2.3 An audio-visual metric for clustering

Given the above observation, we developed a new weight in the clustering metric which en-
courages more clusters in the view frustum. We modify the cost-function of the clustering
algorithm presented in [Tsingos et al. 2004] by adding the following weighting term:

1 + α

�
cos θs − cos θf

1− cos θf

�n
(2.1)

where θs is the angle between the view direction and the direction of the sound source
relative to the observer, θf is the angular half-width of the view frustum and α controls the
amplitude and n decay-rate of this visual improvement factor.

2.3 Implementation and Results

To test the new audio-visual criterion, we constructed a variant of the street scene (see
Figure 2.5) presented in [Moeck et al. 2007] and an appropriate path, in which the positive
effect of this criterion is clearly audible. For this test, we used α = 10 and n = 1.5,
which proved to be satisfactory. In this scene, the user follows a path and stops in a given
location1. We have 132 sources in the scene and target budget of 8 clusters. By switching
between the reference, and the approximations with and without the audio-visual metric,
we can clearly hear the improvement when more clusters are used in the view frustum. In
particular, the car on the right has a siren whose sound is audibly displaced towards the
center with the audio-only metric.

1See the paper’s video available at http://www-sop.inria.fr/reves/Basilic/2007/MBTDVA07/MBTDVA07.avi
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Figure 2.6: Left: the clusters without the audio-visual metric. Right: the clusters with our
new metric. We clearly see that the new metric separates the sources appropriately.

2.4 Discussion and Conclusion

We presented a cross-modal perceptual study aimed at determining possible influence of
the visuals on the required quality for audio clustering. Although one could expect ventril-
oquism to allow for rendering simplifications for visible sources, our study suggests that
more clusters might actually be required in this case. A possible explanation for this is that,
in a complex scene, clustering is likely to simplify auditory localization cues beyond com-
mon ventriloquism thresholds. As a consequence, we introduced a new metric to augment
the importance of sources inside the view frustum. We demonstrated an example where,
with a large number of sound sources outside the view frustum, it leads to improved results.

In the future, it would be interesting to experiment with auditory saliency metrics to
drive clustering and evaluate our algorithms on various combinations of A/V displays, for
example, , 5.1 surround or Wave Field Synthesis (WFS) setups. Also, the influence of
ventriloquism on these algorithms merits further study.

We also believe that authoring is now becoming a fundamental problem for complex
soundscapes. Indeed, authoring complex sounding environments with recorded sounds
remains a tedious task. Additional complexity can arise from procedurally synthesized
sounds. The most commonly used procedural sounds are impact sounds, generated from
objects collisions. In this context, it is interesting to note that humans are tolerant to the
asynchrony between an impact sound and the corresponding visual event. This can be seen
as a complementary perceptual phenomenon to the spatial ventriloquism effect. Adapting
our algorithms to handle combinations of sample-based and impact sounds, and using our
audio-visual temporal tolerance is the topic of the following chapter.
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The contributions in this chapter have been published in the special issue of
ACM Transactions on Graphics, volume 27, number 3, Proceedings of SIGGRAPH
[Bonneel et al. 2008].

3.1 Introduction

In the previous chapter we studied the spatial tolerance between a sound and its visual
representation. In order to investigate the possible benefits of using perceptual temporal
tolerance to asynchrony, we used sounds which react to particular events. In particular,
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these sounds are produced by the impact of colliding objects, and thus provide an adequate
basis for studying and using the temporal tolerance between the visual event of the impact
and the expected corresponding impact sound. One of our major motivations was to treat
natural environments consisting of hundreds of simultaneous colliding objects at the same
time. However, these environments are too complex for current algorithms, since they
cannot generate the sounds in realtime. We thus first developed an improved impact sound
generation algorithm, including an improvement based on crossmodal perception, and ran
a perceptual study to evaluate our new algorithm.

The rich content of today’s interactive simulators and video games includes physi-
cal simulation, typically provided by efficient physics engines, and 3D sound rendering,
which greatly increases our sense of presence in the virtual world [Larsson et al. 2002].
Physical simulations are a major source of audio events: e.g., debris from explosions or
impacts from collisions (Fig. 3.1). In recent work several methods have been proposed to
physically simulate these audio events notably using modal synthesis [O’Brien et al. 2002,
van den Doel & Pai 2003, James et al. 2006]. Such simulations result in a much richer vir-
tual experience compared to simple recorded sounds due to the added variety and improved
audio-visual coherence. The user’s audiovisual experience in interactive 3D applications is
greatly enhanced when large numbers of such audio events are simulated.

Previous modal sound approaches perform recursive synthesis in the time do-
main [van den Doel & Pai 2003]. Recent interactive methods progressively reduce compu-
tational load by reducing the number of modes in the simulation [Raghuvanshi & Lin 2006,
van den Doel et al. 2004]. Their computational overload however is still too high to handle
environments with large numbers of impacts, especially given the limited budget allocated
to sound processing, as is typically the case in game engines.

Interactive audiovisual applications also contain many recorded sounds. Recent ad-
vances in interactive 3D sound rendering use frequency-domain approaches, effecting
perceptually validated progressive processing at the level of Fourier Transform coeffi-
cients [Tsingos 2005]. For faster interactive rendering, perceptually based auditory mask-
ing and sound-source clustering can be used [Tsingos et al. 2004, Moeck et al. 2007].
These algorithms enable the use of high-quality effects such as Head-Related Trans-
fer Function (HRTF) spatialization, but are limited to pre-recorded sounds. While the
provision of a common perceptually based pipeline for both recorded and synthesized
sounds would be beneficial, it is not directly obvious how modal synthesis can be effi-
ciently adapted to benefit from such solutions. In the particular case of contact sounds, a
frequency-domain representation of the signal must be computed on-the-fly, since events
causing the sounds are triggered and controlled in real-time using the output of the physics
engine.

Our solution to the above problems is based on a fundamental intuition: modal sounds
have an inherently sparse representation in the frequency domain. We can thus perform
frequency-domain modal synthesis by fast summation of a small number of Fourier coef-
ficients (see Fig. 3.1). To do this, we introduce an efficient approximation to the short-
time Fourier Transform (STFT) for modes. Compared to time-domain modal synthe-
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sis [van den Doel & Pai 2003], we observe 5-8 times speedup in our test scenes, with slight
degradation in quality. Quality is further degraded for sounds with faster decays and high
frequencies.

In addition to the inherent speed-up, we can integrate modal and recorded sounds into
a common pipeline, with fine-grain scalable processing as well as auditory masking and
sound clustering. To compute our STFT we use a constant exponential approximation; we
also reconstruct with an Hann window to simplify integration in the full pipeline. However,
these approximations reduce the quality of the onset of the impact sound or “attack”. We
propose a method to preserve the attacks (see Sect. 3.3.3), which can be directly used for
modal sounds; using it in the combined pipeline is slightly more involved. We use the Hann
window since it allows better reconstruction with a small number of FFT coefficients com-
pared to a rectangular window. A rectangular window is better at preserving the attacks,
but results in ringing. Our attack-preserving approach starts with a rectangular subwindow,
followed by appropriate Hann subwindows for correct overlap with subsequent frames.

In contrast to typical usage of pre-recorded ambient sounds, physics-driven impact
sounds often create peaks of computation load, for example the numerous impacts of de-
bris just after an explosion. We exploit results from human perception to perform temporal
scheduling, thus smoothing out these computational peaks. We also performed a percep-
tually based user evaluation both for quality and temporal scheduling. In summary, we
present the following contributions:

• A fast frequency-domain modal synthesis algorithm, leveraging the sparsity of
Fourier transforms of modal sounds.

• A full, perceptually based interactive audio rendering pipeline with scalable pro-
cessing, auditory masking and sound source clustering, for both recorded and modal
sounds.

• A temporal scheduling approach based on research in perception, which smooths
out computational peaks due to the sudden occurrence of a large number of impact
sounds.

• A pilot perceptual user study to evaluate our algorithms and pipeline.

We have implemented our complete pipeline; we present interactive rendering results in
Sect. 3.6 for scenes such as those shown in Fig. 3.1 and Fig. 3.6.

3.2 Our Approach

Overview The basic intuition behind our work is the fact that modal sounds have a sparse
frequency domain representation. We will show some numerical evidence of this sparsity
with examples, and then present our fast frequency-domain modal synthesis algorithm. To
achieve this we introduce our efficient STFT approximation for modes, based on singular
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Figure 3.1: Frequency-domain fast mode summation: Top: Frames of some of the test
scenes our method can render in real time. Bottom: (Left) Time-domain modal synthesis
requires summing all modes at every sample. (Right) Our frequency-domain modal synthe-
sis exploits the inherent sparsity of the modes’ discrete Fourier transforms to obtain lower
costs per frame.

distributions. We then discuss our full perceptual pipeline including scalable processing,
auditory masking and sound source clustering. We introduce a fast energy estimator for
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modes, used both for masking and appropriate budget allocation. We next present our tem-
poral scheduling approach which smooths out computation peaks due to abrupt increases
in the number of impacts. After discussing our implementation and results, we describe
our pilot perceptual user study, allowing us to evaluate the overall quality of our approx-
imations and the perception of asynchrony. Analysis of our experimental results gives an
indication of the perceptual validity of our approach.

Fourier-domain mode mixing Traditional time-domain modal synthesis computes
Eq. 1.3 for each sample in time. For frequency-domain synthesis we use the discrete
Fourier transform (FFT) of the signal (we show how to obtain this in Sect. 3.3.1). If we use
a 1024-sample FFT we will obtain 512 complex coefficients or bins representing the signal
of a given audio frame (since our signals are real-valued we will only consider positive
frequencies). For each such frame, we add the coefficients of each mode in the frequency
domain, and then perform an inverse FFT (see Fig. 3.1) once per frame, after all sounds
have been added together. The inverse FFT represents a negligible overhead, with a cost
of 0.023 ms using an unoptimized implementation [Press et al. 1992]. If the number of
coefficients contributed by each mode is much less than 512, frequency-domain mixing
will be more efficient than an equivalent time-domain approach. However, this will also
result in lossy reconstruction, requiring overlapping frames to be blended to avoid possi-
ble artifacts in the time-domain. Such artifacts will be caused by discontinuities at frame
boundaries resulting in very noticeable clicks. To avoid these artifacts, a window function
is used, typically a Hann window. Numerous other options are available in standard signal
processing literature [Oppenheim et al. 1999]. Our method shares some similarities with
the work of [Rodet & Depalle 1992] which uses inverse FFTs for additive synthesis.

In what follows we assume that our audio frames overlap by a 50% factor, bringing-in
and reconstructing only 512 new time-domain samples at each processing frame using a
1024-sample FFT.

A Hann window is expressed in the time domain as:

H(t) = 0.5
�

1− cos(
2πt
T

)
�

with t the time variable and T the length of the window.

We implemented the Hann window as a product of two square roots of a Hann window,
one in frequency to synthesize modes using few Fourier coefficients and the other in time
to blend overlapping frames [Zölzer 2002]. At 44.1kHz, we thus process and reconstruct
our signal using 512/44100 = 11ms-long frames.

3.3 Efficient Fourier-Domain Modal Synthesis

We provide some numerical evidence of our intuition, that most of the energy of a modal
sound is restricted to a few FFT bins around the mode’s frequency. We constructed a small
test scene, containing 12 objects with different masses and material properties. The scene
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is shown in Fig. 3.6. We computed the energy with the signal reconstructed using all 512
bins, then progressively reconstruct with a small number of bins distributed symmetrically
around the mode’s frequency, and measured the error. We compute percent error averaged
over all modes in the scene, for 1 bin (containing the mode’s frequency), then 3 bins (i.e.,
together with the 2 neighboring bins on each side), then both these together with the 2 next
bins, etc. Using a single bin, we have 52.7% error in the reconstructed energy; with 3 bins
the error drops to 4.7% and with 5 bins the error is at 1.1%. We thus assume that bins
are sorted by decreasing energy in this manner, which is useful for our scalable processing
stage (see Sect. 3.4).

This property means that we should be able to reconstruct modal sounds by mixing
a very small number of frequency bins, without significant numerical error; however, we
need a way to compute the STFT of modes efficiently.

One possible alternative would be to precompute and store the FFTs of each mode
and then weight them by their amplitude at runtime. However, this approach would suffer
from an unacceptably high memory overhead and would thus be impractical. The STFT
of a mode sampled at 44.1kHz requires the storage of 86 frames of 512 complex values,
representing 352 Kbytes per mode per second. A typical scene of two thousand modes
would thus require 688 Mb.

In what follows we use a formulation based on singular distributions or generalized
functions [Hormander 1983], allowing us to develop an efficient approximation of the
STFTs of modes.

3.3.1 A Fast Short-time FFT Approximation for Modes

We define mk(t) as follows for notational convenience:

mk(t) = e−αkt sin(ωkt) (3.1)

We want to estimate the short-time Fourier transform over a given time-frame of a
mode m(t) (Eq. 3.1), weighted by a windowing function that we will denote H(t) (e.g., a
Hann window). We thus proceed to calculate the short time transform s(λ) where λ is the
frequency, and t0 is the offset of the window:

s(λ) = Fλ{ m(t+ t0)H(t) } (3.2)

The Fourier transform Fλ{ f(t) } that we used corresponds to the definition:

Fλ{ f(t) } =
Z ∞
−∞

f(t) e−i λ tdt (3.3)

Note that the product in the time domain corresponds to the convolution in the frequency
domain (see Eq. A.4 in the Appendix). We can use a polynomial expansion (Taylor series)
of the exponential function:

eα(t+t0) = eαt0
∞X
n=0

cn(αt)n (3.4)
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where cn = 1/n!. Next, the expression for the Fourier transform of a power term is a
distribution given by:

Fλ{ tn } = 2πinδ(n)(λ) (3.5)

where δ is the Dirac distribution, and δ(n) its n’th derivative. From Eqs. 3.4 and 3.5, we
have the expression for the Fourier transform of the exponential:

Fλ
¦
eα(t+t0)

©
= eαt0

∞X
n=0

cnα
n2πinδ(n)(λ) (3.6)

The Fourier transform of a sine wave is a distribution given by:

Fλ{ sin(ω(t+ t0)) } = iπ
�
e−iωt0δ(λ+ω)− eiωt0δ(λ−ω)

�
(3.7)

We also know that δ is the neutral element of the convolution (see Eq. A.2 in the Appendix).
Moreover, we can convolve the Fourier Transforms of the exponential and the sine since
they both have compact support. From Eqs. 3.6 and 3.7, we finally have:

Fλ{ m(t+ t0) } = πeαt0
∞X
n=0

cnα
nin+1 ·

�
e−iωt0δ(n)(λ+ω)− eiωt0δ(n)(λ−ω)

�
(3.8)

Convolution of Eq. 3.8 with a windowing functionH leads to the desired short time Fourier
transform of a mode. Using the properties of distributions (Eq. A.2, A.3 in the Appendix),
and Eq. 3.8, we have:

s(λ) =
1
2
eαt0

∞X
n=0

cnα
nin+1

�
e−iωt0Fλ(H)(n)(λ+ω)− eiωt0Fλ(H)(n)(λ−ω)

�
(3.9)

Fλ(H)(n)(λ+ω) is the n-th derivative of the (complex) Fourier transform of the window
H , taken at the value (λ+ω).

Note that Eq. 3.8 is still a distribution, since we did not constrain the mode to be
computed only for positive times, and the mode itself is not square-integrable for negative
times. However, this distribution has compact support which makes the convolution of
Eq. 3.9 possible [Hormander 1983].

For computational efficiency, we truncate the infinite sum of Eq. 3.9, and approximate
it by retaining only the first term. The final expression of our approximation to the mode
STFT is thus:

s(λ) ≈ 1
2
eαt0c0i

�
e−iωt0Fλ(H)(λ+ω)− eiωt0Fλ(H)(λ−ω)

�
(3.10)

Instead of c0 = 1 (Eq. 3.4), we take c0 to be the value of the exponential minimizingR t0+∆t
t0

(e−αt − c0)2dt, where ∆t is the duration of a frame, resulting in a better piecewise
constant approximation:

c0 =
e−αt0 − e−α(t0+∆t)

α ∆t
. (3.11)

This single term formula is computationally efficient since the Fourier transform of the
window can be precomputed and tabulated, which is the only memory requirement. More-
over both complex exponentials are conjugate of each other meaning that we only need to
compute one sine and one cosine.
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3.3.2 Speedup and Numerical Validation

Consider a scene requiring the synthesis of M modes. Using a standard recursive time-
domain solution [van den Doel & Pai 2003], and assuming 512-sample frames, the cost of
the frame isM×512×Cmt. The costCmt of evaluating a mode in the time domain is 5 or 6
multiplies and adds, using the recursive formulation of Eq. 6 in [van den Doel & Pai 2003].
In our approach, assuming an average of B bins per mode, the cost of a frame is
M × B × CSTFT plus the cost (once per frame) of the inverse FFT. The cost CSTFT
of evaluating Eq. 3.10, is about 25 operations. With a value of B = 3 (it is often lower
in practice), we have a potential theoretical speedup factor of 30-40 times. If we take into
account the fact that we have a 50% overlap due to windowing, this theoretical speedup
factor drops to 15-20 times.

We have used our previous test scene to measure the speedup of our approach in prac-
tice, compared to [van den Doel & Pai 2003]. When using B = 3 bins per mode, we
found an average speedup of about 8, and with B = 5 bins per mode about 5. This re-
duction compared to the theoretical speedup is probably due to compiler and optimization
issues of the two different algorithms.

Finally, we examine the error of our approximation for a single sound. We tested
two different windows, a Hann window with 50% overlap and a Rectangular win-
dow with 10% inter-frame blending. In Fig. 3.2 we show 3 frames, with the refer-
ence [van den Doel & Pai 2003] in red and our approximation in blue, taking B = 5
bins per mode.

Taken over a sequence including three impacts (a single pipe in the Magnet scene, see
Sect. 3.6), for a total duration of about 1 sec., the average overall error for the Rectangular
window is 15% with 5 bins, and 21% with 3 bins (it is 8% if we use all 512 bins). This error
is mainly due to small ringing artifacts and possibly to our constant exponential approxi-
mation, which can be seen at frame ends (see Fig. 3.2). Using the Hann window, we have
35-36% error for both 512 and 5 bins, and 36% with 3 bins. This would indicate that the
error is mainly due to the choice of window. As can be seen in the graph (Fig. 3.2 (right))
the error with the Hann window is almost entirely in the first frame, at the onset, or “at-
tack”, of the sound for the first 512 samples (i.e., 11 ms at 44.1kHz). The overall quality
of the signal is thus preserved in most frames; in contrast, the ringing due to the rectangu-
lar window can result in audible artifacts. For this reason, and to be compatible with the
pipeline of [Moeck et al. 2007], we chose to use the Hann window.

3.3.3 Limitations for the “Attacks” of Impact Sounds

Contrary to time domain modal synthesis approaches such as [van den Doel & Pai 2003,
Raghuvanshi & Lin 2006], the use of the Hann window as well as the constant exponential
approximation (CEA) degrades the onset or “attack” for high frequency modes. This attack
is typically contained in the first few frames, depending on decay rate.

To study the individual effect of each of the CEA and the Hann window in our recon-
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Figure 3.2: Comparison of Reference with Hann window and with Rectangular window
reconstruction using a 1024-tap FFT.

struction process, we computed a time-domain solution using the CEA for the example of a
falling box (Fig. 3.3(left)) and a time domain solution using a Hann window to reconstruct
the signal (Fig. 3.3(right)). We plot the time-domain reference [van den Doel & Pai 2003]
in red and the approximation in blue. As we can see, most of the error in the first 7msec
is due to the Hann window whereas the CEA error remains lower. The effect of these
approximations is the suppression of the “crispness” of the attacks of the impact sounds.

Use of the Hann window and the CEA as described previously has the benefit of al-
lowing seamless integration between recorded and impact sounds, as described next in
Sect. 3.4. In complex soundscapes containing many recorded sounds, this approximation
may be acceptable. However, in other cases the crispness of the attacks of the modal sounds
can be important.
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Figure 3.3: Comparison of Constant Exponential Approximation in the time domain (TD)
and Hann window reconstruction in the TD, with the reference for the sharp sound of a
falling box.

To better preserve the attacks of the impacts sounds, we treat them in a separate buffer
and split the first 1024-sample frame into four subframes. Each subframe has a corre-
sponding CEA and with a specialized window. In what follows, we assume that all contact
sounds start at the beginning of a frame.
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We design a windowing scheme satisfying four constraints: 1) avoid “ramping up” to
avoid smoothing the attack, 2) end with a 512 sample square root of Hann window to blend
with the buffer for all frames other than the attack, 3) achieve perfect reconstruction, i.e., all
windows sum to one, 4) require a minimal number of bins overall, i.e., use Hann windows
which minimize the number of bins required for reconstruction [Oppenheim et al. 1999].

The first subframe is synthesized using a rectangular window for the first 128 samples
(constraint 1) followed by half of a Hann window (“semi-Hann” from now on) for the next
128 samples and zeros in the remaining 768 samples; this is shown in blue in Fig. 3.4.
The next two subframes use full 256-sample Hann windows, starting at samples 128 and
256 respectively (red and green in Fig. 3.4). The last subframe is composed of a semi-
Hann window from samples 384 to 512 and a square root of a semi-Hann window for the
last 512 samples for correct overlap with the non-attack frames, thus satisfying constraint
2 (black in Fig. 3.4). All windows sum to 1 (constraint 3), and Hann windows are used
everywhere except for the first 128 samples (constraint 4). These four buffers are summed
before performing the inverse FFT, replacing the original 1024 sample frame by the new
combined frame. We use 15 bins in the first subframe.
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Figure 3.4: Four sub-windows to better preserve the sound attack.

The increase in computational cost is negligible, since the additional operations are
only performed in the first frame of each mode: for the Oriental scene example shown in
Figure 3.11, the additional cost of the mixed window for attacks is 1.2%. However, the
integration of this method with recorded sounds is somewhat more involved; we discuss
this in Sect. 3.8.

3.4 A Full Perceptually Based Scalable Pipeline for Modal and
Recorded Sounds

An inherent advantage of frequency domain processing is that it allows fine-grain scalable
audio processing at the level of an FFT bin. In [Tsingos 2005], such an approach was pro-
posed to perform equalization and mixing, reverberation processing and spatialization on
prerecorded sounds. Signals are prioritized at runtime and a number of frequency bins are
allocated to each source, thus respecting a predefined budget of operations. This impor-
tance sampling strategy is driven by the energy of each source at each frame and used to
determine the cut-off point in the list of STFT coefficients.

1See also the paper’s video available at http://www-sop.inria.fr/reves/Basilic/2008/BDTVJ08/FastModalSounds.avi
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Given our fast frequency-domain processing described above, we can also use such an
approach. In addition to the fast STFT synthesis, we also require an estimation of energy,
both of the entire impact sound, and of each individual mode. In [Tsingos 2005] sounds
were pre-recorded, and the FFT bins were precomputed and pre-sorted by decreasing en-
ergy.

For our scalable processing approach, we first fix an overall mixing budget, e.g., 10,000
bins to be mixed per audio frame. At each frame we compute the energy Es of each impact
sound over the frame and allocate a budget of frequency bins per sound proportional to
its energy. We compute the energy Em of each mode for the entire duration of the sound
once, at the time of each impact, and we use this energy weighted by the mode’s squared
amplitude to proportionally allocate bins to modes within a sound. After experimenting
with several values, we assign 5 bins to the 3 modes with highest energy, 3 bins for the
next 6 and 1 bin for all remaining modes. The use of a single bin to represent a mode
can create ringing artefacts which result in the perception of a ghost mode. However, in
our case we found that most of the energy of the impact sounds was located in the first
few modes. We thus only used a single bin to represent low energy modes, so that ringing
artefacts are not perceived. In contrast, using 3 bins allows good reconstruction but requires
three times more computation, which is not desirable for low energy modes. The use of 5
bins per mode, with our overlap-add technique, allows almost perfect reconstruction which
is needed for the highest energy and audible modes. We summarize these steps in the
following pseudo-code.

1. PerImpactProcessing(ImpactSound S) // at impact notification
2. foreach mode of S
3. compute total energy Em

4. Sort modes of S by decreasing Em

5. Compute total energy of S for cutoff
6. Schedule S for processing

1. ScalableAudioProcessing() // called at each audio frame
2. foreach sound S
3. Compute Es

4. Allocate FFT bin budget based on Es

5. Modes m1, m2, m3 get 5 bins
6. Modes m4 −m9 get 3 bins
7. 1 bin to remaining modes until end of budget
8. endfor

3.4.1 Efficient Energy Estimation

To allocate the computation budget for each impact sound, we need to compute the energy,
Es, of a modal sound s in a given frame, i.e., from time t to time t + ∆t:

Es =
Z t + ∆t

t
s2(x)dx. (3.12)
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From Eq. 1.3 and 3.1, we express Es as:

Es = < s, s > =
MX
i=0

MX
j=0

aiaj < mi,mj > . (3.13)

For a given frame, the scalar product < mi,mj > has an analytic expression (see Eq. A.7
in the additional material2). Because this scalar product is symmetric, we only have to
compute half of the required operations.

In our experiments, we observed that most of the energy of an impact sound is usually
concentrated in a small number N of modes (typically 3). To identify the N modes with
highest energy, we compute the total energy, Em, of each mode as:

Em =
Z ∞

0

�
sin(ωx)e−αx

�2
dx =

1
4

ω2

α(α2 + ω2)
(3.14)

After computing the Em’s for each mode, we weight them by the square of the mode’s
amplitude. We then sort the modes by decreasing weighted energy. To evaluate Eq. 3.13
we only consider the N modes with highest energy. We re-use the result of this sort for
budget allocation.

We also compute the total energy for a sound, which is used to determine its duration,
typically when 99% of the energy has been played back. We use Eq. 3.13 and an expression
for the total energy (rather than over a frame), given in the additional material (Eq. A.6).

Numerical Validation We use the test scene presented in Sect. 3.3.1 (Fig. 3.6) to per-
form numerical tests with appropriate values for N . We evaluated the average error of the
estimated energy, compared to a full computation. Using 3 modes, for all objects in this
scene, the error is less than 9%; for 5 modes it falls to 4.9%.

