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Abstract

Prediction of gaze behavior in gaming environments can be a
tremendously useful asset to game designers, enabling them to im-
prove gameplay, selectively increase visual fidelity, and optimize
the distribution of computing resources. The use of saliency maps
is currently being advocated as the method of choice for predict-
ing visual attention, crucially under the assumption that no specific
task is present. This is achieved by analyzing images for low-level
features such as motion, contrast, luminance, etc. However, the ma-
jority of computer games are designed to be easily understood and
pose a task readily apparent to most players. Our psychophysical
experiment shows that in a task-oriented context such as gaming,
the predictive power of saliency maps at design time can be weak.
Thus, we argue that a more involved protocol utilizing eye track-
ing, as part of the computer game design cycle, can be sufficiently
robust to succeed in predicting fixation behavior of players.
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1 Introduction

In the design of interactive applications, notably games, a recent
trend is toward tapping the potential of psychophysics for the pur-
pose of understanding player behavior. Predicting where players
are likely to focus could be a very useful tool in the arsenal of game
designers. The purpose of such predictive algorithms would for in-
stance be to help game designers decide how and where to allocate
rendering resources, leaving as many computing cycles as possible
free to carry out a variety of tasks. Verifying game mechanics or
improving game AI could be other uses.

A trend is toward the use of saliency maps [Itti et al. 1998], which
analyze the imagery presented to the user for low-level features
such as motion, contrast, and local luminance levels. Their success
lies in the fact that these features are attention-grabbing, making
it likely that users focus their gaze on them. Rendering such fea-
tures at full fidelity and the remainder of the image at lower quality
could therefore go unnoticed, while saving precious computing cy-
cles. However, saliency maps work under the assumption that no
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Figure 1: The design of the maze using a single user-controlled
object, a ball shown here in its starting position (left), as well as
the maze with five additional distractor balls (right).

specific task is present. This is an important limitation, as it is well
known that the presence of a task may alter the way in which users
focus their attention [Yarbus 1967; Hayhoe et al. 2003].

In this paper, we perform a psychophysical eye tracking experi-
ment, carried out on an easy-to-understand game (shown in Fig-
ure 1), which was purpose-designed for psychophysics. Our ex-
periment demonstrates the extent to which gaze behavior may be
altered by the presence of a task, even if participants are only in-
structed to observe a pre-recorded video, i.e. in the absence of a
specific task.

Our main result shows that even passive user behavior is task dom-
inated and cannot be statistically distinguished from active game-
play behavior. In our game design, saliency is therefore a very poor
predictor for task relevance. Additionally, we experiment with fur-
ther game variations where attention distracting or attention focus-
ing elements are present. Neither case had a measurable effect on
the observed fixation patterns, and therefore on where attention was
focused.

On the basis of our experiment we argue that, at least in the context
of electronic games, a task is nearly always implied. Rather than
relying on saliency algorithms, we therefore advocate the use of
eye tracking during the design cycle of electronic games, as we
show that computational methods to predict fixation behavior are
potentially unreliable.

2 Background

For the purpose of living in complex environments, humans rely
strongly on vision, which consists of two broad components. The
first is perception, which is pre-attentive. The second is cognition,
which involves high-level processes such as thought, reasoning and
memory [Palmer 1999]. The delineation between these two is not
sharp, and much feedback exists between the two.

When carrying out a task, human visual perception aggregates low-
level features into higher level representations, thus informing cog-
nitive processes while affecting gaze direction. In turn, cognitive
processes can guide perception, for instance by actively focussing
attention on a particular part of the scene [Yarbus 1967].

The focus of attention can thus be classified as a combination of
perceptual (bottom-up) and cognitive (top-down) processes [Itti and
Koch 2001]. Low-level features in the environment that trigger pre-



attentive focus are called salient. Features that attract attention as a
result of performing a specific task are called task relevant.

The first computational models concentrated on modeling gaze be-
havior using low-level features such as color, intensity, and orienta-
tion [Triesman and Gelade 1980; Koch and Ullman 1985; Itti et al.
1998]. Such models compute for each pixel of a frame a measure
of saliency, the result of which is called a saliency map. However,
it was shown that task-related gaze behavior can dominate over
saliency [Land et al. 1999]. Per-pixel measures of task relevance
have more recently appeared, and these are called task maps [Cater
et al. 2002; Navalpakkam and Itti 2005].

There are various application areas, including computer graphics,
virtual reality, and games, where saliency and task models have
been used with varying degrees of success. In graphics for exam-
ple, these models have been used to inform global illumination al-