3.4.2 A Complete Combined Audio Pipeline

In addition to frequency-domain scalable processing, we can also use the percep-
tual masking and sound-source clustering approaches developed in [Tsingos et al. 2004,
Moeck et al. 2007]. We can thus mix pre-recorded sounds, for which the STFT and energy
have been precomputed, with our frequency domain representation for modal sounds and
perform global budget allocation for all sounds. As a result, masking between sounds is
taken into account, and we can cluster the surviving unmasked sources, thus optimizing the
time for per-sound source operations such as spatialization. In previous work, the mask-
ing power of a sound also depends on a tonality indicator describing whether the signal is
closer to a tone or a noise, noisier signals being stronger maskers. We computed tonality
values using a spectral flatness measure [Tsingos et al. 2004] for several modal sounds and
obtained an average of 0.7. We use this constant value for all modal sounds in our masking
pipeline.

2As we will see in Chapter 5, a simpler and more efficient formula for this same expression is given in
Eq. A.8. We will also propose an even more efficient approximation in the same chapter.
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Figure 3.5: Effect of temporal scheduling; computational peaks are delayed, the slope of
increase in computation time is smoothed out and the duration of peaks is reduced. Data
for the Magnet sequence, starting just before the group of objects hits the floor.

3.5 Temporal Scheduling

One problem with systems simulating impact sounds is that a large number of events may
happen in a very short time interval (debris from an explosion, a collapsing pile of objects,
etc.), typically during a single frame of the physics simulation. As a result, all sounds will
be triggered simultaneously resulting in a large peak in system load and possible artifacts
in the audio (“cracks") or lower audio quality overall. Our idea is to spread out the peaks
over time, exploiting results on audio-visual human perception.

As mentioned in Sect. 1.2.2, there has been extensive study of audiovisual asynchrony
in neuroscience which indicates that the brain is able to compensate for the different delays
between an auditory and a visual event in causal inference. To exploit this property, we
introduce a scheduling step at the beginning of the treatment of each audio frame. In par-
ticular, we maintain a list of sound events proposed by the physics engine (which we call
TempSoundsList) and a list of sounds currently processed by the audio engine (CurrSound-
sList). At the beginning of each audio frame, we traverse TempSoundsList and add up to
20 new sounds to CurrSoundsList if one of the following is true:

• CurrSoundsList contains less than 50 sounds

• Sound s has been in TempSoundsList for more than T ms.

The values 20 and 50 were empirically chosen after experimentation. We use our perceptual
tolerance to audio-visual asynchrony by manipulating the threshold value T for each sound.
In particular we set T to a desired value, for example 200 ms corresponding to the results
of [Guski & Troje 2003]. We then further modulate T for sounds which are outside the
visible frustum; T is increased progressively as the direction of the sound is further from
the center of the field of view. For sounds completely behind the viewer the delay T is set
to a maximum of 0.5 seconds. Temporal scheduling only occurs for impact sounds, and
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not for recorded sounds such as a gun firing which are time-critical and can have a remote
effect.

Our approach reduces the number and density of computational peaks over time. Al-
though some peaks still occur, they tend to be smaller and/or sharper, i.e., occur over a
single frame (see Fig. 3.5). Since our interactive system uses buffered audio output, it can
sustain such sparse peaks over a single frame, while it could not sustain such a computa-
tional overload over several consecutive frames.

3.6 Implementation and Results

Our system is built on the Ogre3D3 game engine, and uses the PhysX4 real-time physics
engine simulator. Throughout this chapter , we use our own (re-)implementations
of [van den Doel & Pai 2003], [O’Brien et al. 2002] and [Raghuvanshi & Lin 2006]. In
our implementation of [O’Brien et al. 2002] we replaced the computationally intensive
force f in Eq.1.2 by the force value reported by PhysX at the nearest surface node to the
impact point. For [van den Doel & Pai 2003], we use T = 512 samples at 44.1KHz; the
size of the impact filter with a force profile of cos(2πt/T ) is T = 0.37ms or 16 samples
(Eq.17 of that paper).

For objects generating impact sounds, we precompute modes using the method of
O’Brien et al. [O’Brien et al. 2002]. Sound radiation amplitudes of each mode are esti-
mated with a far-field radiation model (Eq. 15, [James et al. 2006]).

Audio processing was performed using our in-house audio engine, with appropri-
ate links between the graphics and audio. The audio engine is described in detail
in [Moeck et al. 2007]. In total we run three separate threads: one for each of the physics
engine, graphics and audio. All timings are reported on a dual-processor, dual-core Xeon
running at 2.3Ghz.

Figure 3.6: From left to right, snapshots of the large Magnet scene, the Boxes scene, the
test scene used for numerical validation and our prototype rolling demo.

3http://www.ogre3d.org
4http://www.ageia.com
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3.6.1 Interactive Sessions Using the Pipeline

We have constructed four main scenes for demonstration purposes, which we refer to as
“Oriental”, “Magnet”, “Truck" and “Boxes”; we show snapshots of each in Fig. 3.1 (Truck
and Oriental) and 3.6. The goal was to construct environments which are similar to typical
simulators or games settings, and which include a large number of impact sounds, as well as
several prerecorded sounds. All sounds were processed in the Fourier-domain at 44.1kHz
using 1024-tap FFTs and 50% overlap-add reconstruction with Hann windowing. The
“Oriental” and “Box” scenes contain modal sounds only and thus use the attack preserving
approach (Sect. 3.3.3). Hence, our audio thread runs at 83Hz; we then output reconstructed
audio frames of 512 samples. The physics thread updates object motion at 140Hz, and the
video thread runs at between 30-60Hz depending on the scene and the rendering quality
(shadows, etc.).

The Magnet scene contains prerecorded industrial machinery and closing door sounds,
while the Truck scene contains traffic and helicopter sounds. Basic scene statistics are
given in Table 3.1, for the demo versions of the scenes shown in Figures 3.1 and 3.6, or in
the video - see footnote 1.

Scene O T P Mi M/o

Oriental 173 730K 0 665 214
Boxes 200 200K 0 678 376
Magnet 110 300K 16 971 164
Truck 214 600K 15 268 221

Table 3.1: Basic statistics for example scenes. O: number of objects simulated by the
physics engine producing contact sounds, T : total number of triangles in the scene, P :
number of pre-recorded sounds in the scene and Mi: maximum number of impact sounds
played per frame. M/o: average number of modes/object.

3.6.2 Quality and Performance

We performed two comparisons for our fast modal synthesis: the first was with
the “standard” time-domain (TD) method of [van den Doel & Pai 2003] using re-
cursive evaluation, and the second with the mode-culling time-domain approach
of [Raghuvanshi & Lin 2006], which is the fastest TD method to date. We used the “Ori-
ental” scene for this comparison, containing only modal sounds.

Comparison to “standard” TD synthesis In terms of quality, we tested examples of
our frequency-domain synthesis with 3 and 5 bins per mode, together with a time-domain
reference. The quality for 5 bins is very close to the reference. The observed speedup was
5-8 times, compared to [van den Doel & Pai 2003].
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Scene Total Mixing Energy Masking Clustering
Magnet 3.2 1.3 0.6 1.0 0.3
Truck 2.7 1.5 0.9 0.3 0.1

Table 3.2: Cost in milliseconds of each stage of our full pipeline.

Comparison to mode-culling TD synthesis To compare to mode-culling, we apply
the mode truncation and quality scaling stages of [Raghuvanshi & Lin 2006] at each audio
frame. We then perform fast frequency domain synthesis for the modes which have not
been culled. For the same mode budget our frequency processing allows a speedup of 4-8
times; the difference in speedup with the “standard” TD synthesis is due to implementation
issues. The quality of the two approaches is slightly different for the same mode budget,
but in both cases subjectively gives satisfactory results.

Full Combined Pipeline The above comparisons are restricted to modal sounds only.
We also present results for other scenes, augmented with recorded sounds. These are ren-
dered using our full pipeline, at low overall budgets but with satisfactory quality.

We present statistics for our approach in Table 3.2, using a budget of 8000 bins. First
we indicate the cost (in milliseconds) of each component of our new combined pipeline:
mixing, energy computation, masking and clustering, as well as the total cost. As we can
see there is a non-negligible overhead of the pipeline stages; however the benefit of being
able to globally allocate budget across modal and recorded sounds, and of course all the
perceptually based accelerations, justifies this cost.

The number of sounds at each frame over the course of our interactive test sequences
varied between 195 and 970. If no masking or culling were applied there would be between
30,000 to 100,000 modes to be played per audio frame on average in these sequences.
We use 15,000 to 20,000 frequency bins in all interactive sessions. The percentage of
prerecorded sounds masked was around 50% on average and that of impact sounds was
around 30%.

3.7 Pilot Perceptual Evaluation

Despite previous experimental studies for perceptually based audio rendering for pre-
recorded sounds [Moeck et al. 2007, Tsingos et al. 2004], and the original neuroscience
experiments for asynchrony [Guski & Troje 2003], we consider it imperative to conduct
our own pilot study, since our context is very different. We have two conditions in our
experiment: the goal of the first condition is to evaluate the overall audio quality of our
approximations while that of the second is to evaluate our temporal scheduling.
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3.7.1 Experiment Setup and Procedure

In our experiment we used the Magnet and Truck (Sect. 3.6) environments, but with fewer
objects, to avoid making the task too hard for the subjects. We used two 6 second pre-
recorded paths for each of the two scenes. To ensure that all the stimuli represent the
exact same sequence of events and to allow the presentation of a reference in real-time, we
synchronize all threads and store the output audio and video frames of our application to
disk. Evidently any other delay in the system has to be taken into account. We choose the
parameters of our simulation to be such that we do not perceive “cracks" in the audio when
running interactively with the same budget settings. Video sequences are then played back
during the study. For the reference sequences, all contact sounds are computed in the time-
domain and no perceptual processing is applied when mixing with the recorded sounds in
the frequency domain. We use non-individualized binaural rendering using Head Related
Transfer Functions (HRTFs) chosen from the Listen database [IRCAM 2009].

Figure 3.7: The MUSHRA-like [International Telecom. Union 2003] interface used in our
validation experiment.

The interface is a MUSHRA-like [International Telecom. Union 2003] slider panel
(see Figure 3.7), in which the user can choose between a reference and five different ap-
proximations (A, B, C, D, E), each with a different budget of frequency bins. The subject
uses a slider to rate the quality of each stimulus. One of the five stimuli is a hidden refer-
ence. The radio button above each slider allows the subject to (re)start the corresponding
sequence. For the synchronization condition, we choose one budget which has a good
rating in the quality condition (typically C3 in Table 3.3), and delay the audio relative to
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Budget FFT bins Audio Delay (ms)
Scene C1 C2 C3 C4 T1 T2 T3 T4

Magnet 700 1.5K 2.5K 4K 0 120 200 400
Truck 1K 2K 4K 8K 0 120 200 400

Table 3.3: Budget and delay values used for the perceptual experiments. Ci and Ti are the
budget and delay conditions used.

Percent Perceived Quality % Perceived Asynchrony
Scene C1 C2 C3 C4 Ref T1 T2 T3 T4

Magnet1 51.1 64.7 78.0 83.1 84.9 0 24 48 71
Magnet2 48.8 70.1 76.5 85.2 88.9 10 5 0 10
Truck1 26.3 41.8 54.2 66.0 87.3 24 24 14 38
Truck2 24.8 28.6 42.7 66.0 89.0 14 14 38 29

Table 3.4: Results of our experiments: average quality and percent perceived asynchrony
for the 2 scenes and 2 paths.

graphics by a variable threshold T . The budgets and thresholds used are shown in Table 3.3.
A tick box is added under each sound for synchrony judgment.

The subject listens to the audio with headphones and is instructed to attend to both
visuals and audio. There are 8 panels, corresponding to all the conditions; stimuli are
presented in random order. Detailed instructions are given on screen to the user, who is
asked to rate the quality and tick if asynchrony between audio and visuals is detected.
Rating of each panel is limited to 3 minutes, at which point rating is disabled.

3.7.2 Analysis of the Experiments

We ran the experiment with 21 subjects who were members of our research institutes, and
were all naive about the goal of our experiments. We show the average quality ratings and
the percent perceived asynchrony averages for the experiment in Table 3.4.

As we can see, for the Magnet scene, the budget of 4,000 bins was sufficient to give
quality ratings of 83-85% very close to the hidden reference rated at 84-89%. An analysis
of variance (ANOVA) [Howell 1992] with repeated measures on quality ratings shows a
main effect of budget on perceived quality (F(4,20)=84.8, p<0.00001). For the Truck
scene the quality rating for 8,000 bins was lower. This is possibly due to the fact that the
recorded sounds require a significant part of the frequency bin budget, and as a result lower
the overall perceived quality.

In terms of asynchrony, the results have high variance. However, it is clear that audio-
visual asynchrony was perceived less than 25% of the time, for delays under 200msec.

Overall, we consider these results to be a satisfactory indication that our approxima-
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tions work well both in terms of progressive processing and for our temporal scheduling
algorithm. In particular, there is a strong indication that increasing the budget does re-
sult in perceptually improved sounds, and that only a small percentage of users perceive
asynchrony with temporal scheduling with delays less than 200ms.

3.8 Discussion and Conclusions

We have presented a new frequency-domain approach to modal sound rendering, which ex-
ploits sparseness of the Fourier Transform of modal sounds, leading to a 4-8 speedup com-
pared to time-domain approaches [van den Doel & Pai 2003, Raghuvanshi & Lin 2006],
with slight quality degradation. Furthermore, our approach allows us to introduce a com-
bined perceptual audio pipeline, treating both prerecorded and on-the-fly impact sounds,
and exploiting scalable processing, auditory masking, and clustering of sound sources. We
used crossmodal results on perception of audiovisual synchronization to smooth out com-
putational peaks which are frequently caused by impact sounds, and we performed a pilot
perceptual study to evaluate our combined pipeline.

Use of the Hann window allows direct integration of modal and recorded sounds (see
Sect. 3.4), but leads to lower quality attacks of impact sounds. We have developed a so-
lution to this problem, splitting the treatment of the first frame of each attack into four
subframes with appropriate windows. This solution can be easily used in scenes exclu-
sively containing modal sounds. For the pipeline combining recorded and modal sounds,
and in particular for clustering, we would need a separate buffer for attacks in each cluster
thus performing twice as much post-processing (HRTF processing, etc.). The rest of the
pipeline would remain unchanged. This issue will be addressed in Chapter 5.

We developed an initial solution for rolling sounds in our pipeline, using a noise-like
sound profile, similar in spirit to [van den Doel et al. 2001]. To simulate the continuous
rolling excitation, we precompute a noise profile in the Fourier domain, and perform dy-
namic low-pass filtering based on velocity. Convolution with the excitation is a simple
product in the Fourier domain, making our approach efficient. A first example is shown in
Figure 3.6. Nonetheless, a general solution to continuous excitation in our framework
requires mixing delayed copies of past frames, incurring additional costs. We expect
masking and progressive processing to limit this overhead, similar to the reverberation
in [Tsingos 2005].

Another limitation is the overhead of our pipeline which is not negligible. For practical
usage of real-time audio rendering, such as game engines, we believe that the benefits
outweigh this drawback. In addition to the perceptually based accelerations, we believe that
the ability to treat recorded and synthesized sounds in a unified manner is very important
for practical applications such as games.

Currently, when reducing the budget very aggressively the energy computation can
become a dominant cost. It is possible to precompute a restricted version of the energy,
if we assume that forces are always applied in the normal direction. This is the case for
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recording-based systems (e.g., [van den Doel & Pai 1998]). However, this reduces the flex-
ibility of the system. We address this final issue by approximating the energy in Chapter 5.
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The contributions in this chapter have been accepted for publication in the journal ACM
Transactions on Applied Perception [Bonneel et al. 2010].

4.1 Introduction

Interactive audio-visual virtual environments are now commonplace, ranging from com-
puter games with high-quality graphics and audio, to virtual environments used for train-
ing, car and flight simulation, rehabilitation, therapy etc. In such environments, synthetic
objects have audio-visual material properties, which are often based on physical measure-
ments of real objects. Realistic, high-quality rendering of these materials is a central ele-
ment for the overall realism [Vangorp et al. 2007] and the sense of immersion offered by
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such virtual environments: This is true both for graphics and audio. Real-time or interactive
performance is central to such systems. One way these systems handle the ever-increasing
complexity of the graphics and the sounds is to use level-of-detail (LOD) rendering. This
approach consists in rendering lower quality versions of entities in the virtual environment,
which require lower computation time. As a result, more complex environments can be
rendered. In what follows, we will use the general term material to mean the audio-visual
material properties which are physically measurable. The goal of our study is twofold.
First we ask whether audio and graphics mutually interact in the perception of material
rendering quality, and in particular when independently varying the LOD for both audio
and graphics in an interactive rendering context. Second, if such an interaction exists, we
want to see whether it can be exploited to improve overall interactive system performance.
Therefore, we hope both to identify a perceptual effect of the influence of audio and graph-
ics on material perception and to achieve algorithmic gain.

Given the interactive audio-visual context of our work, we will concentrate on choices
of stimuli which are feasible in the context of such systems. This inevitably leads to the use
of approximations to create LOD for both audio and graphics, so that practical algorithmic
benefit can be achieved. In the virtual environments of this study audio is rendered in
realtime and graphics rendering runs at 29 frames per second.

We have designed an experiment to evaluate whether there is a mutual influence of au-
dio and graphics on the perception of materials. Since we are interested in optimizing the
perception of material quality in an interactive rendering setting, we chose to perform a ma-
terial similarity experiment (see [Klatzky et al. 2000] for a similar experiment on material
perception of contact sounds for audio only).

Stimuli vary along two dimensions: graphics LOD and audio LOD. Participants are
asked to compare these to a hidden audio-visual reference. This reference is rendered
at the highest possible quality given the constraints of the interactive system and stim-
uli are synthetic objects falling onto a table. It is called "hidden" since the participant
is not aware that this stimulus is a reference stimulus. However, this stimulus is in-
deed shown and not hidden to the participant. Audio for contact sounds is provided by
using modal synthesis [van den Doel & Pai 2003], and LOD result from choosing a pro-
gressively larger number of modes. Graphics are rendered using an environment map
and Bidirectional Reflectance Distribution Functions (BRDF) [Cook & Torrance 1982].
A BRDF describes how a material reflects light, and can be measured from real materi-
als [Matusik et al. 2003]. To provide visual LOD, we project the BRDF onto a Spherical
Harmonic basis [Kautz et al. 2002], and increase the number of coefficients to obtain pro-
gressively better visual quality. Increasing the number of modes or spherical harmonic
coefficients in our LOD improves the mathematical approximation, i.e., the error of the
approximations with respect to the high-quality reference diminishes.

Results of the present experiment show that this also results in better perceived quality
for each of audio and visuals independently. Most interestingly, we also show that for this
context there is a mutual influence of sound and graphics on the perception of material
similarity. In particular, if we interpret the similarity rating to a high-quality reference as
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a measure of quality, material quality is judged to be higher when sound LOD is higher.
We highlight how this result can be directly used to significantly improve overall rendering
performance in an interactive audio-visual system. To our knowledge, this study is the
first to demonstrate a combined effect of graphics and audio on a task related to material
perception.

4.2 Methods

4.2.1 Participants

Ten volunteers (7 men) from 23 to 46 years old (mean age 30.8 years, Standard deviation:
7.7 years) participated in the experiment. All had normal or corrected to normal vision and
all reported normal hearing. All were naive to the purpose of the experiment.

4.2.2 Stimuli

We next present a detailed description of both visual and auditory stimuli as presented to
the participants, and the corresponding LOD mechanisms used to create the stimuli.

4.2.2.1 Visual LOD

In order to make our method applicable for realtime rendering, we interactively ren-
der realistic materials with measured BRDF. This rendering can then be used to gen-
erate visual stimuli for the experiment and is also usable in the context of interactive
audio-visual applications (computer games, virtual environments, audiovisual simulations
etc.). Using realtime rendering in the experiment simplifies the potential application of
the results in interactive systems, since the conditions are the same. To achieve re-
altime rendering in complex environments, various approximation have been proposed
which include infinite light sources [Ramamoorthi & Hanrahan 2002, Kautz et al. 2002],
static viewpoint, [Ben-Artzi et al. 2006] and/or static geometry [Sloan et al. 2002,
Kristensen et al. 2005]. We assume infinite light sources through the use of an environ-
ment map which gives the illumination from distant sources (e.g., a panoramic photograph
of the sky). This approximation is reasonable since the environment map was captured at
the true location of the object and the motion of the object is not large compared to the size
of the environment.

A commonly used method to interactively render measured BRDFs with envi-
ronment maps is the projection of the BRDF or visibility and the environment map
into a set of basis functions [Kautz et al. 2002]. This is performed by computing
the scalar product of the BRDF and each basis element. Rendering is performed
by computing the dot product of these coefficients. Choices of the basis functions
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include Spherical Harmonics (SH) [Ramamoorthi & Hanrahan 2002, Kautz et al. 2002,
Green 2003, Kristensen et al. 2005, Sloan et al. 2002], Wavelets [Ng et al. 2003], Zonal
harmonics [Sloan et al. 2005] or any other orthogonal basis.

We have chosen BRDF rendering with SH projection because it allows a relatively
smooth increase of material quality when increasing the number of coefficients (i.e., num-
ber of basis functions used in the calculation). Additionally, the increase in number of
coefficients is directly related to the specularity (or glossiness) of the material: higher de-
gree SH basis functions correspond to higher frequencies and thus well represent glossier
materials or lighting.

In what follows, we will assume (θi, φi) to be the incoming light direction, (θo, φo) the
outgoing view direction, Yk the k’th basis function, fk the projection of the function onto
a SH basis function, and N the number of SH bands.

Spherical Harmonics form a basis of spherical functions. A BRDF can thus be approx-
imated by the sum of N2 of these function bases as:

f(θi, φi, θo, φo) cos θi =
N2X
k=1

Yk(θi, φi)fk(θo, φo)

The environment map can also be decomposed into N2 SH :

L(θi, φi) =
N2X
k=1

Yk(θi, φi)Lk,

where Lk is the coefficient of radiance for the kth basis function. Because of SH
orthogonality, rendering a point x consists in computing the dot product to find the outgoing
radiance L(x):

L(x) =
N2X
k=1

fk(θo, φo)Lk

Note that, following standard practice, we included the cos θi term which takes into account
the attenuation due to incident angle into the BRDF without loss of generality.

In practice, the coordinate system (CS) of the environment map (world CS) has to
be aligned with the BRDF CS (local CS). Thus, to efficiently render the scene, we pre-
computed an environment map with SH rotations into a 128 ∗ 128 ∗ N2 cubemap con-
taining multiple rotations of the environment map’s SH, and a 128 ∗ 128 ∗ N2 cubemap
for the BRDF containing SH for multiple outgoing directions. This method is similar
to [Kautz et al. 2002], except for SH rotations which are all precomputed and tabulated for
efficiency. We did not take visibility into account since our stimuli consisted of a single
object falling with no occlusion of light coming from the environment map. Self occlusion
with respect to the environment map was also negligible.

For visual rendering, previous studies [Fleming et al. 2003] show that using natural
outdoors illumination of the object can aid in material perception. We thus chose a configu-
ration (outdoor summer scene, with occlusion of the sky by trees) where light had relatively
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high frequencies to avoid impairing material appearance by having a “too diffuse” look. We
acquired a High Dynamic Range (HDR) environment map and integrated the stimuli into a
HDR photo consistent with the environment map, with a method similar to [Debevec 1998].
Shadows were computed with a Variance Shadow Map [Donnelly & Lauritzen 2006].

We also chose glossy materials to be able to get a sufficient number of levels of
detail when increasing the number of SH basis functions. Lambertian surfaces are
already very well approximated with 3 SH bands [Ramamoorthi & Hanrahan 2001a,
Ramamoorthi & Hanrahan 2001b].

Rendering was performed using deferred shading to floating point render targets
(High Dynamic Range rendering) and Reinhard et al’s global tonemapping opera-
tor [Reinhard et al. 2002] was applied to account for low dynamic light intensity range
of monitors and human eye sensitivity. Interactive rendering (29 frames per second (fps))
was achieved for up to 12 SH bands.

The visual rendering time was kept constant between LODs by adding idle loops in or-
der to slow down low visual LODs to avoid subjects being disturbed by varying framerate.

4.2.2.2 Sound LOD

Contact sounds of rigid objects can be realistically generated in several ways. The
context of interactive audio-visual rendering precludes the use of physical models such
as the one used in [McAdams et al. 2004] applicable for bars only or recorded sounds
in [Giordano & McAdams 2006]. In contrast, as we have seen in previous chapters,
tetrahedral finite elements methods provide an accurate simulation of object deforma-
tions [O’Brien et al. 2002], for complex object shapes such as those used in computer
games. The method is used to solve the linear elasticity problem of objects of general
shapes, under small deformations (Hooke’s law) which is suitable for vibrating objects.
This approach results in a set of vibrational modes which are excited with a force at each
contact. Each mode results in an audio stream, given as a sine wave of the modes’ fre-
quency modulated by an exponential decay and a constant amplitude. In this way, comput-
ing a contact sound s(t) over time t consists in computing a sum of N modes:

s(t) =
NX
n=1

ane
−αnt sin(ωnt)

where an is the mode amplitude which is computed in realtime, αn is the decay (in
seconds−1) which indicates how long the sound of mode will last, and ωn is the frequency
(in radians per second). The simulation was performed using filled solid objects, and sound
radiation amplitudes of each mode were estimated using a far-field radiation model (see Eq.
15 in [James et al. 2006]).

Varying the sound LOD consists in varying the number of excited modes N , or mode
culling [Raghuvanshi & Lin 2006]. In our case, we order modes by energy similarly to
Chapter 3. We found that this ordering provided good quality sounds, in particular when
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small numbers of modes are used. A pilot experiment was performed for a given set of
mode budgets, and the best sounding values were selected. This pilot experiment also
guided our choice of sorting by energy compared to other possible orderings (e.g., by am-
plitude [van den Doel et al. 2002]).

4.2.2.3 Comparison of audio and visual stimuli

Both SH and Modal synthesis refer to a projection of a scalar field (the directional re-
flectance, the incident radiance and the displacement of each node of the tetrahedral mesh)
into a set of functional basis. The common point of these bases is that they both refer to the
eigenvalues of a Laplacian operator either over a sphere (which gives Spherical Harmonics)
or over the mesh (which gives vibrational modes). Thus, they both lead to the same type of
reconstruction errors: fewer basis functions results in a smoother reconstructed function, if
basis functions are sorted by their frequency (mode frequency or SH band). The combined
choice of these two methods for audio and visual is thus consistent.

4.2.2.4 Objects, materials and LOD choices

Shapes were carefully chosen to facilitate material recognition. We use two objects iden-
tified by the study of [Vangorp et al. 2007]: the Bunny and the Dragon (see Fig. 4.1, 4.2).
According to this study, both of these shapes convey accurate perception of the material of
the objects.

We further make use of the study proposed by [Giordano & McAdams 2006] (see sec-
tion 1.2.3) to determine the materials used in our experiment. In particular, we used Gold
(similar to steel in the steel/glass material category of that study) and plastic (similar to
plexiglass in the plexiglass/wood category).

Visual rendering was performed using measured BRDFs “gold-metallic-paint3" and
“specular-green-phenolic" from the database of [Matusik et al. 2003].

We selected five different levels of visual quality, and five levels of sound quality. They
were chosen so that perceptual degradations were as close as possible to uniformly dis-
tributed; given the discrete nature of the BRDF LOD, the choices were however very lim-
ited. The validity of the LOD choices is discussed in section 4.1. Some of the visual
stimuli can be seen in the first two rows of Fig. 4.1 and 4.2. We did try to find a smoother,
perceptually-based way of automatically choosing these LOD, but given that stimuli are
animated sequences, and the limited choice of detail levels mentioned above, this was not
possible.

The LOD used in the experiment correspond to budgets given in table 4.3. Budgets
represent the number of modes mixed for sound, or the number of SH bands for graphics.

Given the interactive rendering context, the highest quality or “reference" solution is
still an approximation. To verify how far these are from the “ground truth" we computed
static offline references by sampling the rendering integral over the environment map. The
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Plastic Bunny Plastic Dragon

Figure 4.1: First row: lowest visual LOD. Second row: highest visual LOD. Both were
rendered interactively in the experiment. The last row shows the offline reference rendering
of each object for Plastic.

use of SH stored in a spherical parametrization leads to distortion near the singularity, and
given that we can handle at most 12 bands in realtime, the reference renderings are not
exactly the same as the 12 bands stimuli which serve as references in the experiment. No
particular treatment has been applied to limit ringing since it would result in a reduction of
high frequencies (low pass filtering) which is undesirable for glossy materials. As noted
by [Kautz et al. 2002], ringing is also masked by bumpy complex models.

Overall, as can be seen by comparing the middle and last rows of Fig. 4.1 and 4.2,
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Gold Bunny Gold Dragon

Figure 4.2: First row: lowest visual LOD. Second row: highest visual LOD. Both were
rendered interactively in the experiment. The last row shows the offline reference rendering
of each object for Gold.

the differences between our highest quality interactive rendering and the offline reference
are overall acceptable, although our rendering has more contrast due to the approximations
described above. This comparison is provided to give some evidence that the highest qual-
ity interactive rendering is close to the true offline reference. The use of more Spherical
Harmonic bands slows down the visual rendering and results in desynchronization between
audio and visuals. Since we target interactive applications (see Sec.4.4.4), we decided to
only use interactively rendered stimuli for testing. However, since we do not show a true
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Bunny Dragon
Gold Plastic Gold Plastic

LOD BRDF Sound BRDF Sound BRDF Sound BRDF Sound
1 3 8 2 4 3 8 2 17
2 4 20 3 23 4 26 3 34
3 5 28 4 34 5 39 4 62
4 9 81 7 58 9 109 7 103
5 12 409 12 233 12 439 12 346

Figure 4.3: LOD used for the experiment. BRDF represents the number of SH bands, while
Sound represent the number of modes.

reference to participants, we believe that our current highest quality renderings convey a
plausible representation of plastic and gold materials. Consequently, we believe that higher
quality interactive renderings should not impact the results of our present study.

Figure 4.4: Screenshot of the user interface. Note that the 83 trials indicated in the lower
right corner include 8 training trials.

4.2.3 Procedure

In each trial, two sequences are shown to the participant. In each sequence an object falls
onto a table and bounces twice, producing audible bounce sounds. One of the two se-
quences is a reference (i.e., highest quality) rendering both in audio and graphics. The
participant is unaware of this. The object falls for 0.5 seconds, while the total length of the
sound varies from 0.5 and 1.5 seconds starting at the time of the impact. The duration of
the sound is of course shorter for plastic and longer for gold, and also depends on the object
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shape. Participants were asked to rate on a scale from 0 to 100 the perceived similarity of
the materials of the two falling objects “A" and “B". Since the subjects rate similarity to
a high-quality reference rendering of the material, this can also be seen as an implicit ma-
terial quality test. This point will be discussed in section 4.4.4. Printed instructions were
given before starting the experiment. An initial pair was presented separately to the partic-
ipant showing the worst quality audio and visual with the highest quality audio and visual.
Participants were told that this pair should be considered as the most different pair and they
were explicitly told that this pair represented the lowest score (i.e., the “weakest feeling of
the same material”). Participants were asked to attend to both modalities simultaneously.
They were also asked not to pay attention to the shadows and the motion of the object itself.
Each trial was completed in 8 seconds on average. A short training was performed at the
beginning of the experiment, consisting in 8 trials.

The experiment is naturally divided into four blocks based on the combination of Ob-
ject and Material. Participants performed the blocks in counterbalanced order. For each
of these blocks, two main parameters vary: Sound LOD (the quality, or LOD of the con-
tact sounds of the falling objects was controlled by varying the number of modes used for
modal synthesis) and BRDF LOD (the quality of the material rendering was controlled by
varying the number of SH coefficients used for each LOD). Each trial was repeated three
times. The order of the stimuli presentation was pseudo randomized. For each block and
each trial we measure the similarity rating.

4.2.4 Apparatus

Audio was rendered on headphones and spatialized with stereo panning in front of the
participant. The visual algorithms were implemented in a game-oriented rendering engine
(Ogre3D), with a high quality graphics card (GeForce 8800GTX). Screen resolution was
1600x1200 on a 20.1 inch screen (DELL 2007FP), and the rendering ran at about 29 fps
in a 700x700 screen (700x561 being devoted to the stimuli, the rest for the interface, see
Fig. 4.4). Responses were given on a standard keyboard. Two keys were selected to switch
between stimuli with the letters “A" and “B" being highlighted respectively on the top left
or right of the interface (Fig. 4.4). Rating was performed on a finely discretized scale from
0 to 100: the cursor could be moved by 0.5% using the left and right arrows. The Return
key was used to validate the choice and go to the next trial. Ratings were recorded, as well
as the number of times each of the two stimuli was played (hidden reference and degraded
LOD - see Procedure, Sec. 4.2.3).

4.3 Results

4.3.1 Similarity ratings

For each experimental block we performed a 2-way-repeated-measure analysis of variance
on the similarity ratings. The two independent factors considered were BRDF LOD and
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Gold Plastic

Bunny

Dragon

Figure 4.5: Average mean ratings of material similarity depending on visual LOD for
each object and material. Error bars represent the Standard Error of Mean (SEM). The
similarity rating increased with the number of SH bands for graphics. This result confirms
that visual LOD were well chosen for each object and material.

Sound LOD (each with five levels). To account for violations of the sphericity assumption,
p-values were adjusted using the Huynh-Feldt correction. p < 0.05 was considered to be
statistically significant.

A first global analysis (a repeated-measures ANOVA with Object, Material, BRDF
LOD, Sound LOD and Repetition as within-subjects factors) showed that there was no
significant main effect of Repetition, and no significant interaction between Repetition and
other factors. This result indicates that participants performed the task well and were stable
in their judgment across one experimental block. We thus performed all furthering analysis
on the mean rating over the three repetitions.

4.3.1.1 BRDF and Sound

For each material and object, the ANOVA revealed a significant main effect of BRDF LOD
(Gold Bunny: F4,36 = 72.03; ε = 0.87; p < 0.0001, Plastic Bunny: F4,36 = 128.85;
ε = 0.79; p < 0.0001, Gold Dragon: F4,36 = 22.40; ε = 0.52; p < 0.0001, Plastic
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Gold Plastic

Bunny

Dragon

Figure 4.6: Mean ratings and SEM of material differences depending on sound LOD for
each object and material. When increasing the number of modes for the sound, we indeed
observe a better perception of material quality.

Dragon: F4,36 = 38.21; ε = 0.53; p < 0.0001). These results show that an increase in the
quality of the BRDF gives improved ratings of similarity with the reference (see Fig. 4.5).

Similarly, the ANOVA revealed a significant main effect of Sound LOD (Gold Bunny:
F4,36 = 144.82; ε = 0.59; p < 0.0001, Plastic Bunny: F4,36 = 55.80; ε = 0.83;
p < 0.0001, Gold Dragon: F4,36 = 62.95; ε = 0.54; p < 0.0001, Plastic Dragon:
F4,36 = 44.95; ε = 0.52; p < 0.0001). In a manner similar to BRDF LOD, increasing
the LOD of the modal synthesis improves the similarity rating with respect to the reference
(see Fig. 4.6).

We performed post-hoc analyses (Bonferroni) comparing all pairs of BRDF LOD and
all pairs of Sound LOD. All were significantly different (p < 0.02) except for the following
cases: for the Gold Bunny, BRDF LOD 1 and 2 (p = 1.0) and BRDF 2 and 3 (p = 0.51),
and for its sound LOD, levels 4 and 5 (p = 1.0); for the Plastic Bunny, BRDF LOD 2 and
3 (p = 0.10), and 4 and 5 (p = 0.22) and for its sound LOD, levels 3 and 4 (p = 1.0), 3
and 5 (p = 1.0) and 4 and 5 (p = 1.0); for the Gold Dragon, BRDF LOD 2 and 3 (p = 1.0)
and 4 and 5 (p = 1.0), and for its sound LOD, levels 3 and 4 (p = 1.0); for the Plastic
Dragon, BRDF 2 and 3 (p = 1.0) and 4 and 5 (p = 1.0), and for its sound LOD, levels 2
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and 3 (p = 1.0).

Gold Plastic

Bunny

Dragon

Figure 4.7: Interaction between BRDF and sound: Mean similarity ratings and SEM of the
different BRDF LOD and Sound LOD, for the two different objects and the two different
materials. Blue, red, green, pink and black bars represent increasing sound LOD while
the main horizontal axis represents increasing BRDF LOD. When varying sound quality,
greater perceived differences can be seen at high BRDF quality rather than at low BRDF
quality.

4.3.1.2 Interaction between BRDF and Sound

The most interesting aspect for this work is the interaction between BRDF LOD and Sound
LOD. The ANOVAs also revealed that for each material and object, a significant interaction
between BRDF LOD and sound LOD exists (Gold Bunny: F16,144 = 14.95; ε = 0.32;
p < 0.0001, Plastic Bunny: F16,144 = 17.11; ε = 0.45; p < 0.0001, Gold Dragon:
F16,144 = 9.14; ε = 0.32; p < 0.0001, Plastic Dragon: F16,144 = 5.12; ε = 0.70;
p < 0.0001); see Fig. 4.7. This indicates that the quality of sound and the quality of BRDF
rendering mutually interact on the judgment of similarity and that the final material quality
judgement is not simply a combined weighting of visual and audio quality.
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4.3.1.3 Other Interactions

As discussed earlier (Sect. 4.2.2.4), BRDF LOD and Sound LOD did not take the same
values between the two different materials and the two objects. As a consequence, the
previous ANOVAs were conducted on each material and object to identify the effect of
these specific LOD on similarity ratings.

Figure 4.8: Interaction between BRDF and Material. Mean similarity ratings and SEM of
the BRDF LOD per material. We were obliged to choose different BRDF LODs for each
material to accommodate the differences of the perceived materials. Given the discrete
nature of the BRDF LODs we see that the choice of LOD results in similar similarity
ratings.

We are also interested in exploring the potential differences between the two objects or
the two materials in more detail. To do this, a repeated-measures ANOVA including Object,
Material, BRDF LOD and Sound LOD as within-subjects factors was also performed. This
ANOVA revealed, as could be expected from the preceding analysis, a main effect of BRDF
LOD (F4,36 = 89.57; ε = 0.56; p < 0.0001), Sound LOD (F4,36 = 154.34; ε = 0.70;
p < 0.0001), and an interaction effect between BRDF LOD and Sound LOD (F16,144 =
29.46; ε = 0.44; p < 0.0001). It also revealed an interaction effect between Material and
BRDF LOD (F4,36 = 6.53; ε = 0.61; p < 0.0005), (see Fig. 4.8), Material and Sound
LOD (F4,36 = 4.86; ε = 0.71; p < 0.003), and Object and Sound LOD (F4,36 = 14.75;
ε = 0.90; p < 0.0001). No significant main effects of Material or Object were shown.

Interaction between Material and Sound LOD as well as Object and Sound was due to
very small differences between similarity ratings for Gold or Plastic.
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4.4 Discussion

This experiment demonstrated an interaction between BRDF and Sound LOD, which has
significant algorithmic consequences. We also discuss the validity of stimuli and some
potential avenues for generalization of this work.

4.4.1 Stimuli Validation

Both visual and audio LOD have been manually chosen in order to be as perceptually uni-
form as possible, when taken independently, with careful inspection. This section describes
a validation of this manual choice.

A first validation of the choice of stimuli can be performed by observing perceived ma-
terial similarity with the reference for increasing BRDF LOD alone and increasing Sound
LOD alone; this is shown in Figures 4.5 and 4.6. With the exception of sound levels 2 to
3 for the Plastic Dragon, material quality was overall rated as increasing when the quality
of one modality alone increases. This is a strong indication that the choice of stimuli (see
Sect. 4.2.2) is valid and allows us to have confidence in our results. However, although
increasing, material quality does not seem to be perceived as linearly correlated with the
sound LOD for the Bunny (Figure 4.6), for the highest two LODs. This may suggest that
differences in the last two audio LODs that have been perceived in the manual selection
phase have not been detected by the participants, or that the perceived difference does not
impact the perceived quality of the material. In terms of material perception, the audio
LODs do not reach the same uniformity as in the manual selection process which only
took into account audio quality without any material consideration. This result could indi-
cate that the number of modes can be reduced significantly without affecting the perceived
quality of the material, although possibly affecting the perceived quality of the sound itself.

Although there was no significant difference between all LOD for graphics as well as
for sound, there is a clear tendency (see Fig. 4.5 and Fig. 4.6): similarity increases as LOD
increases. This confirms that our choice for each LOD was reasonable.

As noted previously, we chose different LOD for the different materials. In Fig.4.3 we
see the different choices for visual and audio LOD for each of the two materials, and in
Fig.4.8 their respective ratings. If we had chosen the same visual LOD for both Gold and
Plastic, ratings would significantly differ from Gold to Plastic. Recall that the choice of SH
bands is discrete, and thus no intermediate choice was possible.

4.4.2 BRDF SH Rendering

Another interesting observation is the lack of perceived differences between BRDF LOD
4 and 5 (see Fig. 4.5). This means that we could easily render 9 SH bands (i.e., 81 co-
efficients) for Gold or 7 (i.e., 49 coefficients) for Plastic instead of 12 bands (144 coeffi-
cients) without perceivable difference in material similarity. For comparison, the rendering
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A B

Figure 4.9: The Gold Dragon with the third visual quality (A) and the best visual quality (B
- visual hidden reference). When using the highest audio quality the approximation A was
rated as being very similar to the hidden audiovisual reference (72 on a scale of 100). In
contrast, the best visual quality (B) when seen with Sound LOD equal to 3 (intermediate),
was actually judged to be less similar (61 on a scale of 100) than the audiovisual reference.

time for 12 bands is 17.8ms (without additional cost), whereas it is 6.6ms for 9 bands
and 1.2ms for 7 bands. Previous work on Spherical Harmonics lighting observes that 3
SH bands were enough to render Lambertian surfaces ([Ramamoorthi & Hanrahan 2001a,
Ramamoorthi & Hanrahan 2001b]) given the fast decay of SH coefficients for the Lamber-
tian term. In our context, our experimentation indicates that 7 (plastic) or 9 (gold) bands
could be enough to render glossy materials like metallic BRDFs, giving the impression of
an unchanged material compared to the reference. However, it does not preclude visible
pixel-per-pixel differences.

4.4.3 Interaction between Sound and Visual Quality

The most interesting result is the interaction between BRDF and sound LOD in perceived
quality. If we interpret similarity to the reference as a measure of quality, we see that,
for the same BRDF LOD, material quality is judged to be higher when the sound LOD is
higher. This can be seen in the different-colored bars for each BRDF LOD in Fig. 4.7.

As an example consider the BRDF LOD 3 with the Sound LOD 5 in all objects and
materials (see Fig. 4.7). Material similarity compared to the reference is overall rated at
the same level as the BRDF LOD 5 with Sound LOD 2. This clearly indicates that the
sound LOD can perceptively counteract a low number of SH bands (see also for example
Fig. 4.9).

This result is important since the cost of rendering better quality sound is typically
much lower than the cost of better quality BRDF rendering. This is because, computing
the dot product for BRDF rendering requires O(N2P ) operations where N is the number
of SH bands (representing N2 SH basis functions) and P is the number of pixels drawn on
screen, whereas the sound requires O(M) operations where M is the number of modes.
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Considering the quadratic increase in computational cost for BRDF rendering compared to
the linear cost in modal sound rendering, it is more beneficial to reduce graphics quality
while increasing audio quality for the same global perceived material difference to the
reference.

To get a feeling for the practical implications of this result, the computation time of
the third sound LOD is about 0.21ms and for the highest quality 1.95ms. For BRDFs,
the computation time (performed on GPU) for the third quality is about 0.5ms (with an
additional 16.7ms of constant cost for soft shadows, deferred shading pass and rotations)
whereas it is 17.8ms (in addition to the 16.7ms constant cost) for the highest BRDF quality.
In this particular case, we have a gain of 15.56ms per frame if we choose our BRDF and
sound LOD based on the results of our study. Another way to see this is that the frame rate
(assuming this BRDF rendering to be the only cost), would increase from 30fps to 60fps.
This gives a very strong indication of the utility of our results.

Besides the very promising algorithmic consequences of our findings, we believe that
the actual effect of audio-visual interaction on material perception we have shown could
be very promising in a more general setting. Given the interactive rendering context of
our work, and the consequent constraints, we were in some ways limited (discrete levels of
detail, some parameters which are only loosely related to physical quantities etc). Nonethe-
less, to our knowledge this is the first study which shows interaction of audio and graphics
in a material perception task. We thus are hopeful that our finding will be a starting point for
more general perceptual research, in which the constraints of interactive rendering will not
be required. This could allow the use of parameters such as decay for sound synthesis or a
continuous visual level of detail parameter, and lead to wider, more perceptually-motivated
results.

4.4.4 Algorithmic Generalization

Evidently, our study is only a first step in determining the combined influence of sound
and visual rendering quality on perceiving material similarity, and in particular similarity
to a “gold standard” reference. Our study only examined a limited setting with two objects
and two materials, although the choice of materials corresponds to hopefully representative
classes of material properties. Our approach is thus still limited to two dimensions, eval-
uating the perceived quality based on 2 parameters: BRDF and audio LOD, with a sparse
sampling of geometries (dragon and bunny) and a sparse sampling of materials (gold and
plastic). In future work, it would be interesting future to sample the space of geometries
and materials more accurately, and determine a fully general four dimensional mapping of
the perceived quality depending on BRDF, audio, geometry and material properties.

Clearly the similarity to best-quality is not a direct quality judgment. However, in
the context of interactive rendering for example, the end result is essentially the same.
If we assume that the best-quality result is sufficient for a given interactive application,
clearly it is beneficial to spend significantly lower computational resources with the same
perceived result. On the other hand, under no circumstances should our results be taken as
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an accurate predictor of quality for all conditions, for example if users carefully examine a
video sequence to detect image or audio artifacts.

More extensive studies of different material types and object geometries should be
undertaken, including more objects made of several different materials. Material and ge-
ometry, together with illumination, were the parameters used to study visual equivalence
in computer graphics [Ramanarayanan et al. 2007]; an interesting extension of our study
could be to use a similar set of values. We believe that extensions to our results could have
a significant potential and utility in an algorithmic context, when managing audio-visual
rendering budgets with a global approach. For example, we have applied our results in an
algorithmic context in [Grelaud et al. 2009].

4.5 Conclusion

Our goal was to determine whether the combined quality levels of visual and sound ren-
dering influence the perception of material, and in particular in the context of interactive
systems. The constraints of interactive rendering led us to choose Spherical Harmonic-
based levels of detail for BRDF rendering, and a mode-culling contact sound synthesis
approach. We designed a study in which subjects compare the similarity of interactive
sequences with a given audio-visual reference (i.e., high-quality sound and graphics).

The results of our study show that, for the cases we examined, better quality sound
improves the perceived similarity of a lower-quality visual approximation to the reference.
This result has direct applicability in rendering systems as we will show in Chapter 5, since
increasing the visual level of detail is often much more costly than increasing the audio
level of detail. The examples provided show potential for significant computation time
savings, for the same, or even better perceived material quality.

To our knowledge, our study is the first to demonstrate interaction between audio and
graphics in a task related to perception of glossy materials. The use of lower visual quality
stimuli would result in a more diffuse aspect, similar to matte plastic. Our findings in terms
of material perception are thus conditioned by the choice of our stimuli. This was validated
in section 4.4.1. Given our motivation for interactive audio-visual rendering, we were
necessarily constrained in our choices of stimuli and the extent of our setup. Nonetheless,
we are hopeful that our initial study, which indicates the existence of a potentially cross-
modal audiovisual effect on material recognition, will inspire more perceptually oriented
studies in a more general context.

In the following chapter, we will see how this experimental study can result in a com-
putational benefit. In particular, we can automatically choose the tradeoff between audio
and visual quality of a material in a realtime rendering context in order to obtain the high-
est perceived material quality with a constraint on the audiovisual computational rendering
cost.
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Using our approach, we can render sounds for We use crossmodal perception to jointly select
larger number of impact sounds in real time. the level of detail for sound and graphics.

Figure 5.1: Illustration of our results.

The contributions in this chapter have been published at the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games [Grelaud et al. 2009].
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5.1 Introduction

To conclude the first part of this thesis, we present a unified pipeline for crossmodal algo-
rithms.

Our previous use of synthesized impact sounds in a scalable pipeline (see Chapter 3)
provides an efficient way to generate impact sounds produced by physical events. Also, we
used a crossmodal scheduling algorithm based on our perception of asynchrony to delay
the introduction of new impact sounds when the processor is overloaded (see Chapter 3,
Section 3.5), and presented a way to take into account audiovisual spatial tolerance in a
clustering algorithm (see Chapter 2).

However, the combination of impact and pre-recorded sounds involves a non-
negligible overhead due to energy computation, thus mitigating the potential gains from
using the techniques of audio clustering, masking and scalable processing developed
in [Tsingos et al. 2004, Moeck et al. 2007]. Indeed, masking effects potentially allow the
culling of large fraction of sound sources which will not be computed. In the case of impact
sounds which are costly to compute, such masking would allow a large speed-up.

While crossmodal perception has been successfully used to improve audio rendering,
to our knowledge there is no previous method which uses crossmodal perception simulta-
neously for graphics and audio rendering, and in particular, level-of-detail selection. This
could be beneficial since our experience of virtual environments is inherently bimodal,
particularly if there is mutual influence of sound and visuals on perception which we can
exploit algorithmically. We reported such mutual influence for our perception of materials
in Chapter 4.

In this chapter we address the two issues discussed above: We present a new fast
approximation to energy estimation for impact sounds, allowing us to fully exploit the ben-
efits of the scalable processing pipeline of [Moeck et al. 2007]. We also introduce a joint
audio-visual level-of-detail selection algorithm based on our study on material perception
(see Chapter 4). We also show how to integrate high-quality “attacks” (e.g., the onset of an
impact sound) into the full audio processing pipeline, and present a full crossmodal audio-
visual processing pipeline which is suitable for games. We have integrated our results in an
experimental, but quite complete, game engine [Chiu 2008], putting together all of these
contributions and showing their applicability to computer games.

5.2 Efficient Energy Computation for Impact Sounds

The use of a combined audio rendering pipeline for both recorded and impact sounds has
a high potential for benefit, since we get significant speed benefits using masking and
clustering [Tsingos et al. 2004], and we have a smooth quality/cost tradeoff using scalable
processing [Moeck et al. 2007]. An initial approach integrating this pipeline with impact
sounds was presented in Chapter 3. However, the full potential benefit of this combined ap-
proach is hindered by the relatively high cost of the computation of impact sounds energy,
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which is required both for masking and scalable processing.

For recorded sounds, the energy is precomputed for each sound file to avoid on the
fly computations. In the case of impact sounds, this energy cannot be precomputed since
sounds are generated on-the-fly during the simulation. Online energy computation based
on the values in the current audio buffer would be costly and pointless, since the goal is to
avoid computing the audio signal if it is masked by other sounds. We thus require a quick
estimate of energy without actually computing the impact sound.

5.2.1 Energy Computations for Masking and Scalable Processing

We first briefly summarize the energy computations required to use impact sounds with
the combined pipeline. Computations occur at two instants in time: at impact and at each
frame. In Chapter 3, at each impact the total energy of each mode was efficiently com-
puted. At each frame, the energy of the sound over the frame was then estimated using
scalar products of a subset of the modes of the sound. This approximation was shown to
work well for impact sound processing but still required much computational effort per
frame.

The solution we show here, together with the integration of attack processing in clus-
tering (Sect. 5.4) allows the full and efficient integration of high-quality impact sounds into
a practical audio processing pipeline.

5.2.2 An Efficient Energy Approximation for Impact Sounds

We assume that the power (energy per unit time, that we will call "instant energy") of an
impact sound decreases exponentially:

E(t) = Ae−αt (5.1)

Thus if we know the parameters A and α of this exponential, we can easily compute an
approximation of the energy in a given frame, by analytically integrating over the desired
interval. The two unknown parameters A and α satisfy two equations concerning the en-
ergy:

ETot =
Z ∞

0
Ae−αtdt (5.2)

EPart =
Z T

0
Ae−αtdt (5.3)

Thus, given the total energy ETot of the sound and a partial energy EPart, we are able to
exactly determine parameters A and α.

These parameters are thus given by the following equations:

α = − 1
T

log(1− EPart
ETot

) (5.4)
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Figure 5.2: Plot of the instant energies computed with our approach (red), our previous
energy computation (Chapter 3) (cyan), and the reference (blue), over the length of an
impact sound on two scenes. Also shown the reference energy computed with 10 modes,
simulating what our approach computes. Note that our approximation is much more effi-
cient. Left: “Cans” sequence, right “Crates” sequence.

A = α ETot (5.5)

The energy Es for each frame is computed by integrating Eq. 5.1, which represents a
negligible computation cost per frame:

Es = − 1
α
.(E(t+ ∆t)− E(t)) (5.6)

However, computing these values require the knowledge of a partial energy EPart for
the system to be solved. This can be achieved efficiently, also by computing scalar prod-
ucts. We found that the scalar product S of two modes m1 and m2 taken from 0 to T can
be easily computed via the expression of the scalar product Q of those two modes taken
from 0 to infinity:

S = < m1,m2 >

=
Z T

0
e−a1t sin(ω1t)e−a2t sin(ω2t)dt

= (1− e−T (a1+a2))Q

(5.7)

with
Q =

Z ∞
0

e−a1t sin(ω1t)e−a2t sin(ω2t)dt

=
2(a1 + a2)ω1ω2

((a1 + a2)2 + (ω1 + ω2)2)((a1 + a2)2 + (ω1 − ω2)2)

(5.8)

The partial energyEPart is computed by summing the pairwise scalar product of a subset of
highest energy modes, similar to the computation of the total sound energyETot previously
used. A typical value for T is 10ms. This optimization process is performed only once per
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impact, and does not have to be repeated per frame. Also, since Q is already computed to
get the total energy of the sound, the only additional per-impact cost is the computation of
an exponential function. Only the simple Eq. (5.6) has to be computed per frame for each
impact sound, which represents a negligible cost. Our new approximation thus allows faster
computation of the instant sound energy which is used for masking and budget allocation.

Figure 5.3: Two frames from the test sequence used for the fast energy estimation evalua-
tion (see text).

5.2.3 Numerical Evaluation and Speedup

We performed a numerical evaluation of our energy estimation approach on two sequences.
These scenes are respectively a can and a crate falling on the ground (see Fig. 5.3).

We computed the exact energy Es of each impact sound in each frame using all the
modes, and we plotted this compared to our approximation in Fig. 5.2, over 86 frames for
both sequences. As we can see, our approximation is overall accurate, with an average
L1 relative error of 24% for “Cans” and 27% for “Crates”. Each can had a mesh of 415
elements, and used 113 modes; and for each crate there are 497 elements and 362 modes.

If we use the approximation given in Chapter 3, the average cost of the energy is 0.2
ms per frame for the “Cans” sequence and 0.2 ms per frame for “Crates”. In contrast, our
approximation requires about 1µs and 0.8µs respectively for each sequence, corresponding
to a speedup of 200 and 250 times. In addition, for sounds with large numbers of elements,
which are required for sounds with fast decaying, high frequency modes, a higher number
of modes is required for the approximation. Given the low cost of our approach, we can
thus significantly improve the energy approximation without significant overhead in this
case.
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5.3 Crossmodal Audio-visual LOD Selection

We develop a crossmodal audio-visual level-of-detail selection algorithm based on the per-
ceptual study performed in Chapter 4. We use the main result of that study, concerning
the mutual influence of sound and graphics on how users perceive material. While this ap-
proach only applies when objects are actually sounding, i.e., during impacts, this is when
a large number of sound events occur, resulting in a significant additional load to the sys-
tem. As a result, there is strong potential for gain using our selection method. Indeed,
since audio rendering is much cheaper than spherical harmonic (SH) lighting, we can take
advantage of the crossmodal influence of audio and visuals on the perceived quality, by
reducing visual LOD and increasing audio LOD. According to the study, in this case the
perceived similarity with a reference rendering will remain very high, despite the signifi-
cantly reduced computational cost.

In the experiment, the LOD used are the number of bands of the spherical harmonics for
the rendering of the BRDF using an environment map, and the number of modes used for
modal sound synthesis. Also, two materials were used (gold and plastic), and two different
objects were studied (bunny and dragon model). For the case of the golden bunny, we
can plot the results as shown in Fig. 5.4. In the context of an audio-visual 3D rendering
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Figure 5.4: Material rating depending on sound and visual LOD, and the 1.4ms threshold
cost (threshold for P = 1000 shaded pixels – the size of the object on the screen). Golden
bunny.

engine, we can interpret and use these results in several ways. One option would be to fix
the “target quality” and then minimize the cost or computation budget used to render both
the graphics and the sound. A second option is to allocate a fixed budget for both graphics
and sound, and maximize the perceived quality. We have chosen the latter option, since
BRDF rendering with a large number of spherical harmonic bands can be very costly; in
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the presence of several such objects even the joint LOD with minimum cost predicted using
this model could be unacceptably high.

5.3.1 Crossmodal Audio Visual LOD Metric

We perform an optimization step to determine the appropriate graphics and visual LODs
once per frame. The constraint is determined by the actual CPU/GPU cost of rendering
audio modes and shaded pixels. For graphics, this is the cost of the pixel shader used to
query the SH textures and compute the dot product lighting.

The complexity of rendering audio modes is linear in the number of modes, while the
cost of rendering the SH lighting is quadratic in the number of spherical harmonic bands,
and linear in the number of displayed pixels. We thus use the following cost estimation:

CAV = CM M + CS S
2 P, (5.9)

where M is the number of modes, S is the number of spherical harmonic bands, P is the
number of shaded pixels, and CM and CS are the costs of rendering respectively one audio
mode and one band of one SH-shaded pixel. The values for CM and CS can be measured
once for every hardware setup. In our case CM = 5.23µs/mode, CS = 0.0368µs per
SH coefficient and per pixel. Note that rendering S bands requires computing S2 such
coefficients. These values were measured with a GeForce8800 GTX, and a 2.3GHz Intel
Xeon CPU. To efficiently determine the number of shaded pixels, we use an early-depth
pass, deferred shading and occlusion queries. The above expression shows the quadratic
increase in SH cost and the linear cost in the number of modes.

The target cost CT is a user-defined parameter typically depending on the hardware
setup. We share this parameter across all objects, i.e., if we have N objects, the budget
of CT /N ms is assigned to each object in the scene. The audio-visual perceived quality
is determined by an interpolation of the tabulated values given in Chapter 4, Fig.4.7. We
evaluate the cost function CAV for each combination of 13 SH bands (0 to 12) and 6 mode
budgets given in Chapter 4, Fig. 4.3. We choose the combination which results in the
highest “perceived quality" as determined by the values reported in our previous study. As
an example, for a target budget CT /N of 1.4ms, used to render an object occupying 1000
pixels on the screen, we can visualize the operation LOD choice operation in Fig. 5.4. In
this example, we will choose 6 SH bands and level 5 for the modes. We perform this
operation for each object, and select the number of SH bands and the number of modes
resulting in the highest quality, while respecting the target cost.

With this approach we determine a budget for impact sounds and spherical harmonics.
The audio LOD is used for the current audio frame, and the spherical harmonic LOD is used
in the next visual frame. Visual blending is performed in the pixel shader by progressively
adding terms in the dot product (without splitting an SH band) during 0.5ms.

Evidently this LOD selection is valid only when the objects are actually making a
sound, in this case when impacts occur. When the objects are not sounding, we use a fixed
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LOD for graphics, i.e., 5 spherical harmonic bands. The choice of 5 bands is also based
on the results presented in Chapter 4, since we can see that perceived quality with this
approximation is not much different from the perceived quality obtained with the highest
visual LOD, for all sound LODs. The crossmodal LOD selection mechanism is applied at
the first audio frame of an impact, and maintained for a short period of time (typically 7
seconds).

5.4 A General Crossmodal Audiovisual Pipeline

The fast energy estimation and the crossmodal audiovisual LOD selection pave the way
for us to introduce a general crossmodal rendering pipeline, in which we use crossmodal
perception for combined graphics and sound resource management.

Attack processing with Clusters In Chapter 3, special processing is performed to pro-
vide high-quality rendering of the “attacks” or onset of impact sounds. This involves a
specially designed windowing operation in the first frame of each attack. This approach
was however not integrated into the full pipeline.

The inclusion of high-quality attack processing in the pipeline is important to allow
high-quality audio rendering. In each cluster, we have a set of recorded sounds and a set of
impact sounds. Using the improved attack processing presented in Chapter 3, Section 3.3.3,
we need to have one frequency domain buffer for attacks, and one for both recorded and
impact sounds. Budget allocation for scalable processing is performed only in the latter
buffer. Windowing operations are performed separately in each buffer, and an inverse FFT
is computed for each impact sound buffer in each cluster. Recorded sound buffers are pro-
cessed together, resulting in a single inverse FFT. Attack buffers and the recorded/impact
sound buffers are then correctly windowed in the time domain to produce the final sound.
The additional overhead of this approach is thus one inverse FFT per audio channel.

General Crossmodal AV Pipeline We have implemented a complete perceptually based
audio-visual rendering pipeline. We have also included the crossmodal audio clustering
metric (see Chapter 2), which assigns more audio clusters to the viewing frustum, the
crossmodal scheduling approach presented in Chapter 3, Section 3.5, which significantly
improves performance, and the audio-visual LOD selection introduced here.

At each frame, both for audio and graphics, we evaluate the parameters used for each
of these crossmodal algorithms, and set the appropriate values for clustering, impact sound
scheduling and AV LOD selection.
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5.5 Results

We have implemented the general AV pipeline into a home-grown “production level” game
engine developed in our institutions [Chiu 2008]. All the examples shown in this chapter
are taken from this engine.

Figure 5.5: (a)-(b) Two frames of our test sequence running at 26 fps using crossmodal
LOD manager. (c)-(d) Two similar frames using highest LOD running at 18 fps.

Energy approximation and attack integration The combination of the integration of
attacks in the pipeline and the energy approximation now make it possible to have more
impact sounds with higher quality in complex game-like settings. We developed an exam-
ple game play (Fig.5.6), in which we have 7 recorded sounds (toys, stereos, door, cashier
sounds etc.) and a large number of impact sounds, with a peak of 712 impacts just after the
piles of boxes and cans are knocked over.

We first show the sequence using the method of Chapter 31. The cost of the previous
energy estimation method results in low quality audio processing, which is clearly audible.
If we compare to a similar sequence (we do not have exact path replay in our implemen-
tation), using our energy approximation we see that the quality achievable by the scalable
processing is significantly improved.

1See the paper’s video available at http://www-sop.inria.fr/reves/Basilic/2009/GBWAD09/GBWAD09.avi
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Figure 5.6: A frame from our game scenario.

We next show the same sequence first without attack processing in the clusters and
using the attacks, both with the energy approximation. As we can hear, the quality of the
impact sounds is audibly better using the attack processing approach; thanks to the inte-
gration with clustering, the overhead is minimal. Rendering this scene without clustering,
given the number of sounds, would be impossible in real time.

We provide a detailed breakdown of the costs of the different stages for the above
sequence, using both the energy approximation and the integration of attacks in clusters
(see Table 5.1). In the scenes we tested, we achieve masking of around 60% of the contact
sounds.

Stage Time (µs)
Masking 3.339
Clustering 4.652
Impact sound synthesis 2.759
Energy 0.824
Scalable mixing 12.600

Table 5.1: Time in ms for each stage of the unified pipeline

Crossmodal Material LOD We have implemented our crossmodal LOD selection ap-
proach in the same game engine [Chiu 2008]. In the accompanying video we show a se-
quence containing two piles of golden bunnies which are accidentally knocked over. In
Fig. 5.5 we illustrate the choice of visual LODs for two frames of the sequence. We used a
budget of 100 ms shared by all SH-shaded objects. Note that this budget will be shared by
the GPU for SH lighting computations and the CPU for modes generation, both running in
parallel. This budget does not reflect the exact running time of the simulation but is used
as an indication.

For comparison, we computed an appropriate fixed audio-visual level of detail, corre-
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sponding to the perceived similarity to the reference rendering, as predicted by the per-
ceptual study. For example, if the average choice of LOD in the sequence represents 90%
similarity to the reference, we will choose 90% of the spherical harmonic bands and the
modes used for the reference.

On average across the entire sequence, the model described in Chapter 4 predicts that
we have a quality level of 90.6%, i.e., the rating of perceived similarity to the high quality
rendering. The computation in this sequence is 44% faster; on average we achieved 26 fps
using our approach and 18 fps using the equivalent quality with fixed LOD.

Full crossmodal approach There are three main differences with the work presented
in Chapter 3: we integrate high-quality attack processing with clustering, the fast energy
approximation, and the crossmodal LOD. We integrated these effects with the previous
crossmodal metrics (clustering and scheduling) to provide a unified crossmodal pipeline.

The final sequence of the video shows all the elements working together. We selectively
turn on and off some of the features, illustrating the various benefits obtained.

5.6 Discussion and Conclusion

We have presented a complete perceptually inspired crossmodal audio-visual rendering
pipeline. We introduced an approximate energy estimation method for contact sounds,
and showed how to integrate high-quality attacks with clustering. We also presented a
crossmodal LOD selection approach, which is to our knowledge the first algorithm which
jointly chooses audio and graphics levels of detail, based on crossmodal perception. We
believe that the integrated method presented here offers a practical and useful pipeline for
audio visual rendering, which can be useful for games or other similar applications.

Our crossmodal LOD selection approach uses spherical harmonic rendering, since
we base our algorithm on the study presented in Chapter 4 which used this ap-
proach. We expect that similar results can be obtained with other approaches for envi-
ronment map rendering (e.g., zonal harmonics [Sloan et al. 2005] or sampling techniques
[Agarwal et al. 2003]).

The potential for computation gains can be significant, especially during events which
result in large numbers of impacts. Nonetheless, the work reported here is only a first step.
In particular, we need to determine how well the results given in Chapter 4 generalize to
other kinds of materials and objects, and to determine how perceived quality ratings are
affected by the more realistic game settings shown here. Our intuition is that perceived
quality should actually be higher in the realistic setting compared to the experimental con-
dition. We also expect that a generic material model, based for example on some general
material categories, could be applied in a more general setting. One way to do this would
be to sample a perceptually uniform material space such as [Pellacini et al. 2000] and in-
terpolate the results for any material. Also, the environment map used for this game setting
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was different from the one used in the experiment from Chapter 4, since this new environ-
ment is an indoors environment, contrary to the previous experiment. It has been shown
that the environment lighting influences the perception of materials ([Fleming et al. 2003]),
and a further BRDF prediction could include this parameter. In our case, an indoor envi-
ronment makes the golden bunnies appear a bit more diffuse than with a higher frequency
environment.
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Preface

In this part, we present two ways to use photographs in order to improve visual ren-
dering algorithms. Photographs contain a large amount of information, and can be used
to infer its style to a given rendering. This can be done either by finding parameters of
a physical model given the photograph, or by directly using the photograph as input to a
rendering algorithm.

Contrary to the first part, the previous work is not shared across our two contributions,
since their overlap is small. We will thus present the two previous work sections separately,
in each chapter.

We will first show how to use a single photograph of hair in order to convey the same
appearance to a virtual hairstyle (Chapter 6). We will then show how to use a single pho-
tograph to allow for the rapid modeling and rendering of a 3D scene, using the style of the
photograph (Chapter 7).
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Figure 6.1: Appearance Capture. Using a flash photograph, we estimate a set of hair ap-
pearance parameters which reproduce the overall likeness of the observed hair. We com-
pute image features and a corresponding distance to match the input photo with a dataset
of prerendered images with known appearance parameters. The estimated parameters are
taken from the best-matching image, and can be used to render images in new conditions.
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The contributions in this chapter have been accepted for publication in the spe-
cial issue of Computer Graphics Forum for the Eurographics Symposium on Rendering
[Bonneel et al. 2009a].

6.1 Introduction

Recent advances improve the rendering of realistic hair using advanced models of
scattering [Moon et al. 2008, Zinke et al. 2008, Zinke 2007, Moon & Marschner 2006,
Marschner et al. 2003]. However, they involve numerous parameters, and matching the
hair appearance of a given person is difficult even when the geometry is given. This pro-
cess is time-consuming and error-prone even for trained artists [Mihashi et al. 2003]. An
alternative is to use image-based rendering, but current hair-capture methods rely on com-
plex hardware with many cameras and tens of lights, and produce models with very large
storage requirements [Paris et al. 2008].

Our primary goal is to develop a simple, low-cost way to ‘close the loop’ between
modern hair rendering and hair as it is readily observed in the real world or in photos.
We abandon the notion of pixel-accurate reconstruction of a given photo and instead take
a statistical and perceptual modeling approach. We introduce a method that enables the
estimation of hair appearance with a very lightweight structured lighting setup: a single
photograph taken with a flash on the camera. We use only approximate knowledge of the
hair geometry. The simplicity of the setup is of particular importance for the user-driven
creation of avatars and characters in games and interactive simulations, which we envisage
as a prime application area. Recently, hairstyle and hair color have been reported to be
among the most important features for avatar personalization [Ducheneaut et al. 2009].

The acquisition of hair geometry is beyond the scope of this chapter and we as-
sume the existence of a small set of macroscopic models that define 3D hair-strand ge-
ometries for distinct classes of hairstyle, e.g., long curly hair, straight layered hair, etc.
These models (see Fig. 6.2) are modeled by artists or reuse existing captured hair geome-
try [Paris et al. 2008]. We distinguish this hairstyle model from the remaining parameters,
which form an independently-defined hair appearance model. Our hair appearance model
consists of absorption, reflectance [Marschner et al. 2003], and geometric noise [Yu 2001]
parameters, which we seek to estimate. A pair of melanin absorption parameters deter-
mines the overall hair color, and three lobe width parameters define the visual appearance
of the specular highlights, glints, and transmissivity effects.

In this work the best-matching hairstyle model is manually selected; we shall see that
this choice can impact parameter estimation (§6). It is also possible to assign the same hair
appearance to different hairstyle models, although best likeness of a photo is still achieved
by rendering with an appropriate match in both the hairstyle and appearance.

We also define a geometric noise parameter that can have a significant impact on the
appearance of hair. Taken together, these parameters define a six dimensional hair appear-
ance parameter, P . For rendering, we use the fast multiple-scattering technique of Zinke et
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al. [Zinke et al. 2008]. We chose this method for efficiency; others could be used instead.

Given an approximate geometry, we wish to match the appearance of the rendering
to the appearance of the input flash photo, using the available free parameters in the ap-
pearance model (see Fig. 6.1). We first define a feature that captures the aggregate vi-
sual properties of hair, together with a metric on this feature. We propose the use of a
luminosity-weighted color distribution in Lab color-space as an appropriate image feature,
F = f(I), and an earth-mover’s distance, δ(f(IA), f(IB)), as a metric between two im-
ages in this feature space. Although our method does not produce physically validated
parameter estimations, it generally achieves visually plausible results by working within
the degrees of freedom available in the rendering model. We validate our image feature
and the related metric using a perceptual evaluation.

To match hair appearance, we compute a reference dataset by sampling the parameter
space and rendering images of our representative geometric models. For each reference
rendering, we compute our feature, which provides us with a large dataset of (P,F) tuples,
i.e., images for which we know both the parameters and the feature. Given the computed
feature for an input photo, we search for the closest feature match in the dataset and return
the associated model parameters. The entire process is illustrated in Fig. 6.1.

Contributions: We present a new approach to estimate hair appearance using a single
photo; we achieve this by recasting the process as an image retrieval problem. To do this,
we first introduce a hair appearance model with two new components: a melanin-based hair
pigmentation model that reproduces the natural subspace of hair absorptions, and a geom-
etry noise parameter. We then introduce an image feature and distance metric for matching
hair appearance, and do a perceptual evaluation of these. Lastly, we test the single-photo
hair appearance estimation on a set of 64 photos and do robustness evaluations.

6.2 Related Work

Modeling the geometry and appearance of human hair is challenging. Overviews of
the progress that has been made on these problems over the past decade can be found
in [Ward et al. 2007] and [Bertails 2006]. There is also considerable knowledge about the
biology of human hair, including its microstructure, density, growth, response to humid-
ity, and pigmentation [Halal & Schoon 2001, L’Oréal 2008]. Hair rendering models have
evolved considerably, with increasingly sophisticated modeling of the complex light paths
that occur in hair [Kajiya & Kay 1989, Marschner et al. 2003, Moon & Marschner 2006,
Zinke 2007, Zinke et al. 2008, Moon et al. 2008]. However, setting the various required
model parameters remains an unaddressed problem and motivates our work. The intri-
cate geometry of hair and complex light diffusion precludes the use of general appearance
analysis methods such as those proposed for BRDF estimation.

There have been several notable efforts to model aspects of hair from images. The
work of Grabli et al [Grabli et al. 2002] infers the ambient, diffuse, and specular colors of
a wig. However, real hair fibers are known to have a more complex reflectance than syn-
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thetic materials [Marschner et al. 2003] and thus it is unclear how well this method gen-
eralizes. Paris et al. [Paris et al. 2004] capture the hair geometry from a single, controlled
light source and a video camera but the reflectance is not retrieved in this process. Wei
et al. [Wei et al. 2005] improve this method with an approach that works under ambient
lighting. They also map photographic data on the hair geometry to model the hair appear-
ance. These mapped colors are fixed and do not vary with the lighting environment nor
the view direction, thereby limiting the rendering to reproducing the captured conditions.
Paris et al [Paris et al. 2008] describe an image-based rendering method that yields faithful
matches to photographs. This technique requires a large amount of data which would be
unwieldy for many applications and requires a complex capture setup.

More broadly related are interfaces that help guide users in parameter selec-
tion [Marks et al. 1997], the determination of specular lobe shape from image statistics
for linear light sources [Gardner et al. 2003], skin BRDF models based on pigment con-
centrations [Donner et al. 2008], and the use of multiscale statistics for estimating BTF
parameters [Ngan & Durand 2006].

6.3 Synthetic Appearance Model

We first discuss the rendering model used and then describe a novel color absorption model
based on human hair pigmentation. Lastly, fine-scale geometric distributions can also have
a significant visual impact on the appearance of hair. To this end, we define a global
geometry noise parameter.

6.3.1 Rendering

For rendering, we use the forward scattering map of Zinke et al.[Zinke et al. 2008] because
both efficiency and quality of the rendering are of concern in our setting. In this paragraph
we summarize the rendering details for completeness.

We use the scattering model presented by Marschner et al [Marschner et al. 2003].
We split the scattering parameters into two groups: free model parameters and fixed pa-
rameters. For the latter, we found that they have the least influence on the overall ren-
dered hair appearance or can be assumed to have typical values [Marschner et al. 2003].
Our fixed-value parameters are: cuticle angle (−3◦); eccentricity (0.9); caustic power
(0.4); caustic width (1.5◦); fading range for caustic (0.3); index of refraction (1.55); den-
sity [Zinke et al. 2008] (0.7); and hair radius (120 µm). The free parameters are the absorp-
tion coefficients, Ar, Ag, Ab, and the R, TT, and TRT lobe widths, αR, αTT , αTRT , which
intuitively correspond to the “color” and “shininess” of the hair. In our tests, hair radius
has been increased compared to values given in the literature to account for the sparsity of
our hair models.

To efficiently render images using [Zinke et al. 2008], we use a CPU implementation of
the raytracing-based forward scattering map method and parallelize it to exploit multicore
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Figure 6.2: Hairstyle geometries used for datasets (without noise), from left to right:
straight short hair, straight long hair, straight clumpy hair, wavy hair, tangled hair, long
curly hair, very long straight hair

architectures. We perform the final rendering step directly on the GPU. With this, 640 ×
480 images are rendered at a rate of 1.2–1.9 images per minute. We choose this over the
faster GPU-based algorithm because of the higher quality we obtained from the forward
scattering map.

Figure 6.2 shows the hairstyle geometries that we use: three are modeled using Maya,
and four are captured data [HPD 2008]. The hairstyles each have 80,000–120,000 hairs.

6.3.2 Melanin Model

In order to reduce the number of parameters for hair appearance, we exploit knowledge of
natural human hair pigment absorption to reduce the number of parameters in the original
Marschner model [Marschner et al. 2003]. Our reparametrization can also greatly facilitate
manual hair appearance specification by reducing the number of degrees of freedom and
ensuring that the absorption is realistic.

Natural hair color is largely due to wavelength-dependent absorption within hair fibers.
Hair pigmentation is composed of two kinds of melanin pigments: eumelanin and pheome-
lanin [L’Oréal 2008, Tobin 2008], and the spectral absorption of these two pigments is
known [Sarna & Swartz 1988] (Fig.6.3).

The absorption can thus be modeled as a linear combination of the concentration of
these melanins i.e., A(λ) = a1(λ)m1 + a2(λ)m2, where m1, m2 are the eumelanin and
pheomelanin concentrations and a1(λ), a2(λ) are their spectral absorption curves. We
point sample the absorption curves for red, green and blue wavelengths, (575, 535, and
445 nm, respectively), and normalize with respect to the r concentration of the melanins,
yielding: Ar = m1 + m2, Ag = 1.3036m1 + 1.6390m2, Ab = 2.2272m1 + 3.8370m2.

This defines a 2D subspace in the 3D absorption parameter space without reducing the
desired expressivity of the model. Because m1,m2 ∈ [0,∞], it will be convenient to
instead represent the melanin concentrations by m̂1 = e−km1 and m̂2 = e−km2 , where
k is experimentally determined (§6.4.2). This gives finite ranges, m̂1, m̂2 ∈ [0, 1]. We
shall exploit the melanin model during appearance estimation, where it will help achieve
better sampling of the absorption parameters by eliminating unnatural hair colors from
consideration, such as green or blue hair.
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Figure 6.3: Eumelanin and pheomelanin extinction coefficients with respect to wave-
length [Sarna & Swartz 1988].

6.3.3 Geometry Noise

We distinguish between two different levels of geometry variation. The macroscopic geom-
etry or hairstyle is chosen by the user from a fixed set of models (Figure 6.2) and captures
aspects such as the curliness and length of the hair. However, a direct application of ren-
dering techniques [Marschner et al. 2003, Zinke et al. 2008] to many modeled or captured
hair geometries can yield unrealistic results. Figure 6.4 (left) shows an example of this for
captured geometry [Paris et al. 2008]. This can be rectified using an additional geometry
variation based on small-scale noise. We add noise in a manner similar to Yu [Yu 2001].
The perturbation applied to a given vertex v on a hair strand is given by

∆v = Ng AV (α sin(2παp) +
1
2
e3α − 1) (6.1)

where α ∈ [0, 1] is the normalized curvilinear abscissa , V is a unit-length random di-
rection, p ∈ [0, 8] is a random frequency, Ng is a noise amplitude, and A is a hairstyle-
specific scaling factor that is required to deal with the given modeling scale of any hairstyle.
Fig. 6.4(right) shows the changed appearance with the noise model. Without any geometric
noise, the hair can have a noticeable unrealistic plastic-like appearance.

The final set of free parameters in our appearance model is given by P :
{m̂1, m̂2, αR, αTT , αTRT , Ng}.

6.4 Appearance Estimation

Our method relies on a reference dataset of rendered images sampling the parameter space
and we seek to find the reference image whose hair appearance is most similar to the input
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Figure 6.4: Impact of geometric noise on hair appearance. Left: Without geometry noise.
Right: With geometry noise.

Figure 6.5: An abstract view of the appearance estimation problem. F defines the space
of features used to represent the appearance. Rendered images lie on a manifold parame-
terized by the model parameters, P .

photograph. A schematic illustration of the appearance estimation problem is shown in
Figure 6.5. Both the true hair appearance and the rendered hair appearance can be seen
as forming manifolds in a suitably-chosen feature space, F , although we only know the
underlying parameterization of the rendered appearance. An input photo may not in general
lie on the manifold of images achievable by the rendering, which may in part be attributed
to a limited expressivity of the rendering model. Given an input photo, we propose a novel
method to estimate its underlying parameters, P , by posing this as a search problem. We
search for the point on the rendered manifold which is most similar in appearance to the
input photo, and then return its associated parameters.

6.4.1 Feature Selection and Distance Metric

Image features for matching hair appearance should ideally be easy to compute, induce a
perceptually-meaningful metric, work across a large variety of hair appearances, and be
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somewhat invariant to the specific geometry of the hair. We propose the use of luminance-
reweighted color distributions in Lab color space as our feature, and the use of Earth-
mover’s distance (EMD) as a distance metric between features. These choices are in-
spired by the use of color distributions and EMD for Image Retrieval [Rubner et al. 2000].
A modification we propose in the context of the hair appearance estimation is to use a
luminance-based reweighting of the color distributions, which we found to yield improved
estimates.

The image color distributions are represented by color-clusters in the Lab color
space. We use k-means clustering with 50 clusters and initialized using k-
means++ [Arthur & Vassilvitskii 2007]. To achieve fast clustering, a subsampled set of
1 in every 50 pixels is used during the k-means iterations. The final nearest-neighbor as-
signment is done for all pixels in the image to obtain a pixel count for each cluster. Each
cluster’s pixel count ni is reweighted by the cluster luminance Li, n′i = Lni. Finally, the
resulting cluster pixel counts {n′i} are normalized, i.e., n̂′i = n′i/N , where N =

P
i n
′
i.

The final image feature is then a set of tuples, F = {(Ci, n̂′i)}, where Ci is the Lab color
of cluster i, i.e., the cluster center. Computing the color clusters for an image takes ∼600
ms.

The EMD metric minimizes the work required to turn one distribution into another,
and is symmetric, i.e., δ(Fa,Fb) = δ(Fb,Fa). The metric is computed by solving a
transport problem, where the ‘mass’ in the source distribution bins needs to be transported
with minimal cost to the target distribution bins to exactly fill them. In our problem, the
source and target bins correspond to the clusters of Fa and Fb, and mass corresponds to
normalized cluster counts, n̂′. As a distance, the EMD returns the minimal total work
required, as defined by δ =

P
ij dijfij , where dij is the ground distance between source

bin i and target bin j and fij is the flow (mass) carried between these two bins. We use
Euclidean distance in the Lab space as our ground distance. The EMD optimization is
posed as a linear programming problem and is solved using a streamlined version of the
simplex method [Rubner et al. 2000].

6.4.2 Synthetic Dataset

The synthetic dataset consists of a large set of precomputed tuples, D : {(Fi,Pi)}, with
one tuple per rendered image. The final datasets are compact in practice because there is
no need to retain the images once its features have been computed.

We compute multiple datasets, Dk, one for each modeled hairstyle, k, and using 4000–
5000 sample points per dataset. We use a simple sampling strategy given that the real
distributions of the model parameters for human hair are unknown. We draw random sam-
ples using uniform distributions U . The Marschner lobe parameters are sampled using
αR, αTT , αTRT ∼ U [2◦, 20◦]. This represents an extension of the typical values given
in [Marschner et al. 2003]. However, we note that these typical value ranges are not nec-
essarily strictly respected in prior art. For example, [Marschner et al. 2003] uses αR = 8◦

and αTT = 6◦, yielding an αR to αTT ratio of 1.33 instead of the recommended ratio of



6.4. Appearance Estimation 95

2.0, and [Zinke et al. 2008] uses αR = 8◦ and αTT = 10◦ for a ratio of 0.8. Establishing
accurate ranges or prior likelihoods for these parameters would require physically-validated
measurements for a large set of examples. Noise is sampled using Ng ∼ U [0.3, 1].

For sampling melanin concentrations, we use an informed strategy that samples the
space of final observed hair colors in an approximately uniform fashion. We build on our
observation that the mean color of rendered hair is approximately linearly correlated with
exp(−kAi), with k ≈ 6.3. We sample m1 and m2 so as to maintain uniform sampling
of the dominant red component as much as possible. We use m̂1 ∼ U [0, 1], where m̂1 =
exp(−km1) and m̂2 ∼ U [0, 1], where m̂2 = exp(−km2). From this, the absorptions
can be expressed as Ai = − ln(m̂pi

1 m̂
qi
2 ). To keep the correlation as much as possible for

the dominant red component, we set pr = 1, qr = 1, pg = 1.3036, qg = 1.6390, pb =
2.2272 and qb = 3.8370, as determined by the linear melanin combination model described
earlier (§6.3.2). Our sampling for absorptions allows for a broad range of [0,∞]. This
results in values outside the typical range of [0.2,∞] given in [Marschner et al. 2003] for
the absorptions; however values as small as 0.03 are found in [Moon & Marschner 2006].

Our acquisition configuration is only loosely specified, namely a photo of the back
of the head with a flash near to the lens. To increase the robustness of our technique to
variation in light and camera direction, we include random perturbations of these factors in
our dataset. For each dataset image, we add random offsets in [−2.5◦, 2.5◦] to the viewing
direction and lighting direction.

The rendering illumination is the same across all dataset images and all hairstyles and
thus gives a self-consistent default exposure for the renderings. In order to achieve com-
patible exposures with the gray-card calibrated photos, we apply an illumination scaling
parameter, s, to the rendered images. The value of s is determined using a one-time cross-
validation. Specifically, we sample s in the set of bracket of exposures {0.6, 0.8, 1.0, 1.2,
1.4} and we keep the value yielding the best overall match results (s = 1.4 in our case) for
a small set of test photos. We noted that values of s ≤ 1.0 were unable to reproduce lighter
hair colors. Lastly, we also compute an image mask so that pixels that are alpha-blended
with the background can be excluded from the feature computation. All images are ren-
dered against a blue background. All pixels having color components b > g and b > r are
excluded from the mask, and this is further followed by a 3× 3 image erosion operation.

6.4.3 Photo Preprocessing

We take a flash photo of the back of the head together with a reference 18% gray card, taken
indoors with a short exposure, e.g., 1/200s, in order to minimize the impact of indirect
lighting. Input photographs are first downsampled to 640 × 480 using filtering based on
bicubic interpolants to match the resolution of the database. They are then processed for
white balance using the color of the imaged gray card. We currently use Photoshop for
this step, as well as for segmenting the hair in the photograph. Lastly, we scale image
luminance to achieve a 12% on-screen luminance for the imaged gray card as commonly
done by photographers.
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6.4.4 Parameter Estimation

Given a preprocessed input photograph, its features F are computed and the best-matching
hairstyle, i.e., choice of dataset, is manually selected. A simple linear search is then used
to select the nearest neighbor, i.e., j∗ = arg minj δ(F ,Fj), and the estimated parameters
are given by Pj∗ . This requires approximately 20 seconds for a dataset of 5000 images.
More sophisticated forms of non-parametric regression could also be used, i.e., applying
kernel regression to P = f(F). However, these did not improve the resulting estimates
(see discussion in §6.7), likely because the distance from the photo to the manifold of
rendered images is generally larger than the distances between neighboring samples on the
manifold. As a result, a large kernel spans too many neighboring samples while a small
kernel effectively results in nearest-neighbor selection.

6.5 Perceptual Evaluation

We performed an experiment that provides a perceptual evaluation of the EMD-based met-
ric used by the estimation procedure. Our goal is to verify that if the metric predicts that
renderings (and thus the appearance parameters) are similar to photographs, human ob-
servers also find them similar; while if the metric predicts a large difference, humans agree
with this prediction.

Subjects are asked to make relative assessments as to which of two renderings they
find to be most similar in appearance to a given photo. The two renderings use the same
hairstyle, which avoids confusing hairstyles with hair appearance. The experimental setup
thus exactly mimics decisions of the type that need to be made during the parameter esti-
mation (§6.4.4), and it fits naturally into a two-alternative forced choice (2AFC) protocol.
The experiment does not provide a measure of absolute similarity of a rendering to a photo-
graph: This is a very hard problem, and there is no established way to do this. In addition,
such a hypothetical test would also involve the evaluation of the quality of the rendering
and lighting model, which are beyond the scope of this work.

Given a photo, P , and two renderings, A and B, we expect that our metric will be
weakly predictive of the choice of closest image for cases where δPAB = |δ(FP ,FA) −
δ(FP ,FB)| is small, i.e., the metric finds that images A and B are roughly equidistant to
the photo, P . Similarly, we expect the metric to be strongly predictive as δPAB becomes
large. We thus define three categories producing almost equidistant, quite different and
very different renderings: ∆1 : 0.2 ≤ δPAB ≤ 0.5 (almost equidistant), ∆2 : 2 ≤ δPAB ≤ 3,
and ∆3 : 4 ≤ δPAB ≤ 10.

We choose ten photographs from our results data set that approximately span the
space of hair appearances. For any given photo, we first build a base bin, B, of three
images, where each image i is chosen to be close to the photograph, P by satisfying
δNN ≤ δPi ≤ δNN + bw, where δNN is the distance of the nearest neighbor (best match)
in the dataset to the photo, and bw is the base-bin width. We also always include the nearest
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neighbor as one of the three images in this bin. For all image pairs shown in the test, one
of the images will come from this base bin. This helps ensure that distance differences
are only compared for a similar reference distance. For each photograph, we then select 9
pairs of renderings such that there are 3 pairs for each of the categories, ∆1, ∆2, and ∆3.
This experimental setup results in 90 comparisons per test session, where the subject must
choose the “rendering with hair appearance most similar to the photograph”. The test has
a duration of approximately 15 minutes. An example screenshot of the web survey can be
seen in Fig.6.6.

Figure 6.6: Screenshot of the perceptual experiment.

We used an Internet-based survey, distributed to three university or research institu-
tions. Participants were instructed not to complete the survey if they were color-blind and
were recommended to use a bright, good quality monitor with sufficient resolution so that
the photo and the image-pair could all appear on-screen simultaneously. A total of 47 par-
ticipants completed the survey, giving a total of 1410 evaluations for each distance category
(47 participants × 10 photos × 3 tests per category). We consider separate hypotheses for
each ∆1, ∆2, and ∆3. The null hypothesis for each case is that users will be at chance in
having their selection of the closest image match that given by the metric. The alternate
hypothesis is that the metric helps predict the participant’s choice of most similar appear-
ance.

For category ∆1, the subject’s choice agreed with the metric in 71.4% of all tests,
with a standard deviation across subjects of σs=8%. The null hypothesis can be rejected:
χ2(1, n = 1410) = 276, p < 10−5. For category ∆2, the agreement rises to 75.3% (σs=7),
and the null hypothesis can be rejected: χ2(1, n = 1410) = 360, p < 10−5. Lastly, for the
large predicted differences of category ∆3, the agreement is 93.6% (σs=5%) and the null
hypothesis can be rejected: χ2(1, n = 1410) = 1074, p << 10−5.
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Our experiment thus shows that human observers agree with our feature-based distance
for judgments of similarity between photos and rendered images.

6.6 Results

We test the appearance estimation on a set of 64 photographs. Figure 6.7 shows a subset
of the results and the associated model parameters are given in Table 6.1. The new lighting
conditions shown in the rightmost column are chosen manually to best match the corre-
sponding photographs. The complete set is given in the additional material of the paper
[Bonneel et al. 2009a] 1. Part of these results are shown in Figure 6.8. Over the full set
of photos, the best-match EMD distance spans the range 1.35 < δ < 6.13, with a mean
µ = 2.92, and a standard deviation σ = 1.01.

m̂1 m̂2 αR αTT αTRT Ng δ

0.001 0.123 11.9 18.3 9.9 0.927 2.75
0.355 0.572 11.4 20.0 23.8 0.788 3.15
0.052 0.267 14.0 5.3 16.4 0.561 1.63
0.081 0.955 16.0 12.7 16.0 0.969 1.99
0.362 0.916 17.3 19.0 23.5 0.544 3.81
0.910 0.086 11.3 18.9 14.9 0.760 3.70
0.033 0.436 8.1 7.3 12.9 0.400 3.42

Table 6.1: Estimated model parameters for Figure 6.7, as well as their distances, δ, to the
photo.

Animation: We can easily animate our estimated hair appearance, which remains a
challenge for other methods such as [Paris et al. 2008]. Animations of two hair appear-
ances are shown in the video (see footnote 1) and Figure 6.9.

Application scenario: Our method is suited to end user-driven content creation such
as for the design of avatars for games, in contrast to the methods used in high-end visual
effects for film where expert artists are available to help set parameters. We have used
a subset of our input photographs to create a prototype interface for character design, as
shown in Figure 6.10 and the video, see footnote 1. In this interface, the user can create a
library of hairstyles for game characters by taking flash photographs and picking a template
geometry. These hairstyles are then available in the game as shown in our prototype (see
video).

6.7 Discussion

We first discuss the various estimation methods we tested before adopting the approach
presented here, then discuss a number of robustness tests we performed and conclude with

1Additional materials: http://www-sop.inria.fr/reves/Basilic/2009/BPVDD09/hairAdditionalMaterial.zip
See also the paper’s video available at http://www-sop.inria.fr/reves/Basilic/2009/BPVDD09/hairVideo.avi
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a discussion of limitations.

Other estimation methods: We tried several machine learning approaches based on
features inspired by domain-specific knowledge on hair appearance, but none of them
worked as well as the approach that we finally propose. We tested regression methods
that seek a function f such that the parameters P can be expressed as P = f(F), where
F is a set of image features. The critical part is the choice of F . Low-dimensional fea-
ture vectors require only a small training set to cover the feature space. But such feature
vectors are exceedingly difficult to design since they are almost of the same size as the
parameters, that is, finding good feature vectors is almost equivalent to the initial problem.
Larger feature vectors do not suffer from this problem but require a larger training set to
obtain f , which quickly becomes the limiting factor. We tested feature vectors based on
means and medians of the color components, as well as responses to banks of oriented
spatial filters. We implemented Gaussian process or Nadaraya-Watson kernel regression
to predict the hair absorption parameters, but none produced reliable estimates, as tested
using cross-validation with rendered images. We also tested several segmentation meth-
ods to correlate highlights with corresponding lobe parameters; none reliably identified the
desired highlights, because the R and TRT regions overlap too significantly.

Our final use of a color histogram solves this dilemma by using a high-dimensional
feature, the weighted color distribution, a perceptually-validated metric on this feature vec-
tor, and the use of a sampling and a nearest-neighbor scheme to resolve the final parameter
estimates. A somewhat surprising aspect of the solution is that it can be effective with-
out relying on spatial features. The advantage of this lack of spatial sensitivity makes our
approach robust to spatial variations.

Dataset sampling: We compute a simple statistic to confirm our intuition that the
photo and rendered-image manifolds are widely spaced compared to the sample spacing
used by the dataset (see Figure 6.5). Specifically, we compute the ratio r = δ12/δ1P over
the full set of photos, where δ12 is the distance between the first and second nearest neigh-
bors, and δ1P is distance between the photo and the nearest neighbor. The resulting small
values of r, 0.22 < r < 1.08, µ = 0.62, σ = 0.17, support the described intuition re-
garding this geometry. We also note that for particular regions of the parameter space, the
rendered image is locally invariant to some parameter values, which allows us to use a
smaller number of samples. For example, the appearance of black hair is largely invariant
to TT or TRT lobe widths. The use of only 5000 samples to cover a seven-dimensional pa-
rameter space is partly enabled by the dimensionality reduction and perceptually-uniform
sampling of the hair color space and a priori knowledge of the limited expected range for
the remaining parameters.

Match Sensitivity: We examine how the distance to the photo changes as a function
of the model parameters in the region surrounding the nearest neighbor. Figure 6.11 shows
normalized plots of how the distance metric changes as individual parameters are varied
around their final estimated value while the remainder are held fixed. The absorption pa-
rameters and the R-lobe parameter have well-defined local minima. The TT and TRT lobes
should not take on values smaller than their nominal value, but have a minimal effect on
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the overall appearance for larger values. The noise parameter exhibits a shallow local
minimum for this example, although in general it can have a stronger variation – the two
images shown in Figure 6.4, which vary only in their noise parameter, have a relatively
large distance of δ = 3.2.

Robustness with respect to lighting variation: To test for the effect of changing
the lighting, we compare the result of using flash-lighting placed 15 degrees above the
lens with the result of flash lighting placed 15 degrees below the lens. For the case of a
person with black hair, the original and modified-lighting parameter estimates are P0 =
{0.0518, 0.1133, 13◦, 3.5◦, 12◦, 0.82} and P1 = {0.0073, 0.6543, 11◦, 15◦, 17◦, 0.82}, re-
spectively. While the estimated absorptions are different in the melanin space, they are
very similar when seen in the rgb space. αR also remains very similar. The TT and TRT
lobe widths receive different estimates, although this is not unexpected given the negligi-
ble role of transmissive scattering in black hair. The distance to the best match changes
only marginally (δ0 = 1.93, δ1 = 2.02). We also apply the same test for a person with
lighter-colored hair, and in this case the same nearest-neighbor is returned (δ = 2.36), thus
yielding an unchanged parameter estimate.

Impact of hairstyle geometry: A fundamental question to ask is the extent to which
the choice of hairstyle geometry affects the parameter estimation. A first way to mea-
sure this is to match a photo using different hairstyles and to observe the resulting pa-
rameters and their images. Figure 6.12 shows an input photo and the nearest neigh-
bors for three different hairstyles. The estimated parameters for the manually chosen
target hairstyle are: P0 = {0.0845, 0.9232, 16◦, 13◦, 16◦, 0.97}. With the shown alter-
nate hairstyles, this changes to: P1 = {0.0137, 0.8786, 21◦, 3.9◦, 20◦, 0.76} and P2 =
{0.0495, 0.9093, 23◦, 14◦, 23◦, 0.68}. The differences in estimated parameter values can
be attributed in part to the choice of hairstyle and in part to the fact that parameters such as
αTT have little effect for dark hair and so they may not be estimated in a consistent fashion.

The impact of hairstyle geometry can also be measured by using each of the seven
different hairstyles to do parameter estimation and then using the resulting parameter es-
timates to render images using the user-selected best-matching hairstyle. We can then
compute their respective similarities to the input photo using our metric. The results of this
computation show that parameter estimates that come from the user-selected hairstyle are
always among the best results, and that largely different hairstyles produce inferior results.
This confirms the importance of using similar hairstyles for matching and rendering.

Our library is currently based on seven hairstyle models because these approximately
span the range of hairstyles observed in our test set of 64 input photographs, and because
of the difficulty of obtaining or creating additional hairstyles. Enlarging our library of
hairstyles may help improve the final rendered likeness to the input photos, and possibly
result in small improvements to the parameter estimation.

Limitations: Hair may be dyed, have sun-bleached or dyed highlights, or have a partial
distribution of gray hairs, violating our assumption of constant hair absorption values. Vis-
ible scalp will also affect the estimations. Our synthetic appearance model does not model
wet or greasy hair. Figure 6.13 illustrates our two worst results as judged by the met-
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ric. The gap between the rendered images and the photos for our dataset of tens of heads
highlights some of the remaining challenges in hair modeling/capture and rendering. Our
appearance estimation technique inherits the limitations of current rendering techniques,
but also stands to directly benefit from future advances in hair rendering. In particular,
our rendering implementation was unable to obtain realistic images for front lit blond hair,
possibly due to the disciplined hair approximation or the straight light paths for large scale
scattering [Zinke et al. 2008]. As such we do not present results yet for very (“Scandi-
navian”) blond hair. Some of our current lightest hair can be seen in the second row of
Figure 6.7, in Figure 6.9, and the white hair in Figure 6.13. We expect better matches by
improving the rendering method or by using an existing slower but more accurate approach
([Moon et al. 2008]), and possibly by increasing the number of hairstyles in our database.

6.8 Conclusions

We have presented a novel method for estimating hair appearance parameters from a single
flash-lit photo. We develop a hair absorption model based on melanin-based pigmentation,
and introduce geometry noise as an appearance parameter. A suitable image feature and
distance are defined for measuring hair appearance similarity, and we conduct a perceptual
evaluation of this metric, which gives a strong indication of the validity of our choices.
The technique has been used to estimate hair appearance parameters for 64 photographs,
for which we provide side-by-side comparisons of the input photos and renderings. To our
knowledge, this is a significantly larger set of comparative results than those presented to
date in prior art on hair modeling and rendering. We analyze the robustness and sensitivity
of the appearance estimates in several ways.

Hair appearance can be captured with a wide range of techniques. Our proposed ap-
proach lies at one end of this spectrum, requiring a single flash photograph as input, and
producing an estimate of seven appearance parameters in minutes. The technique of Paris
et al. [Paris et al. 2008] lies at the other end of the spectrum, requiring a light-stage setup
consisting of 16 cameras, 3 DLP projectors, 150 programmable LED lights, 40 000 im-
ages, 20 minutes of capture time, hours of compute time, and producing a detailed model
of geometry and reflectance that requires 4.3Gb of data during rendering.

There are a number of exciting avenues for further exploration. With the help of light-
ing and white-point estimation techniques, it may well be possible to do parameter esti-
mation from one or more photos taken in unstructured lighting conditions. We wish to
add further geometric expressivity to the model by estimating meso-level geometry such
as clumps and wisps of hair that may be identifiable from the photo. Recent progress has
been made on this [Wang et al. 2009]. The distance we use could be used to define a hair
appearance manifold from a large collection of input photos, independent of hair rendering
techniques. We believe that the general style of parameter estimation approach may be
applicable to other types of phenomena in graphics.
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Figure 6.7: Seven parameter estimation results, showing, from left to right: input photo,
nearest-neighbor match in the rendered database, photo of new lighting condition, ren-
dered new lighting condition using manually matched lighting. Quality of matches is
discussed in section 6.7.
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Figure 6.8: Seven additional estimation results.
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Figure 6.9: Animating hair using estimated hair appearance parameters, with the input
photo shown on the left.

Figure 6.10: The use of hair appearance in a prototype character customization interface
for a game.
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Figure 6.11: Example variation of the distance as a function the underlying model param-
eters around the nearest neighbor. The x-axis spans the following spreads for each model
parameter: αR : 28◦, αTT : 21◦, αTRT : 28◦, m̂1 : 0.65, m̂2 : 1.9, Ng : 1.92.
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Figure 6.12: The effect of hairstyle choice on parameter estimation: input photo, manually
chosen target hairstyle, alternate hairstyle 1, alternate hairstyle 2.

Figure 6.13: The photos and nearest-neighbors for our worst two matches, as measured
by the metric. Left pair: δ = 6.13. Right pair: δ = 5.08.
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The contributions in this chapter have been submitted for publication and are under
review at the time of writing.

7.1 Introduction

In the previous chapter, we have seen how a single photograph could be used to infer
parameters to a physical model, in particular in the case of hair. This allowed us to obtain
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Figure 7.1: Rendering simple proxy geometry using texture-synthesis shading. Given a
source photo and proxy geometry, the goal is to produce visually-rich depictions of the 3D
proxy. Our approach also allows for consistent integration of standard CG elements with
texture-synthesis elements. Each colored box represents a separate stage of our approach.

a similar appearance as the input photograph. However, it can be interesting to obtain
the same appearance as an input photograph for the whole rendering. This is achieved by
infering the photograph style to the rendering and using portions of the input photograph
directly as rendering primitives rather than estimating parameters. We will see how this
can be done, by using a texture synthesis shader, in this chapter.

Creating convincing computer graphics images is a challenging task: detailed models
are hard to create, they can be very difficult to texture and the final rendering can require
significant tweaking. In many cases the resources to do this are simply not available. The
widespread development of 3D-capable applications, such as simple 3D games on phones
or portable devices, or simple 3D previsualization, motivates alternative approaches for
rapid user-driven generation of convincing 3D content.

We propose a new approach for the casual modeling of natural scene elements using
texture synthesis. As illustrated in Figure 7.1(a), the user starts by selecting a source photo,
from a pre-annotated set, which corresponds to the desired style of visual detail. The user
then creates a crude 3D model of the desired geometry, which we call the proxy (Fig-
ure 7.1(b)). We can then generate new images (Figure 7.1(e)) based on the proxy and using
the rich visual detail available in the source photo. Multiple viewpoints can be generated
for a given scene. We can incorporate 3D computer graphics elements into these scenes
(Figure 7.1(f)), add atmospheric effects such as fog, and interactively modify the synthe-
sized elements, such as applying a color change to the sky, land, ice, or water (Figure 7.7).

The simplified proxy geometry does not provide any detail along the silhouettes of the
generated objects (Figure 7.1(c)). We add this detail by introducing a texture synthesis
stage to create a final guidance map. The smooth texture-element borders coming from the
proxy geometry are replaced with the richer border detail between texture elements that can
be found in the source photo (Figure 7.1(d)). A final image synthesis stage then produces
the final image.

Both of the texture synthesis stages manipulate or compare guide images that contain
discrete texture labels rather than the continuously-valued colors that form the staple of
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traditional texture synthesis. To this end, we introduce the use of Chamfer distances in
the texture synthesis process in order to compare regions of texture labels in a principled
fashion.

Our contributions can be summarized as follows:

• The introduction of label-based guidance synthesis to achieve detailed silhouettes
and the use of the Chamfer distance to achieve high-quality results.

• A three-step final texture synthesis approach to produce high-quality visual results.
These steps consist of initialization with a set of patches created using the guidance,
pixel-based guided synthesis, and a final gradient-based Poisson correction.

• A prototype system which allows the integration of 3D synthetic elements into the
final casually-modeled images and the addition of several image-based effects (color
changes, fog etc.), based on image layers.

Our approach allows the rapid creation of images that are rich in visual detail, with the
ability to change the viewpoint and manipulate the resulting scene in interesting ways.

7.2 Previous work

Our work is related to two main domains, that of casual modeling and texture synthesis.
The surveys presented in [Wither 2008] and [Wei et al. 2009] provide good overviews of
the extensive previous work in these two areas. We discuss only the most closely related
work in each domain.

7.2.1 Casual Modeling

Fast creation of visually-rich depictions of natural scenes is a difficult task, particularly
for non-expert users. Sketch-based modeling techniques are a promising approach devel-
oped for a variety of classes of geometry, including landscapes. In [Cohen et al. 2000],
a user draws contours of mountains from which an approximate geometry is then esti-
mated. Non photorealistic rendering (NPR) is then performed to render the sketched scene.
In [Watanabe & Igarashi 2004], a related approach is developed; they also report on arti-
facts of the method used in [Cohen et al. 2000] when the geometry is seen from a differ-
ent angle. The use of NPR rendering is a key aspect of these techniques as the smooth
and approximate geometry does not lend itself well to realistic rendering. A variety of
NPR rendering techniques have been developed specifically for landscapes and digital el-
evation models [Cohen et al. 2000, Watanabe & Igarashi 2004, Pierre-Loup Lesage 2002,
Whelan & Visvalingam 2003, Mat & Visvalingam 2002]. However, if a richly-textured im-
age is desired, the creation of the appropriate textures remains a challenging task.
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The approach of [Zhou et al. 2007] allows users to easily create large-scale landscape
geometry, i.e., mountains, hills, or large canyons. The user sketches a desired feature map
in a top view and a novel terrain-specific texture synthesis approach is then used to gener-
ate the desired model given example digital elevation model data. The terrain geometry is
rendered using the Terragen terrain system with procedural textures as determined by the
terrain height and slope. A method of generating complex natural terrain, including arches
is recently developed in [Peytavie et al. 2009]. Impressive terrains are generated by lever-
aging a hybrid representation for terrain geometry, optimized tools for user editing of this
terrain, and procedural elements that are specific to specific geological formations such as
rock piling.

Our approach is largely complementary to these techniques. In our pipeline, a simple
geometric proxy is first rapidly modeled and then we achieve an implicit addition of ge-
ometric detail in a first rendering stage (the guide synthesis) followed by the addition of
visual detail in a second rendering stage.

7.2.2 Texture synthesis

The problem of synthesizing textures from an example image has attracted much interest
over the past two decades. For a comprehensive review please refer to the recent survey
by [Wei et al. 2009].

Our work is most closely related to guided texture synthesis [Ashikhmin 2001,
Hertzmann et al. 2001]. In particular, Hertzmann et al. introduced the idea of texture–
by–numbers. The input to the system is a color image and a map segmenting its content
through shades of basic RGB colors (red, purple, yellow, etc.), called labels in the fol-
lowing. Given a guide — a new map using similar labels but a different layout — the
algorithm synthesizes a new color image with a corresponding layout. Synthesis is per-
formed by matching square neighborhoods in a multi-resolution, coarse to fine process.
The similarity metric is an L2 norm comparing both colors and labels. The algorithm pro-
duces impressive results on a variety of images. In [Ramanarayanan & Bala 2007], while
achieving better quality and similar applications using patched based synthesis and energy
minimization, the agreement metric remains the same L2 norm on RGB labels.

While this work is of great inspiration to us, our approach has key differences. First, the
use of RGB labels limits the number of classes which could be properly defined. Indeed,
the different labels are averaged together during the multi-resolution synthesis process,
leading to ambiguities. Most importantly, using the L2 metric on neighborhoods made of
discrete labels does not provide a faithful metric: Labels close in value are not necessarily
visually similar. We address this problem by modifying all synthesis steps to truly consider
discrete labels.

Second, in the texture-by-number scheme the user is responsible for painting the target
map. Instead, we do not want to require the user to precisely draw shape outlines: Our ap-
proach automatically enriches with details the simplistic guidance map obtained by render-
ing the 3D proxy. This approach is hinted at in the work of Zhang et al. [Zhang et al. 2003],
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in which a binary map describing the shape of texture elements is synthesized prior to col-
ors. However, in our case the map is multi-labeled and must correspond to the rendering of
the proxy geometry.

Finally, for fast high-quality texture synthesis we rely on a parallel algo-
rithm [Lefebvre & Hoppe 2005]. This algorithm exploits coherence during synthesis – in
particular it uses only local information around each synthesized pixel during the neighbor-
hood matching process (a k-coherent candidate mechanism [Tong et al. 2002]). However,
adapting such an algorithm for guided synthesis has not been attempted before, and doing
so is non-trivial since the guide prevents the local search approach.

7.3 Input and Preprocessing

As input, we require simple proxy geometry for the scene elements that will use the texture-
synthesis shading, a source image with the desired texture categories, and any desired
standard 3D CG elements.

Proxy geometry: We provide a set of basic tools to quickly model an approximate
scene. Since we focus our efforts on the rendering process, we restrict ourselves to the use
of a simple terrain tool and sphere tool to create the proxy geometry for our examples.
This limited toolset proved to be sufficiently flexible, and could be augmented or replaced
by many other alternatives. The terrain tool simply pushes and pulls vertices of a height-
field with a Gaussian region of influence with the distance to the cursor. The sphere tool
instances spheres along a given path, thereby enabling the easy creation of topologies that
are not possible with the heightfield model, such as the arches in Figure 7.6(middle).

Source photo: Given the geometry, the user needs to select the photo which will pro-
vide the rich detail for the texture-synthesis shading. The photo should have the suitable
texture categories and have a roughly similar point of view as that desired for the proxy
geometry. The texture categories in the source photo need to be labeled, which we ac-
complish through a segmentation process. In our case this involves about half an hour of
manual work per image, which is a one-time preprocessing overhead for using a particular
source image. In large scale application of the technique, we envisage users selecting from
among a library of pre-segmented images. Although the accuracy of the segmentation is
not critical, the details in the boundaries will be transfered to a synthesized smooth guide,
so some details should be present in the input segmentation.

Proxy guide: An image of texture category labels is obtained by rendering the 3D
proxy geometry into a proxy guide, using flat shading with the appropriate texture label
associated with each component of the proxy. The labels should match those assigned to
the segmented source image. In the illustrated images of the proxy guide, e.g., Figure 7.1,
we visualize the discrete texture category labels using distinctive colors. However, all
processes in the shading pipeline will treat labels as having strictly discrete semantics,
rather than continuously-valued colors. A proxy depth map is created at the same time as
the proxy guide, and will be leveraged later to allow for depth-consistent compositing into
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Figure 7.2: The two-stage shading pipeline.

the rendered scheme.

7.4 Guidance synthesis

The first stage of the rendering pipeline produces a synthesized guide and an associated
depth map. These contain important silhouette details which are not present in the guide
produced by rendering the simple proxy geometry. As illustrated in Figure 7.2, this is
accomplished using standard texture synthesis, initialized with a down-sampled version of
the rendered proxy. The goal is to replace the smooth, unnatural borders and silhouettes of
the proxy geometry with the richer border structure that is available from the source photo
via the source guide. However, the standard L2-norms commonly used in texture synthesis
are ill-adapted to this problem because the image pixels represent discrete texture category
labels, and not continuously-valued colors. Addressing this issue requires a number of
modifications to state-of-the-art texture synthesis algorithms. The guidance synthesis phase
also needs to produce a depth map corresponding to the synthesized guide if we wish to be
able to integrate other CG elements into the scene. Both stages employ texture synthesis
methods which use guide images consisting of texture labels, not colors. As we describe
next, we propose texture synthesis methods based on Chamfer distances to address this
issue.
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l 2 distance
= [Σ(green-blue)2]0.5
= [2*2552*14]0.5
≈ 1349.3

Chamfer distance
= 14 + 14
= 28

l 2 distance
= [2*2552*12]0.5
≈ 1249.2

Chamfer distance
= 27 + 18
= 45

Figure 7.3: A comparison of L2 and Chamfer distances for two cases. According to the
Chamfer distance, the top image pair is more similar, while an L2 distance metric finds the
bottom pair to be more similar.

7.4.1 Chamfer distance

Chamfer distances compute a generalized distance between edges, or more gener-
ally, sets of points, and it is applied in many variations in shape matching applica-
tions [Barrow et al. 1977, Borgefors 1988]. It is given by the mean of the minimal dis-
tances of each point in one set to the closest point in another set. For our purposes, we
define it as the sum over each pixel in neighborhood A of the L∞-distance between the
pixel in A and the closest pixel in neighborhood B sharing the same label. The symmetric
Chamfer distance that we use is the sum of the Chamfer distance between neighborhoodsA
andB, and the distance between neighborhoodsB andA. This allows us to account for dif-
ferences in the geometry of the labels and for the fact that classes are intrinsically discrete.
In cases where there is no corresponding label, we use an assigned distance corresponding
to the size of the image neighborhood.

Figure 7.3 illustrates an example where the Chamfer distance computes a more mean-
ingful result than an L2 metric on pixel colors. The use of a binary same-category /
different-category distance metric between pixels that effectively measures the spatial over-
lap of regions would also fair poorly in such cases. For non-overlapping pixels, any such
a metric does not distinguish between a pixel being near to other pixels of the same label
and being far away from such pixels. Any such metric which compares only directly cor-
responding pixels will be problematic for small texture regions, where overlap is a poor
proxy for similarity. We also note that while the blending of color-based texture labels
(as happens in the texture synthesis pyramids) can be seen as a type of mixed labeling,
five of our six examples have more than the three texture labels that could be represented
independently in an RGB color space.
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7.4.2 Synthesis process

Our guidance map texture synthesis uses an approach similar to [Lefebvre & Hoppe 2005].
However, the use of discrete identifiers precludes building a multiresolution Gaussian stack
or a Gaussian pyramid [Hertzmann et al. 2001]. We thus build a voting stack from which
we can extract a voting pyramid. This step is performed by keeping the identifier which is
the most present in a N ×N kernel around each pixel. The kernel size is scaled by a factor
of two at each level of the stack. The pyramid is extracted from the stack by sampling the
stack every 2l pixels, where l is the stack level.

We initialize the synthesis at a level which is not too coarse in order to preserve the large
scale structure of the proxy guide. To synthesize a 256× 256 guide, we start the synthesis
at the 64× 64 level. We do not use the jittering step of [Lefebvre & Hoppe 2005] and use
7 × 7 neighborhoods. We use a coherence κ = 0.35 and k = 5 coherent matches. These
k coherent matches are found by choosing the k pixels that are furthest apart (in image
space) which are closest (in feature space) to the current pixels in a set of 4k candidates.
This is performed using an Hochbaum-Shmoys heuristic in the pre-processing step without
significant loss in performance.

7.4.3 Acceleration techniques

The use of an L2 distance allows for the use of efficient libraries such as ANN1 and accel-
eration structures such as kd-trees. However, dealing with non-Minkowski metrics such as
the Chamfer distance makes their use problematic. In particular, kd-trees cannot be used
since we cannot define planes in this space and decide where a point lies with respect to the
plane. Also, the use of principle component analysis (PCA) in prior work for accelerating
computations cannot be done in our discrete space. We implement an acceleration structure
based on ball partitioning of the space of neighborhood [Samet 2005]. Note that this step
only depends on the source image and can therefore be precomputed once and then reused
for all synthesis done using this image. The use of more involved data structures such as
vantage point-trees [Samet 2005] or GPU nearest neighbor searches [Garcia et al. 2008]
would improve performance. For example, [Garcia et al. 2008] report a 120× GPU-based
speedup.

7.5 Final Image Synthesis

We now have synthesized a detailed guide containing silhouettes visually similar to the
example, while following the layout of the proxy rendering. We next compute the final
color image by a guided texture synthesis step, similar in spirit to [Hertzmann et al. 2001].

To provide reasonably fast feedback and state-of-the-art synthesis quality we choose
to rely on a parallel texture synthesis algorithm [Lefebvre & Hoppe 2005]. This algorithm

1www.cs.umd.edu/~mount/ANN/
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obtains best results by exploiting coherence during synthesis. That is, it tends to form
patches during synthesis, and prunes the search space of neighborhood matching by only
exploiting local information within the synthesized image.

However, it is not straight-forward to use the algorithm for guided synthesis. A key
difficulty is that in an area with poor label matching the local search will only find neigh-
borhoods with incorrect labels. To overcome this, our key insight is to initialize synthesis
with an approximate result already enforcing labels. This will ensure that, locally, neigh-
borhoods with appropriate labels are found, while synthesis will essentially improve colors.

Our algorithm proceeds in three steps: First, we use the example guide A (Fig. 7.4(a))
and the synthesized guide B (Fig. 7.4(b)) to grow color patches and approximate a first
synthesis result (Fig. 7.4(c) and (d) for the color coded patches). While this approximation
is reasonable in terms of matching labels, it will have many artifacts in the color chan-
nel. Second, we downsample the approximation and use it as an initialization for a par-
allel neighborhood matching synthesis scheme, using Chamfer distance to compare label
neighborhoods (see Fig. 7.4(e)). For performance reasons we do not synthesize until the
maximum resolution but stop at an intermediate level. Third, we supersample the synthesis
result to recover the initial resolution, removing any seams through gradient transfer and
Poisson stitching (see Fig. 7.4(g)).

Similarly to [Lefebvre & Hoppe 2006] we enrich the neighborhoods with the distance
of each pixel to the closest contour in the label map, computed using [Danielsson 1980].
This helps synthesis better capture the image appearance around boundaries in the label
map. The distance map is used in neighborhood comparisons.

Patch growth for initialization The purpose of this step is to grow patches on top of the
synthesized guide (B in Fig. 7.4). At the beginning no pixels are covered by a patch. We
randomly pick an uncovered pixel and find its closest match in the original guide (A), using
a weighted combination of the Chamfer distance between labels and the distance map. We
use the following distance:

d(pA, pB) = 2.4 ||NDA
(pA)−NDB

(pB)||2 + 10 C(pA, pB) (7.1)

where DA,B are the distance maps, NDA(pA) the 7 × 7 neighborhood around pA in DA,
and C(pA, pB) the Chamfer distance between neighborhoods around pA and pB in the
label maps IA and IB . We use the best match as a seed to perform a flood fill in both A and
B which stops either at already covered pixels or when d is larger than a given threshold
(typically, 25% more than the closest distance + 10). This gives us a patch around the
uncovered pixel in B. Each patch defines a mapping between pixels in B and pixels in the
example image (color and labels). This process iterates until all pixels in B are covered.

The result is a set of patches as shown color-coded in Fig. 7.4(d). These patches
define an image correct in terms of labels, but with many artifacts in the color chan-
nels (Fig. 7.4(c)). This first step is performed at the target synthesis resolution, typically
256x256.
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Figure 7.4: A three step synthesis
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Pixel-Based Guided Synthesis The second step performs guided synthesis, similar
in spirit to [Hertzmann et al. 2001] but using a parallel algorithm. We synthesize B’
(Fig. 7.4(e)) using k-coherent synthesis, following [Lefebvre & Hoppe 2005]. As de-
scribed previously, we use a voting stack for the Chamfer distances to perform multi-scale
synthesis.

The distance metric is the same as in Eq. 7.1, augmented with the luminance channel
(we found it unnecessary to compare RGB colors when selecting neighborhoods):

d(pS , pE) = 2.4 ||NLS
(pS)−NLE

(pE)||2
+1.4 ||NDS

(pS)−NDE
(pE)||2

+10 C(pS , pE)

(7.2)

where pS is the pixel being synthesized and pE the candidate in the example image, LS,E
the luminance, N are 7 × 7 neighborhoods. The weights are determined experimentally.
Synthesis starts at a coarse resolution of 32x32 and we typically use a coherence value
κ = 0.35.

To reduce repetitions sometimes introduced by texture synthesis, we reject candidates
which are already present in a 9x9 neighborhood around the current pixel in the image
being synthesized. We also reject the candidate if any of its neighbor is present in a radius
of 2l−1, where l is the current synthesis level. We use 4 correction subpasses at each level
of the pyramid.

Gradient transfer In the first two steps, we synthesize images at a resolution of 256x256
for efficiency. In the final pass we supersample the image to the resolution of the input
image (typically 1024x1024) and perform a final Poisson synthesis step to attenuate any
remaining artifacts.

The texture synthesis step can lead to visible seams when it is impossible to find
good matching neighborhoods in the example. This often happens if a global gradi-
ent is present in the example image, for instance in the sky. In an approach inspired
by [Agarwala et al. 2004] we transfer gradients instead of colors in areas where error is
too high. We do this by building an error map consisting of the distance of each synthe-
sized pixel to its best match in the photograph. We linearly supersample this error map to
the photograph resolution and perform a Poisson synthesis step for the 60% of the pixels
with the highest errors. The remaining 40% of the pixels remain unmodified since we are
confident in their value. We force the gradient to zero at the boundary between patches,
where it is not well defined. We also supersample the synthesized guide (Sec. 7.4.2) and
ensure that boundaries between regions of different labels are left unchanged: We fix their
values by using them as Dirichlet boundary conditions.
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7.6 Compositing and Image Manipulation

Our approach supports several ways of enriching and manipulating the casually modeled
scene. In particular, CG elements can be integrated with the synthesized elements and
cast shadows into the scene. In addition, the layered representation of the scene allows
image manipulation (e.g., changing the sky color) or other compositing effects (such as
fog). Consistent depth values are needed for all pixels to enable these operations. We use
the available depth map for the proxy guide to develop a depth map corresponding to the
synthesized guide. First, the pixels in the synthesized guide that have the same labels as
the corresponding pixels in the proxy guide are assigned the proxy depth. For each pixel in
the remaining regions, we assign the depth of the closest pixel having the same label both
in the proxy and the synthesized guide. This results in an extended depth map.

Figure 7.5: Main elements of the manipulation phase.

The depth allows us to directly composite 3D CG elements into the scene, using the
camera parameters used to generate the proxy image. We can also perform simple shadow
mapping using the depth. In the examples shown, we cast shadows from the CG elements
using the extended depth map and attenuate the pixel values.

The label segmentation results in well defined layers. This allows us to interactively
manipulate the colors of each layer, for example the sky. Fog can also be interactively
composited into the scene. The boat example in Figure 7.7 shows these effects.
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7.7 Results and Implementation

We model a number of example scenes to demonstrate the method. Figure 7.6 shows
examples of icebergs, stone arches, and mountains. Two synthesized views are shown for
each scene, and these views have approximate 3D consistency because of their shared use
of the proxy geometry. The resulting scenes appear to have rich geometry, such as the
complex silhouette and faceted appearance of the icebergs, despite the simple underlying
proxy geometry.

Figure 7.7 further shows the successful integration of regular CG elements into the
synthesized scenes. Figure 7.8 illustrates the ability to change the camera point of view for
a synthesized iceberg scene.

Figure 7.6: Results, part one. The small images for each scene include (in clockwise order)
the source photo, the 3D proxy, the proxy guide, and the source labels. The large images
(from left to right) show the synthesized guide, the final image, and a synthesized image
from another viewpoint.

7.7.1 Implementation

To solve the Poisson equation, we make use of the TAUCS library and its multifrontal
sparse factorization method for symmetric positive definite matrices using 3 threads on the
1024 × 1024 final image (one thread of each color channel). The matrix is of size p × p,
where there are typically p = 631k pixels to be synthesized, with 5 non zero elements per
row, which is solved in 38 seconds.
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Figure 7.7: Results, part two, illustrating depth-consistent integration of static or animated
CG elements.

Figure 7.8: Camera rotating around an iceberg. Notice the consistent shadows and reflec-
tions on the water.
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Op. kNN Stacks Guide init Synth Img init Img synth Poisson Depth
Time 1h 13s 12s 6s 13s 40s 38s <1s

threads 1-4 1 4 4 4 4 3 1

Table 7.1: Performance of each step: kNN refers to the precomputation which is partly
single threaded. Stacks refer to the computation of various voting stack. These numbers are
indicative and our code could directly benefit from massively multiprocessor architectures.

7.7.2 Performance

Given our implementation, we are able to synthesize 1024 × 1024 images in approxi-
mately 122s. We summarize our current implementation performance in table 7.1. Al-
though we parallelize part of the code on the CPU and our code benefits from inte-
ger computations, our code remains unoptimized since our focus is not on synthesis
speed, but rather on a particular usage of texture synthesis and the final image qual-
ity. Many possibilities for acceleration exist, for example GPU methods such as multi-
grid Poisson resolution [McCann & Pollard 2008], or brute force nearest neighbor solu-
tions [Garcia et al. 2008]; VP-trees [Samet 2005] or the use of recent multi-core architec-
tures [Seiler et al. 2008].

7.7.3 Impact of Guide Synthesis

Figure 7.9 illustrates the result of image synthesis with and without the guide. The smooth
silhouette of the proxy guide is largely preserved in the synthesis without the guide, which
gives the image an artificial flavor. The guide synthesis adds the necessary detail to the
guide, resulting in the addition of trees and the addition of small rocks surrounding the
main island.

7.7.4 Comparison to Image Analogies

The third stage of our method, the guided texture synthesis step, is directly inspired
by the texture-by-numbers approach suggested in the seminal image-analogies work
of [Hertzmann et al. 2001]. Nevertheless, the third stage of our synthesis method differs
from this previous work in a number of significant respects. This includes the use of Cham-
fer distance to respect the discrete nature of texture labels, the introduction of a pyramid
based on a voting scheme, and the three-step synthesis.

To see the qualitative impact of these differences, we compare the result of substituting
the original image analogies method of [Hertzmann et al. 2001] for our two step synthesis
process, i.e., with the proxy guide as input. We use the original code made available by
the authors and first verify its correct usage by reproducing results from the original paper.
Figure 7.10 shows the results for a subset of our examples. While for some images the orig-
inal image analogies method obtains reasonable results, other cases exhibit strong artifacts.
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Figure 7.9: Impact of guide synthesis for two examples. The first row shows the guide and
synthesis result without guide synthesis. The second shows the same with guide synthesis.

We did significant experimentation with the κ parameter for the image analogies method in
order to ensure that this was not the source of the visible artifacts. For our method we keep
all parameters fixed to the previously described values Our own method is also subject to
many limitations (also shared by Image Analogies) as we discuss next.

Although [Ramanarayanan & Bala 2007] shown improved quality results compared to
Image Analogies, their use of patch based synthesis makes applications more difficult (see
Section 7.8.2).

A comparison between the use of an L2 distance over RGB colored labels and a Cham-
fer distance over discrete IDs in our pipeline is provided in Figure 7.11. This comparison
shows that, as expected, labels gets blended in the multiresolution process when using RGB
colors as identifiers thus creating new undesirable regions. Our method, based on discrete
IDs does not suffer from this problem.

7.8 Limitations and Future work

7.8.1 Limitations

Two failure cases are illustrated in Figure 7.12. Our current segmentation does not dis-
tinguish between texture borders that arise from 3D adjacency and those that arise from
occlusions. This is illustrated by the first failure example using the cliffs of Dover. The
final synthesized image matches the proxy guide by creating what is visually a tall cliff
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Figure 7.10: Output of Image Analogies. The stone arches did not use a blurred guide,
while the other two images do. The results use the input given in Figures 7.7, 7.9, and 7.7,
respectively.

Figure 7.11: From left to right: Initial guide, synthesized silhouettes, synthesized color
result. Top row: Our pipeline using the Chamfer distance. Bottom row: Our pipeline
using an L2 distance. The multiresolution process blends labels together thus creating new
undesirable regions between the sky and the sea on the left.

rather than the alternative shape modeled by the 3D proxy, consisting of a long coastline
with sloping cliffs instead of plunging cliffs. The second failure example illustrates what
happens when the relevant combinations of borders between texture classes are not shared
between the source photo and the proxy guide. This particular view of the proxy demands
a cyan-colored shoreline category leading down into a blue-colored water category. Be-
cause this combination does not exist in the source image, the synthesized image is of poor
quality.

Our method inherits many of the limitations of previous texture synthesis methods. In
particular, due the lack of semantic information, the guide synthesis can lead to unnatural
results such as trees with two trunks, given that the method does not model the kind of
abstract constraints needed to prevent this. Artifacts are common along structured border
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Figure 7.12: Failure cases. Left: Cliffs of Dover. Right: Rocky Isle. The cause of failure is
discussed in §7.7.

regions such as the horizon line if this is placed at a different angle in the proxy guide than
in the original image.

Our synthesized skies still occasionally yield artifacts which can be fixed by allowing
the Poisson synthesis to be performed on larger areas or even on all pixels.

We are currently limited to working with a single source image to provide the visual
detail. A promising direction of future work is to investigate the use of texture categories
from multiple source images. Particular texture labels could be declared as being seman-
tically equivalent, for example. This would potentially allow for much wider classes of
texture-synthesis shading, as well as indexing based on other attributes, such as normals
and lighting conditions.

7.8.2 Temporal coherence and lighting variations

Despite the fact that we can create multiple views, we do not solve the hard problem of
temporal coherence. Solving this would allow for our tool to be usable in production
rendering of animations and remains an exciting challenge.

Our latest implementation shows that we can handle the issue of temporal coherence
by considering only local coherence. Our approximate extended depth allows reprojection
of the synthesized pixels using a 3D connected mesh cut at label boundaries. Thus, only
unoccluded pixels need to be resynthesized, and spatial coherence in newly synthesized
pixels allow for a locally temporally coherent synthesis: although views appear coherent
when moving the camera, there is no guarantee that moving far away in the scene and
coming back to the original position will yield exactly the same synthesized view. We
further accelerated the synthesis process, partly by performing computations on the GPU,
to allow for a synthesis in the order of a second.

However, we cannot currently provide complete freedom in viewing the 3D proxy. The
viewpoint must be chosen so as to approximately preserve the same overall scale, occlusion
ordering, and inclination angle as in the source photo.

We also tried using the same synthesized patches on different frames of a time lapse
photograph, in order to provide lighting variations in a straightforward way. Although this
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approach could lead to discontinuities in areas where shadows have been cut by a patch at
a different time of the day, this approach worked well in practice which is mainly due to
the final Poisson synthesis.

We thus hope to provide a full image based interactive rendering pipeline with con-
troled lighting, usable for production and games.

7.9 Conclusions

We have proposed a method for using texture synthesis as a shading technique which sup-
plies rich visual detail to scenes modeled from simple geometry. Regular CG elements
and texture-synthesis elements are integrated in a consistent fashion, and the layering of
the naturally-segmented textured elements allows for easy further interactive image ma-
nipulation. In support of these goals, we introduce the notion of guidance synthesis, the
use of a Chamfer distance metric as a principled means to achieve guided synthesis, and a
three-step final synthesis method.





Conclusion





Conclusion 129

The two main goals of this thesis were the use of crossmodal perception to improve
audio and visual algorithms, and the use of photographs to enrich visual CG renderings.
As we have seen throughout this thesis, we believe that these goals were reached to a large
extent.

In the first part, we used spatio-temporal tolerance windows for clustering and schedul-
ing of sounds. We also studied the perception of audio-visual materials, and derived an
LOD mechanism to perceptually choose both the visual and audio quality at the same
time. We integrated these results into a game engine, demonstrating the practical interest
of crossmodal algorithms.

In the second part, we used a single photograph to extract parameters and match the
hair appearance for further CG renderings. We also used a photograph to infer its style for
“casual modeling”, and rapidly sketch and render 3D scenes.

The first part lasted two years, while the second part took the remaining third year of
the PhD. We will thus conclude with some in depth insights on our crossmodal research,
and more briefly conclude on the use of photographs for CG rendering.

Part I: Crossmodal Perceptual Rendering

As we have seen throughout this thesis, using perception can improve algorithm perfor-
mance and can be used to validate algorithms. Our main results in crossmodal perception
show that we can use spatio-temporal windows to provide flexibility in the audio rendering
process, both spatially and temporally in order to speedup computations. We have also
shown that the visual rendering of a material could be degraded if accompanied by a high
quality sound which is cheaper to compute.

Insights

In general terms benefits of using crossmodal algorithms alone are somewhat lower than
our original expectations. For example, it is unclear how the simple experiment we ran for
crossmodal clustering (Chapter 2) directly extends to highly complex scenes.

A large body of crossmodal results have been obtained in the neuroscience commu-
nity [Spence & Driver 2004] for extremely simple stimuli. Also, preliminary crossmodal
effects have been shown in computer graphics [Tsingos et al. 2004] in more complex con-
texts. In consequence, the small crossmodal effect on complex scenes would have been
difficult to predict on the basis of knowledge about the state of the art at the outset of this
thesis.

During the first two years of the thesis, we also designed and ran a few other pilot
crossmodal-related studies which remained unpublished due to the lack of significant re-
sults. For example, following the previous work which reported improvements in eye sensi-
tivity in the presence of sound [Lippert et al. 2007, Stein et al. 1996, Bolognini et al. 2005,
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Vroomen et al. 2000], we developed a pilot test in which the subject had to detect a frog
in a forest scene (Fig.7.13, left). The contrast of the frog was varied as well as its sound.
Although we were able to reproduce results similar to [Stein et al. 1996] on a simple ex-
periment [Baker 1949] including sounds, we did not obtain significant results using a more
complex environment such as the forest scene. Even if significant detection improvements
with the sound had been found, it would have been difficult to directly use this effect
for algorithmic gain. The use of a Threshold vs. Intensity (TVI) curve taking into ac-
count sounds when building a threshold map would have been a possible scenario. Studies
have also shown the influence of sound quality on the perceived quality of degraded im-
ages [Storms & Zyda 2000]. We thus studied the impact of the presence of sound on the
perceived quality of shadows in a baseball game (Fig.7.13, right) but did not obtain signif-
icant results.

Figure 7.13: Left: A forest containing frogs used in an experiment. Right: A baseball bat
projecting soft shadows for an experiment.

Looking back, we believe that some of the main difficulties we encountered in percep-
tual and crossmodal research for computer graphics can be summarized as follows:

• Thresholds are small: Although perception can be used to improve algorithms by
neglecting imperceptible details, the visual thresholds are small. In a paper not
presented in this thesis, we used visual perception to control visual levels of de-
tail [Drettakis et al. 2007]. However, this approach resulted in computational gain
only in the case of highly complex scenes with high masking (due to shadows
or tiny complex geometries such as in trees, see Fig.7.14, left). Audio thresh-
olds tend to be higher; consequently, we found that it was more beneficial to
control audio algorithms using perception [Moeck et al. 2007, Bonneel et al. 2008,
Grelaud et al. 2009].

• Psychophysics use simple stimuli: Stimuli used in psychophysics are very simple,
generally involving LEDs and beeping loudspeakers (Fig. 7.15, left) and results ob-
tained cannot be directly extended to more complex scenes. The applied perception
community uses somewhat more complex stimuli (Fig. 7.15, right), although still not
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Figure 7.14: Left: High masking due to shadows and geometry in complex scenes can be
exploited for algorithmic gain [Drettakis et al. 2007]. Right: A virtual environment to cure
dog phobia [Viaud-Delmon et al. 2008]

reaching the complexity of virtual environments. However, cognitive science deals
with complex stimuli, and up to now, mostly studied the attention shifts due to cross-
modal events [Driver & Spence 1998]. We believe that an interesting application of
studies on the crossmodal attention space is the design of interfaces, and it would be
interesting to further investigate this domain. We proposed an initial contribution,
not described in this thesis, by developing a virtual environment aimed at curing dog
phobia [Viaud-Delmon et al. 2008], including barking dogs (see Fig.7.14, right). Ul-
timately, audiovisual conflicts could be used for this purpose.

• Results in psychophysics show small crossmodal effects: Although psychophysics
show statistically significant and reproducible results when comparing unimodal and
crossmodal conditions, these effects remain small (Fig.7.16). Enven though they help
us understand brain mechanisms, this reduces the hope for high gain in computation
time.

• Crossmodal effects are not easy to convert to algorithms: For example, in a paper
not presented in this thesis, we demonstrated that reaction times are reduced when
both audio and visuals are present when recognizing an object [Suied et al. 2009].
However, we did not find direct algorithmic applications, even in the context of task
oriented performance measurements (e.g., a VR version of “finding Waldo”).

• Experiments are hard to design: In [Bonneel et al. 2010], we found interesting
audio-visual perceptual results by carefully designing the experiment. We went
through several versions of the experimental protocol before defining the appropri-
ate setup and corresponding question allowing us to identify the crossmodal effects.
The use of two senses at the same time makes the experiments much harder to de-
sign: although side by side comparisons are commonly used in the visual perception
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community, this cannot be done when sounds are present. On the other hand, A/B
comparisons used in audio research may not be appropriate (e.g., popping). Also,
sounds are more meaningful in animated sequences which also makes comparisons
harder. In addition, the task of the participant is not always well defined when both
sounds and visuals are present. A concept merging both cues has to be found to
avoid having the participant focus on a single modality. For example, the concept
of materials in [Bonneel et al. 2010] allowed us to merge impact sounds and visual
representation of materials in a single more abstract representation, and ask a mean-
ingful question to participants.

Figure 7.15: Left: Experimental setup used in [Stein et al. 1996]: the participant is sat
in front of equally spaced pairs of LED and loudspeakers, adjusting the intensity of a
LED to match another one. Right: Experimental setup used in [Storms & Zyda 2000]. The
image of the radio is presented at different qualities (noise added, or compression artifacts)
and a corresponding sound is simultaneously emitted at different qualities (noise added or
sampling rate varied).

Much work remains to be done in the field of crossmodal audiovisual rendering. While
the contributions we present on crossmodal interactions yield significant, albeit not spectac-
ular, improvements to algorithms, we believe our results have put research on crossmodal
effects for Virtual Environments on more solid ground. We hope that our current results
will open a new way to crossmodal perceptual algorithms and provide an initial interesting
scientific basis on the topic.

Future work

We believe that crossmodal effects could have a significant impact on user interfaces. In-
deed, user’s attention can be shifted toward particular locations with sounding and visual
events. Also, studies reported smaller reaction times in presence of both sounds and vi-
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Figure 7.16: Left: Results of [Stein et al. 1996] showing a statistically significant in-
crease of perceived light intensity when accompanied by a sound. Right: Results
of [Lovelace et al. 2003] showing a statistically significant decrease of sound detection
threshold when accompanied by an irrelevant light.

suals [Suied et al. 2009, Kinchla 1974] in detection tasks. This could be used to improve
human’s performance in virtual environments when performing particular tasks.

Part II: Visual rendering using a single photograph

Insight

In the second part of this thesis, we demonstrated how a single photograph could be
used to enrich visual renderings. Specifically, we first tried to reproduce hair appear-
ance, and then tried to reproduce a rendering of a sketched scene similar to a photograph.
We believe that user guided synthesis, with the help of an input photograph, can drasti-
cally simplify the rendering process. Indeed, in modern rendering techniques and hard-
ware setups for computer graphics, at one end of the technological spectrum we have
highly complex and expensive setups. These setups provide very accurate renderings
through image based techniques [Paris et al. 2008] or through best fits on physical mea-
surements [Matusik et al. 2003] with computationally expensive rendering models (e.g.,
PBRT [Pharr & Humphreys 2004]), and are typically preferred by the film industry. At the
other end of the spectrum, no input is required and simple rendering models are applied
(e.g., ambient occlusion [Zhukov et al. 1998]), which is typically preferred by the game
industry. We proposed a way to close the loop between real world photographs and simple
rendering models using an intermediate solution, where the capture setup is extremely sim-
ple (a single photograph) and cheap rendering models are used. This provides an adequate
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solution for typical usage of low-end devices (PDA, mobile phones) or non expert users
(avatar customization, sketching).

As we have seen in our work, a single photograph can be used either to find param-
eters of a physical simulation (the hair reflectance parameters [Bonneel et al. 2009a]), or
directly to synthesize based on image pixels for rendering (Chapter 7). Although a single
image appears to contain too little information to fit a full 4D reflectance model which
depends on the camera and light positions, a perceptual metric allowed us to succeed in
this technical challenge. This drastically reduces the complexity of previous hair capture
setups, needing a full dome of lights and cameras capturing more than 40,000 images
[Paris et al. 2008]. We also used a single photograph to provide a tool for the “casual mod-
eling” of 3D sketched scenes. The pixels from the photos are directly extracted by patches,
and are placed and refined during the rendering. This provides a realistic rendering using
the style of the photo.

Future work

One of our most promising results relates to the casual modeling of 3D scenes using an
input photograph. Using this approach, a user can very quickly design a rough 3D scene
in a few seconds, and have it realistically rendered in 2 minutes based on the style of a
photograph. Synthetic 3D objects can then be integrated in this rendering, while properly
handling occlusions.

We believe that this approach can be extended to realtime rendering, particularly using
recent GPUs. Interactivity makes it interesting to have temporal coherence as well in order
to continuously navigate in the scene. However, since a human is likely to forget small
salient features location over a long period of time, a simpler local temporal coherence can
be justified and easily achieved. This would provide continuous motions without requiring
a full temporal coherence of small scale features. This would provide a fresh approach to
computer graphics rendering, with potential applications in realtime 3D games.

More generally, the computer vision community has solved most problems related to
3D reconstruction from photograph. However, their solution typically deal with recon-
structing the real world. We believe that it is important to have more tools to only infer the
geometric style of a photograph without reconstructing the scene faithfully, thus allowing
more freedom in the creation process. In particular, it is important to provide the tools to
create a variety of new objects, albeit based on the input photographs. Other features could
then be extracted from the photograph such as textures, materials and lighting conditions,
in order to transfer them to synthesized new scenes.
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Appendix

A.1 Some Elements of Distribution Theory

Applying a distribution T defined by a locally integrable function to a smooth test function
f with local support, implies the following operation:

< T, f >=
Z ∞
−∞

Tf(x)dx. (A.1)

A commonly used distribution is the Dirac distribution (note that this is not the Kronecker
delta) which has value 0 everywhere, except at 0. < δk, f >= f(k) is commonly used in
signal processing (Dirac combs). We use the following properties of distributions:

δ0 ? f = f δ
(n)
0 ? f = f (n) (A.2)

where f (n) denotes the nth derivative of f .

δa(t) ? f(t) = f(t− a) δ
(n)
a (t) ? f(t) = f (n)(t− a) (A.3)

F (f(t)g(t)) =
1

2π
F(f(t)) ? F(g(t)) (A.4)

A.2 Formulas for energy computation

We present here several expressions which we use in the computation of energy for modes.

The instant energy of a mode is given by:
Z t2
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(A.5)

To compute the total energy of two modes as
‖s‖2 =<

P
i aifi,

P
j ajfj >=

P
i
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j aiaj < fi, fj >, the expression < fi, fj > is

given below, using Eq. A.5:Z ∞
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Similarly, the scalar product of two modes in a given interval (t,t+dt) is given as follows
(we substitute α2 by α2 + α1 and ω2 by ω2 + ω1):
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This expression can be computed, after appropriate factorization using 17 additions, 24
multiplications, 8 cosine/sine operations, 2 exponentials and 1 division.

We then found a simpler expression for the above formula:

Z t2
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This result is much more computationally efficient. In particular, part of it does not depend
on time, and can thus be precomputed.



Bibliography

[Agarwal et al. 2003] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie and Hen-
rik Wann Jensen. Structured importance sampling of environment maps. ACM
Transactions on Graphics (ACM SIGGRAPH 2003), vol. 22, pages 605–612, 2003.
81

[Agarwala et al. 2004] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven
Drucker, Alex Colburn, Brian Curless, David Salesin and Michael Cohen. Inter-
active digital photomontage. ACM Transactions on Graphics (ACM SIGGRAPH
2004), vol. 23, no. 3, pages 294–302, 2004. 117

[Alais & Burr 2004] D. Alais and D. Burr. The ventriloquism effect results from near-
optimal bimodal integration. Current Biology, vol. 14, pages 257–262, 2004. 21

[Alais & Carlile 2005] D. Alais and S. Carlile. Synchronizing to real events: subjective
audiovisual alignment scales with perceived auditory depth and speed of sound.
Proceedings of the National Academy of Sciences of the USA, vol. 102, no. 6,
pages 2244–7, 2005. 21

[Arthur & Vassilvitskii 2007] D. Arthur and S. Vassilvitskii. k-means++: The advantages
of careful seeding. In ACM-SIAM Symposium on Discrete Algorithms, pages
1027–1035, 2007. 94

[Ashikhmin 2001] Michael Ashikhmin. Synthesizing natural textures. In ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (I3D), pages 217–226,
New York, NY, USA, 2001. ACM. 110

[Baker 1949] Howard Dehaven Baker. The Course of Foveal Light Adaptation Measured
by the Threshold Intensity Increment. Journal of the Optical Society of America,
vol. 39, no. 2, pages 172–179, 1949. 130

[Barrow et al. 1977] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles and H. C. Wolf. Para-
metric correspondence and chamfer matching: Two new techniques for image
matching. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence, pages 659–663, 1977. 113

[Begault 1999] Durand Begault. Auditory and non-auditory factors that potentially in-
fluence virtual acoustic imagery. In Proceedings of the AES 16th International
Conference on Spatial Sound Reproduction, pages 13–26, 1999. 21

[Ben-Artzi et al. 2006] Aner Ben-Artzi, Ryan Overbeck and Ravi Ramamoorthi. Real-
time BRDF editing in complex lighting. In ACM Transactions on Graphics (ACM
SIGGRAPH 2006), pages 945–954, 2006. 55



138 Bibliography

[Bertails 2006] Florence Bertails. Simulation de Chevelures Virtuelles. PhD thesis, Institut
National Polytechnique de Grenoble, 2006. 89

[Blauert 1997] J. Blauert. Spatial hearing : The psychophysics of human sound localiza-
tion. M.I.T. Press, Cambridge, MA, 1997. 27

[Bolin & Meyer 1995] Mark R. Bolin and Gary W. Meyer. A frequency based ray tracer.
In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 409–418, New York, NY, USA, 1995.
ACM. 19, 20

[Bolognini et al. 2005] Nadia Bolognini, Francesca Frassinetti, Andrea Serino and Elisa-
betta Làdavas. “Acoustical vision” of below threshold stimuli: interaction among
spatially converging audiovisual inputs. Experimental Brain Research, vol. 160,
no. 3, pages 273–282, January 2005. 5, 130

[Bonneel et al. 2008] Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle
Viaud-Delmon and Doug James. Fast Modal Sounds with Scalable Frequency-
Domain Synthesis. ACM Transactions on Graphics (ACM SIGGRAPH 2008),
vol. 27, no. 3, pages 1–9, August 2008. 4, 6, 33, 130

[Bonneel et al. 2009a] Nicolas Bonneel, Sylvain Paris, Michiel van de Panne, Frédo Du-
rand and George Drettakis. Single Photo Estimation of Hair Appearance. Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium on Render-
ing), June 2009. 4, 7, 88, 98, 134

[Bonneel et al. 2009b] Nicolas Bonneel, Michiel van de Panne, Sylvain Lefebvre and
George Drettakis. A Texture-Synthesis Approach for Casual Modeling. Submit-
ted, 2009. 4, 7

[Bonneel et al. 2010] Nicolas Bonneel, Clara Suied, Isabelle Viaud-Delmon and George
Drettakis. Bimodal perception of audio-visual material properties for virtual en-
vironments. ACM Transactions on Applied Perception (in press), 2010. 4, 6, 53,
131, 132

[Borgefors 1988] G. Borgefors. Hierarchical chamfer matching: A parametric edge
matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 10, no. 6, pages 849–865, 1988. 113

[Brainard et al. 2008] David Brainard, Larry Maloney and Anya Hurlbert, editeurs. Per-
ception of material properties in 3d scenes (workshop), Pennsylvania, 2008. 21

[Chiu 2008] Dey-Fuch Chiu. Penta G - a game engine for real-time rendering research.
Master’s thesis, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, June 2008. 72,
79, 80



Bibliography 139

[Cohen et al. 2000] Jonathan M. Cohen, John F. Hughes and Robert C. Zeleznik. Harold:
a world made of drawings. In NPAR ’00: Proceedings of the 1st International
Symposium on Non-Photorealistic Animation and Rendering, pages 83–90, New
York, NY, USA, 2000. ACM. 109

[Cook & Torrance 1982] R. L. Cook and K. E. Torrance. A Reflectance Model for Com-
puter Graphics. ACM Transactions on Graphics, vol. 1, no. 1, pages 7–24, 1982.
54

[Danielsson 1980] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and
Image Processing, vol. 14, pages 227–248, 1980. 115

[Debevec et al. 2000] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,
Westley Sarokin and Mark Sagar. Acquiring the Reflectance Field of a Human
Face. In Kurt Akeley, editeur, Proceedings of ACM SIGGRAPH 2000, pages 145–
156. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000. 3

[Debevec 1998] Paul Debevec. Rendering with natural light. In ACM SIGGRAPH 98
Electronic art and animation catalog, page 166, New York, NY, USA, 1998. ACM
Press. 57

[Dellepiane et al. 2008] Matteo Dellepiane, Nico Pietroni, Nicolas Tsingos, Manuel As-
selot and Roberto Scopigno. Reconstructing head models from photographs for
individualized 3D-audio processing. Computer Graphics Forum (Proceedings of
Pacific Graphics), vol. 27, no. 7, pages 1719–1727, 2008. 14

[Disney 2009] Disney. http://adisney.go.com/disneyvideos/
animatedfilms/wall-e/media/downloads/
WALLEProductionNotes.pdf, Wall-E production notes, accessed June,
2009. 3

[Donnelly & Lauritzen 2006] William Donnelly and Andrew Lauritzen. Variance shadow
maps. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(I3D), pages 161–165, New York, NY, USA, 2006. ACM. 57

[Donner et al. 2008] C. Donner, T. Weyrich, E. D’Eon, R. Ramamoorthi and
S. Rusinkiewicz. A layered, heterogeneous reflectance model for acquiring and
rendering human skin. ACM Transactions on Graphics (ACM SIGGRAPH ASIA
2008), 2008. 90

[Drettakis et al. 2007] George Drettakis, Nicolas Bonneel, Carsten Dachsbacher, Sylvain
Lefebvre, Michael Schwarz and Isabelle Viaud-Delmon. An Interactive Perceptual
Rendering Pipeline using Contrast and Spatial Masking. In Rendering Techniques
(Proceedings of the Eurographics Symposium on Rendering). Eurographics, June
2007. 4, 19, 130, 131

http://adisney.go.com/disneyvideos/ animatedfilms/wall-e/media/downloads/ WALLEProductionNotes.pdf
http://adisney.go.com/disneyvideos/ animatedfilms/wall-e/media/downloads/ WALLEProductionNotes.pdf
http://adisney.go.com/disneyvideos/ animatedfilms/wall-e/media/downloads/ WALLEProductionNotes.pdf


140 Bibliography

[Driver & Spence 1998] Jon Driver and Charles Spence. Attention and the crossmodal
construction of space. Trends in Cognitive Sciences, vol. 2, no. 7, pages 254–262,
July 1998. 131

[Ducheneaut et al. 2009] Nicolas Ducheneaut, Ming-Hui Wen, Nicholas Yee and Greg
Wadley. Body and mind: a study of avatar personalization in three virtual worlds.
In CHI ’09: Proceedings of the 27th international conference on Human factors in
computing systems, pages 1151–1160, New York, NY, USA, 2009. ACM. 7, 88

[Fleming et al. 2003] Roland W. Fleming, Ron O. Dror and Edward H. Adelson. Real-
world illumination and the perception of surface reflectance properties. Journal of
Vision, vol. 3, no. 5, pages 347–368, July 2003. 21, 22, 56, 82

[Fouad et al. 1997] H. Fouad, J.K. Hahn and J.A. Ballas. Perceptually Based Scheduling
Algorithms for Real-time Synthesis of complex sonic environments. Proceedings of
International Conference on Auditory Display, 1997. 21

[Fujisaki et al. 2004] Waka Fujisaki, Shinsuke Shimojo, Makio Kashino and Shin’ya
Nishida. Recalibration of audiovisual simultaneity. Nature Neuroscience, vol. 7,
no. 7, pages 773–778, July 2004. 20

[Funkhouser et al. 1999] Thomas Funkhouser, Patrick Min and Ingrid Carlbom. Real-time
acoustic modeling for distributed virtual environments. In Proceedings of ACM
SIGGRAPH 99, pages 365–374, 1999. 13

[Funkhouser et al. 2004] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi,
J. West, G. Pingali, P. Min and A. Ngan. A Beam Tracing Method for Interactive
Architectural Acoustics. Journal of the Acoustical Society of America, vol. 115,
no. 2, pages 739–756, February 2004. 13

[Garcia et al. 2008] Vincent Garcia, Eric Debreuve and Michel Barlaud. Fast k Nearest
Neighbor Search using GPU, Apr 2008. 114, 121

[Gardner et al. 2003] A. Gardner, C. Tchou, T. Hawkins and P. Debevec. Linear light
source reflectometry. ACM Transactions on Graphics (ACM SIGGRAPH 2003),
vol. 22, no. 3, pages 749–758, 2003. 90

[Giordano & McAdams 2006] Bruno L. Giordano and Stephen McAdams. Material iden-
tification of real impact sounds: Effects of size variation in steel, glass, wood, and
plexiglass plates. Journal of the Acoustical Society of America, vol. 119, no. 2,
pages 1171–1181, 2006. 22, 57, 58

[Grabli et al. 2002] S. Grabli, F. Sillion, S. R. Marschner and J. E. Lengyel. Image-based
hair capture by inverse lighting. In Proceedings of Graphics Interface, 2002. 89

[Green 2003] Robin Green. Spherical Harmonic Lighting: The Gritty Details. Archives
of the Game Developers Conference, March 2003. 56



Bibliography 141

[Grelaud et al. 2009] David Grelaud, Nicolas Bonneel, Michael Wimmer, Manuel Asselot
and George Drettakis. Efficient and Practical Audio-Visual Rendering for Games
using Crossmodal Perception. In ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D), New York, NY, USA, 2009. ACM. 4, 6, 70, 71, 130

[Grewin 1993] C. Grewin. Methods for Quality Assessment of Low Bit-Rate Audio Codecs.
In Proceedings of the AES 12nd International Conference, pages 97–107, 1993. 28

[Guest et al. 2002] Steve Guest, Caroline Catmur, Donna Lloyd and Charles Spence. Au-
diotactile interactions in roughness perception. Experimental Brain Research,
vol. 146, pages 161–171, 2002. 23

[Guski & Troje 2003] R. Guski and N.F. Troje. Audiovisual phenomenal causality. Per-
ception and Psychophysics, vol. 65, no. 5, pages 789–800(12), July 2003. 5, 21,
45, 48

[Hairston et al. 2003] W. D. Hairston, M. T. Wallace, J. W. Vaughan, B. E. Stein, J. L.
Norris and J. A. Schirillo. Visual Localization Ability Influences Cross-Modal Bias.
Journal of Cognitive Neuroscience, vol. 15, no. 1, pages 20–29, 2003. 4, 5, 21

[Halal & Schoon 2001] John Halal and Douglas D. Schoon. Hair structure and chemistry
simplified. Cengage Learning, 2001. 89

[Hartley & Zisserman 2004] R. I. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, ISBN: 0521540518, second édition,
2004. 7

[Herder 1999] Jens Herder. Optimization of Sound Spatialization Resource Management
through Clustering. The Journal of Three Dimensional Images, 3D-Forum Society,
vol. 13, no. 3, pages 59–65, September 1999. 26

[Hertzmann et al. 2001] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless
and David H. Salesin. Image Analogies. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series, pages 327–340,
August 2001. 110, 114, 117, 121

[Hochbaum & Schmoys 1985] Dorit S. Hochbaum and David B. Schmoys. A best possible
heuristic for the ık-center problem. Mathematics of Operations Research, vol. 10,
no. 2, pages 180–184, May 1985. 13

[Hormander 1983] Lars Hormander. The analysis of linear partial differential operators i.
Springer-Verlag, 1983. 38, 39

[Howell 1992] David C. Howell. Statistical methods for psychology. PWS-Kent, 1992.
50

[HPD 2008] HPD. http://graphics.ucsd.edu/~will/download/
HairPhotobooth/ Hair photobooth data [Paris et al. 2008], accessed
June, 2008. 91

http://graphics.ucsd.edu/~will/download/HairPhotobooth/
http://graphics.ucsd.edu/~will/download/HairPhotobooth/


142 Bibliography

[InCrysis 2009] InCrysis. http://www.incrysis.com/index.php?option=
com_content\&task=view\&id=559, interview with C.Yerli, CEO at Cry-
tek, accessed June, 2009. 3

[International Telecom. Union 1994] International Telecom. Union. Methods for subjec-
tive assessment of small impairments in audio systems including multichannel
sound systems. Rapport technique, International Telecom. Union, 1994. 28

[International Telecom. Union 2003] International Telecom. Union. Method for the sub-
jective assessment of intermediate quality level of coding systems. Recommenda-
tion ITU-R BS.1534-1, 2001-2003. 49

[IRCAM 2009] IRCAM. http://recherche.ircam.fr/equipes/salles/
listen/, The LISTEN HRTF Database, accessed June, 2009. 14, 27, 49

[James et al. 2006] Doug L. James, Jernej Barbic and Dinesh K. Pai. Precomputed acous-
tic transfer: Output-sensitive, accurate sound generation for geometrically com-
plex vibration sources. ACM Transactions on Graphics (ACM SIGGRAPH 2006),
vol. 25, no. 3, pages 987–995, July 2006. 17, 34, 46, 57

[Kajiya & Kay 1989] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional
textures. In Computer Graphics (Proceedings of SIGGRAPH 89), pages 271–280,
1989. 89

[Katz 2001] B. Katz. Boundary element method calculation of individual head-related
transfer function. par I: Rigid model calculation. Journal of the Acoustical Society
of America, vol. 110, no. 5, pages 2440–2448, 2001. 14

[Kautz et al. 2002] J. Kautz, P. Sloan and J. Snyder. Fast, arbitrary BRDF shading for
low-frequency lighting using spherical harmonics. In Proceedings of the 13th Eu-
rographics workshop on Rendering, pages 291–296, 2002. 54, 55, 56, 59

[Kinchla 1974] R. A. Kinchla. Detecting target elements in multielement arrays - A con-
fusability model (visual letter detection tasks). Perception and Psychophysics,
vol. 15, pages 149–158, February 1974. 5, 133

[Klatzky et al. 2000] R. Klatzky, D. Pai and E. Krotkov. Perception of material from con-
tact sounds. Presence: Teleoperators and Virtual Environments, pages 399–410,
2000. 6, 23, 54

[Kristensen et al. 2005] Anders Wang Kristensen, Tomas Akenine-Möller and Hen-
rik Wann Jensen. Precomputed local radiance transfer for real-time lighting de-
sign. ACM Transactions on Graphics (ACM SIGGRAPH 2005), vol. 24, no. 3,
pages 1208–1215, 2005. 55, 56

[Larcher 2001] V. Larcher. Techniques de spatialisation des sons pour la réalité virtuelle.
PhD thesis, Université Paris 6 (Pierre et Marie Curie), 2001. 14

http://www.incrysis.com/index.php?option= com_content\&task=view\&id=559
http://www.incrysis.com/index.php?option= com_content\&task=view\&id=559
http://recherche.ircam.fr/equipes/salles/listen/
http://recherche.ircam.fr/equipes/salles/listen/


Bibliography 143

[Larsson et al. 2002] P. Larsson, D. Västfjäll and M. Kleiner. Better presence and perfor-
mance in virtual environments by improved binaural sound rendering. Proceedings
of the AES 22nd International Conference on Virtual, Synthetic and Entertainment
Audio, pages 31–38, June 2002. 34

[Lefebvre & Hoppe 2005] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable tex-
ture synthesis. ACM Transactions on Graphics (ACM SIGGRAPH 2005), vol. 24,
no. 3, pages 777–786, 2005. 111, 114, 117

[Lefebvre & Hoppe 2006] Sylvain Lefebvre and Hugues Hoppe. Appearance-space tex-
ture synthesis. In ACM Transactions on Graphics (ACM SIGGRAPH 2006), pages
541–548, New York, NY, USA, 2006. ACM. 115

[Lewald et al. 2001] Jörg Lewald, Walter H. Ehrenstein and Rainer Guski. Spatio-
temporal constraints for auditory–visual integration. Behavioural Brain Research,
vol. 121, no. 1-2, pages 69–79, 2001. 21

[Lippert et al. 2007] M. Lippert, N. K. Logothetis and C. Kayser. Improvement of visual
contrast detection by a simultaneous sound. Brain research, vol. 1173, pages 102–
109, October 2007. 5, 130

[Lokki et al. 2002] Tapio Lokki, Lauri Savioja, Riitta Väänänen, Jyri Huopaniemi and
Tapio Takala. Creating Interactive Virtual Auditory Environments. IEEE Com-
puter Graphics and Applications, vol. 22, no. 4, pages 49–57, 2002. 13

[L’Oréal 2008] L’Oréal. http://www.hair-science.com, Hair Science, accessed
Nov, 2008. 89, 91

[Lovelace et al. 2003] C. T. Lovelace, B. E. Stein and M. T. Wallace. An irrelevant light
enhances auditory detection in humans: a psychophysical analysis of multisensory
integration in stimulus detection. Cognitive brain research, vol. 17, no. 2, pages
447–453, July 2003. 5, 133

[Luebke & Hallen 2001] David Luebke and Benjamin Hallen. Perceptually Driven Sim-
plification for Interactive Rendering. In Proceedings of the 12nd Eurographics
workshop on Rendering, pages 223–234, June 2001. 19

[Luebke et al. 2002] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy
and Amitabh Varshney. Level of detail for 3d graphics. Elsevier Science Inc., New
York, NY, USA, 2002. 4, 19

[Marks et al. 1997] J. Marks, B. Mirtich, B. Andalman, H. P Ster, S. Gibson, J. Hodgins,
T. Kang, P. A. Beardsley, W. Ruml and W. Freeman. Design galleries: A general
approach to setting parameters for computer graphics and animation. In Proceed-
ings of ACM SIGGRAPH 1997, pages 389–400, 1997. 90

[Marschner et al. 2003] Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano,
Steve Worley and Pat Hanrahan. Light scattering from human hair fibers. ACM

http://www.hair-science.com


144 Bibliography

Transactions on Graphics (ACM SIGGRAPH 2003), vol. 22, no. 3, pages 780–791,
2003. 88, 89, 90, 91, 92, 94, 95

[Mastoropoulou et al. 2005] Georgia Mastoropoulou, Kurt Debattista, Alan Chalmers and
Tom Troscianko. The influence of sound effects on the perceived smoothness of
rendered animations. In APGV ’05: Proceedings of the 2nd symposium on Applied
perception in graphics and visualization, pages 9–15, New York, NY, USA, 2005.
ACM. 23

[Mat & Visvalingam 2002] Ruzinoor Che Mat and Mahesh Visvalingam. Effectiveness
of Silhouette Rendering Algorithms in Terrain Visualisation. In Proceedings of
the National Conference on Computer Graphics and Multimedia (CoGRAMM;
Melaka, October 2002), 2002. 109

[Matusik et al. 2003] Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard
McMillan. A Data-Driven Reflectance Model. ACM Transactions on Graphics
(ACM SIGGRAPH 2003), vol. 22, no. 3, pages 759–769, July 2003. 3, 54, 58, 133

[McAdams et al. 2004] S. McAdams, A. Chaigne and V. Roussarie. The psychomechanics
of simulated sound sources: Material properties of impacted bars. Journal of the
Acoustical Society of America, vol. 115, pages 1306–1320, March 2004. 57

[McCann & Pollard 2008] James McCann and Nancy S. Pollard. Real-Time Gradient-
Domain Painting. ACM Transactions on Graphics (ACM SIGGRAPH 2008),
vol. 27, no. 3, August 2008. 121

[Mihashi et al. 2003] T. Mihashi, C. Tempelaar-Lietz and G. Borshukov. Generating Real-
istic Human Hair for “The Matrix Reloaded”. In ACM SIGGRAPH 2003 Sketches
and Applications Program, 2003. 88

[Moeck et al. 2007] Thomas Moeck, Nicolas Bonneel, Nicolas Tsingos, George Drettakis,
Isabelle Viaud-Delmon and David Aloza. Progressive Perceptual Audio Rendering
of Complex Scenes. In ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (I3D), pages 189–196. ACM, April 2007. 4, 6, 13, 14, 25, 26, 30, 34,
40, 44, 46, 48, 72, 130

[Møller 1992] Henrik Møller. Fundamentals of Binaural Technology. Applied Acoustics,
vol. 36, pages 171–218, 1992. 27

[Moon & Marschner 2006] J.T. Moon and S.R. Marschner. Simulating multiple scattering
in hair using a photon mapping approach. ACM Transactions on Graphics (ACM
SIGGRAPH 2006), vol. 25, no. 3, pages 1067–1074, 2006. 88, 89, 95

[Moon et al. 2008] Jonathan T. Moon, Bruce Walter and Stephen R. Marschner. Efficient
Multiple Scattering in Hair Using Spherical Harmonics. ACM Transactions on
Graphics (ACM SIGGRAPH 2008), vol. 27, no. 3, 2008. 88, 89, 101



Bibliography 145

[Myszkowski 1998] Karol Myszkowski. The Visible Differences Predictor: applications
to global illumination problems. In Proceedings of the 9th Eurographics workshop
on Rendering, pages 223–236, June 1998. 19

[Ng et al. 2003] Ren Ng, Ravi Ramamoorthi and Pat Hanrahan. All-frequency shadows
using non-linear wavelet lighting approximation. ACM Transactions on Graphics
(ACM SIGGRAPH 2003), vol. 22, no. 3, pages 376–381, 2003. 56

[Ngan & Durand 2006] A. Ngan and F. Durand. Statistical acquisition of texture appear-
ance. In Proceedings of the Eurographics Symposium on Rendering, pages 31–40,
2006. 90

[O’Brien & Hodgins 1999] James F. O’Brien and Jessica K. Hodgins. Graphical modeling
and animation of brittle fracture. In Proceedings of ACM SIGGRAPH 99, pages
137–146, August 1999. 16

[O’Brien et al. 2002] James F. O’Brien, Chen Shen and Christine M. Gatchalian. Synthe-
sizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on
Computer Animation, pages 175–181, July 2002. 14, 15, 16, 34, 46, 57

[Odgaard et al. 2003] E. C. Odgaard, Y. Arieh and L. E. Marks. Cross-modal enhancement
of perceived brightness: sensory interaction versus response bias. Perception and
Psychophysics, vol. 65, no. 1, pages 123–132, January 2003. 5

[Oppenheim et al. 1999] Alan V. Oppenheim, Ronald W. Schafer and John R. Buck.
Discrete-time signal processing (2nd edition). Prentice-Hall, 1999. 37, 42

[O’Sullivan et al. 2004] Carol O’Sullivan, Sarah Howlett, Yann Morvan, Rachel McDon-
nell and Keith O’Conor. Perceptually Adaptive Graphics. In Christophe Schlick
and Werner Purgathofer, editeurs, Eurographics STAR Report, numéro STAR-6 de
State of the Art Reports, pages 141–164. INRIA and the Eurographics Association,
2004. 4, 19

[Pai et al. 2001] Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E.
Lloyd, Joshua L. Richmond and Som H. Yau. Scanning Physical Interaction Be-
havior of 3D Objects. In Proceedings of ACM SIGGRAPH 2001, pages 87–96,
August 2001. 17

[Paris et al. 2004] S. Paris, H.M. Briceño and F.X. Sillion. Capture of hair geometry
from multiple images. ACM Transactions on Graphics (ACM SIGGRAPH 2004),
vol. 23, no. 3, pages 712–719, 2004. 90

[Paris et al. 2008] Sylvain Paris, Will Chang, Wojciech Jarosz, Oleg Kozhushnyan, Woj-
ciech Matusik, Matthias Zwicker and Frédo Durand. Hair Photobooth: Geometric
and Photometric Acquisition of Real Hairstyles. ACM Transactions on Graphics
(ACM SIGGRAPH 2008), vol. 27, no. 3, 2008. 3, 88, 90, 92, 98, 101, 133, 134,
141



146 Bibliography

[Pellacini et al. 2000] Fabio Pellacini, James A. Ferwerda and Donald P. Greenberg. To-
ward a psychophysically-based light reflection model for image synthesis. In Pro-
ceedings of ACM SIGGRAPH 2000, pages 55–64, 2000. 81

[Peytavie et al. 2009] Adrien Peytavie, Eric Galin, Stephane Merillou and Jerome Gros-
jean. Arches: a Framework for Modeling Complex Terrains. Computer Graphics
Forum (Proceedings of Eurographics), vol. 28, pages 457–467, 2009. 110

[Pharr & Humphreys 2004] Matt Pharr and Greg Humphreys. Physically based rendering:
From theory to implementation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004. 133

[Pierre-Loup Lesage 2002] Mahes Visvalingam Pierre-Loup Lesage. Towards Sketch-
Based Exploration of Terrain. Computers and Graphics, vol. 26, no. 2, pages
309–328, 2002. 109

[Pixar 2009] Pixar. http://www.pixar.com/howwedoit/, accessed June, 2009.
3

[Press et al. 1992] W. H. Press, Saul A. Teukolsky, W. T. Vetterling and Brian P. Flannery.
Numerical recipes in C: The art of scientific computing. Cambridge University
Press, 1992. 37

[Raghuvanshi & Lin 2006] Nikunj Raghuvanshi and Ming C. Lin. Interactive sound syn-
thesis for large scale environments. In ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (I3D), pages 101–108, 2006. 14, 17, 18, 34, 40, 46,
47, 48, 51, 57

[Ramamoorthi & Hanrahan 2001a] R. Ramamoorthi and P. Hanrahan. On the relationship
between radiance and irradiance: Determining the illumination from images of a
convex lambertian object. The Journal of the Optical Society of America, 2001.
57, 68

[Ramamoorthi & Hanrahan 2001b] Ravi Ramamoorthi and Pat Hanrahan. An Efficient
Representation for Irradiance Environment Maps. In Eugene Fiume, editeur, Pro-
ceedings of ACM SIGGRAPH 2001, pages 497–500, 2001. 57, 68

[Ramamoorthi & Hanrahan 2002] Ravi Ramamoorthi and Pat Hanrahan. Frequency space
environment map rendering. ACM Transactions on Graphics, vol. 21, no. 3, pages
517–526, 2002. 55, 56

[Ramanarayanan & Bala 2007] G Ramanarayanan and K Bala. Constrained texture syn-
thesis via energy minimization. IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 1, pages 167–78, 2007. 110, 122

[Ramanarayanan et al. 2007] Ganesh Ramanarayanan, James Ferwerda, Bruce Walter and
Kavita Bala. Visual Equivalence: Towards a New Standard for Image Fidelity.
ACM Transactions on Graphics (ACM SIGGRAPH 2007), page 76, aug 2007. 4,
22, 70

http://www.pixar.com/howwedoit/


Bibliography 147

[Ramasubramanian et al. 1999] Mahesh Ramasubramanian, Sumanta N. Pattanaik and
Donald P. Greenberg. A Perceptually Based Physical Error Metric for Realistic
Image Synthesis. In Proceedings of ACM SIGGRAPH 99, pages 73–82, August
1999. 4, 19

[Reinhard et al. 2002] Erik Reinhard, Michael Stark, Peter Shirley and James Ferwerda.
Photographic tone reproduction for digital images. Proceedings of ACM SIG-
GRAPH 2002, vol. 21, no. 3, pages 267–276, 2002. 57

[Rodet & Depalle 1992] Xavier Rodet and Philippe Depalle. Spectral Envelopes and In-
verse FFT Synthesis. In Proceedings of the 93rd AES Convention, San Francisco,
1992. 37

[Rubner et al. 2000] Y. Rubner, C. Tomasi and L.J. Guibas. The Earth Mover’s Distance
as a Metric for Image Retrieval. International Journal of Computer Vision, vol. 40,
no. 2, pages 99–121, 2000. 94

[Rushmeier 2008] Holly Rushmeier. The perception of simulated materials. In ACM
SIGGRAPH 2008 classes, pages 1–12, New York, NY, USA, 2008. ACM. 6, 22

[Samet 2005] Hanan Samet. Foundations of multidimensional and metric data structures
(the morgan kaufmann series in computer graphics and geometric modeling). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. 114, 121

[Sarlat et al. 2006] L. Sarlat, O. Warusfel and I. Viaud-Delmon. Ventriloquism aftereffects
occur in the rear hemisphere. Neuroscience Letters, vol. 404, pages 324–329,
2006. 28

[Sarna & Swartz 1988] T. Sarna and H. M. Swartz. The physical properties of melanins.
In The Pigmentary System. Oxford University Press, 1988. 91, 92

[Seiler et al. 2008] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan and Pat Hanrahan. Larrabee: a
many-core x86 architecture for visual computing. ACM Transactions on Graphics
(ACM SIGGRAPH 2008), pages 1–15, 2008. 121

[Sekuler et al. 1997] R. Sekuler, A. B. Sekuler and R. Lau. Sound alters visual motion
perception. Nature, vol. 385, no. 6614, page 308, 1997. 21

[Si 2003] Hang Si. TETGEN: A 3D Delaunay Tetrahedral Mesh Generator, 2003. http:
//tetgen.berlios.de. 15

[Sloan et al. 2002] Peter-Pike Sloan, Jan Kautz and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting environments.
Proceedings of ACM SIGGRAPH 2002, pages 527–536, 2002. 55, 56

http://tetgen.berlios.de
http://tetgen.berlios.de


148 Bibliography

[Sloan et al. 2005] Peter-Pike Sloan, Ben Luna and John Snyder. Local, deformable pre-
computed radiance transfer. ACM Transactions on Graphics (ACM SIGGRAPH
2005), vol. 24, no. 3, pages 1216–1224, July 2005. 56, 81

[Snavely et al. 2006] Noah Snavely, Steven M. Seitz and Richard Szeliski. Photo Tourism:
Exploring Photo Collections in 3D. In ACM Transactions on Graphics (ACM
SIGGRAPH 2006), pages 835–846. Press, 2006. 7

[Spence & Driver 2004] Charles Spence and Jon Driver. Crossmodal space and cross-
modal attention. Oxford University Press, USA, June 2004. 19, 129

[Stein et al. 1996] B. E. Stein, N. London, L. K. Wilkinson and D. D. Price. Enhancement
of perceived visual intensity by auditory stimuli: a psychophysical analysis. Journal
of Cognitive Neuroscience, vol. 8, no. 6, pages 497–506, 1996. 5, 130, 132, 133

[Storms & Zyda 2000] Russell L. Storms and Michael Zyda. Interactions in Perceived
Quality of Auditory-Visual Displays. Presence: Teleoperators and Virtual Environ-
ments, vol. 9, no. 6, pages 557–580, 2000. 5, 23, 130, 132

[Sugita & Suzuki 2003] Y. Sugita and Y. Suzuki. Audiovisual perception: Implicit estima-
tion of sound-arrival time. Nature, vol. 421, no. 6926, page 911, 2003. 21

[Suied et al. 2009] Clara Suied, Nicolas Bonneel and Isabelle Viaud-Delmon. Integration
of auditory and visual information in the recognition of realistic objects. Experi-
mental Brain Research, 2009. 131, 133

[Tobin 2008] D. J. Tobin. Human hair pigmentation: biological aspects. International
Journal of Cosmetic Science, vol. 30, no. 4, 2008. 91

[Tong et al. 2002] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo and
Heung-Yeung Shum. Synthesis of bidirectional texture functions on arbitrary sur-
faces. In Proceedings of ACM SIGGRAPH 2002, pages 665–672, New York, NY,
USA, 2002. ACM. 111

[Tsingos et al. 2004] Nicolas Tsingos, Emmanuel Gallo and George Drettakis. Perceptual
Audio Rendering of Complex Virtual Environments. ACM Transactions on Graph-
ics (ACM SIGGRAPH 2004), vol. 23, no. 3, pages 249–258, July 2004. 5, 6, 13,
14, 20, 21, 26, 30, 34, 44, 48, 72, 129

[Tsingos et al. 2007] Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre and Matteo
Dellepiane. Instant Sound Scattering. In Rendering Techniques (Proceedings of
the Eurographics Symposium on Rendering), 2007. 14

[Tsingos 2005] Nicolas Tsingos. Scalable Perceptual Mixing and Filtering of Audio Sig-
nals using an Augmented Spectral Representation. In Proceedings of the Interna-
tional Conference on Digital Audio Effects, pages 277–282, September 2005. 14,
34, 42, 43, 51



Bibliography 149

[van den Doel & Pai 1998] Kees van den Doel and Dinesh K. Pai. The Sounds of Physical
Shapes. Presence: Teleoperators and Virtual Environments, vol. 7, no. 4, pages
382–395, 1998. 14, 52

[van den Doel & Pai 2003] Kees van den Doel and Dinesh K. Pai. Modal Synthesis for
Vibrating Objects. Audio Anecdotes, 2003. 14, 17, 34, 35, 40, 41, 46, 47, 51, 54

[van den Doel et al. 2001] Kees van den Doel, Paul G. Kry and Dinesh K. Pai. FoleyAuto-
matic: Physically-based sound effects for interactive simulation and animation. In
Proceedings of ACM SIGGRAPH 2001, pages 537–544, 2001. 51

[van den Doel et al. 2002] Kees van den Doel, Dinesh Pai, T. Adam, L. Kortchmar and
K. Pichora-Fuller. Measurements of Perceptual Quality of Contact Sound Mod-
els. Proceedings of International Conference on Auditory Display, pages 345–349,
2002. 18, 58

[van den Doel et al. 2004] Kees van den Doel, Dave Knott and Dinesh K. Pai. Interactive
simulation of complex audiovisual scenes. Presence: Teleoperators and Virtual
Environments, vol. 13, no. 1, pages 99–111, 2004. 17, 18, 34

[Vangorp et al. 2007] Peter Vangorp, Jurgen Laurijssen and Philip Dutré. The influence of
shape on the perception of material reflectance. ACM Transactions on Graphics
(ACM SIGGRAPH 2007), vol. 26, no. 3, page 77, August 2007. 6, 21, 22, 53, 58

[Viaud-Delmon et al. 2008] Isabelle Viaud-Delmon, Feryel Znaïdi, Nicolas Bonneel,
Clara Suied, Olivier Warusfel, Khoa-Van N‘Guyen and George Drettakis.
Auditory-visual virtual environments to treat dog phobia. In Proceedings 7th ICD-
VRAT with ArtAbilitation, September 2008. 131

[Vroomen et al. 2000] Jean Vroomen, Beatrice De Gelder and Jean Vroomen. Sound en-
hances visual perception: Cross-Modal effects of auditory organization on vision.
Journal of Experimental Psychology. Human perception and performance., vol. 26,
pages 1583–1590, 2000. 5, 130

[Wand & Straßer 2004] Michael Wand and Wolfgang Straßer. Multi-Resolution Sound
Rendering. In Symposium on Point-Based Graphics, 2004. 26

[Wang et al. 2009] Lvdi Wang, Yizhou Yu, Kun Zhou and Baining Guo. Example-Based
Hair Geometry Synthesis. ACM Transactions on Graphics (ACM SIGGRAPH
2009), 2009. 101

[Ward et al. 2007] K. Ward, F. Bertails, T.Y. Kim, S.R. Marschner, M.P. Cani and M.C.
Lin. A Survey on Hair Modeling: Styling, Simulation, and Rendering. IEEE Trans-
actions on Visualization and Computer Graphics, pages 213–234, 2007. 89

[Watanabe & Igarashi 2004] Nayuko Watanabe and Takeo Igarashi. A sketching interface
for terrain modeling. In ACM SIGGRAPH 2004 Posters, page 73, New York, NY,
USA, 2004. ACM. 109



150 Bibliography

[Wei et al. 2005] Y. Wei, E. Ofek, L. Quan and H.Y. Shum. Modeling hair from multiple
views. ACM Transactions on Graphics (ACM SIGGRAPH 2005), vol. 24, no. 3,
pages 816–820, 2005. 90

[Wei et al. 2009] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra and Greg Turk. State of the
Art in Example-based Texture Synthesis. In Eurographics STAR Report, 2009. 109,
110

[Whelan & Visvalingam 2003] J. C. Whelan and M. Visvalingam. Formulated Silhouettes
for Sketching Terrain. In TPCG ’03: Proceedings of the Theory and Practice of
Computer Graphics 2003, page 90, Washington, DC, USA, 2003. IEEE Computer
Society. 109

[Williams et al. 2003] Nathaniel Williams, David Luebke, Jonathan D. Cohen, Michael
Kelley and Brenden Schubert. Perceptually Guided Simplification of Lit, Textured
Meshes. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(I3D), pages 113–121, April 2003. 19

[Wither 2008] Jamie Wither. Sketching and annotation for the procedural modelling of
complex phenomena. PhD thesis, Institut National Polytechnique de Grenoble,
2008. 109

[Yu 2001] Y. Yu. Modeling realistic virtual hairstyles. In Proceedings of Pacific Graphics,
pages 295–304, 2001. 88, 92

[Zhang et al. 2003] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo and Heung-
Yeung Shum. Synthesis of progressively-variant textures on arbitrary surfaces.
ACM Transactions on Graphics (ACM SIGGRAPH 2003), vol. 22, no. 3, pages
295–302, 2003. 110

[Zhou et al. 2007] H. Zhou, J. Sun, G. Turk and J.M. Rehg. Terrain synthesis from digital
elevation models. IEEE Transactions on Visualization and Computer Graphics,
pages 834–848, 2007. 110

[Zhukov et al. 1998] Sergej Zhukov, Andrej Inoes and Grigorij Kronin. An Ambient Light
Illumination Model. In George Drettakis and Nelson Max, editeurs, Rendering
Techniques ’98, Eurographics, pages 45–56. Springer-Verlag Wien New York,
1998. 133

[Zinke et al. 2008] Arno Zinke, Cem Yuksel, Andreas Weber and John Keyser. Dual Scat-
tering Approximation for Fast Multiple Scattering in Hair. ACM Transactions on
Graphics (ACM SIGGRAPH 2008), vol. 27, no. 3, 2008. 88, 89, 90, 92, 95, 101

[Zinke 2007] Arno Zinke. Light Scattering from Filaments. IEEE Transactions on Visual-
ization and Computer Graphics, vol. 13, no. 2, pages 342–356, 2007. 88, 89

[Zölzer 2002] Udo Zölzer. Digital audio effects (DAFX), chapter 8. Wiley, 2002. 37



Audio and Visual Rendering with Perceptual Foundations

Abstract:

Realistic visual and audio rendering still remains a technical challenge. Indeed, typical
computers do not cope with the increasing complexity of today’s virtual environments, both
for audio and visuals, and the graphic design of such scenes require talented artists.

In the first part of this thesis, we focus on audiovisual rendering algorithms for com-
plex virtual environments which we improve using human perception of combined audio
and visual cues. In particular, we developed a full perceptual audiovisual rendering en-
gine integrating an efficient impact sounds rendering improved by using our perception of
audiovisual simultaneity, a way to cluster sound sources using human’s spatial tolerance
between a sound and its visual representation, and a combined level of detail mechanism
for both audio and visuals varying the impact sounds quality and the visually rendered ma-
terial quality of the objects. All our crossmodal effects were supported by the prior work
in neuroscience and demonstrated using our own experiments in virtual environments.

In a second part, we use information present in photographs in order to guide a visual
rendering. We thus provide two different tools to assist “casual artists” such as gamers, or
engineers. The first extracts the visual hair appearance from a photograph thus allowing
the rapid customization of avatars in virtual environments. The second allows for a fast
previewing of 3D scenes reproducing the appearance of an input photograph following a
user’s 3D sketch.

We thus propose a first step toward crossmodal audiovisual rendering algorithms and
develop practical tools for non expert users to create virtual worlds using photograph’s
appearance.

Keywords: Audio-visual 3D rendering, perception, guided rendering
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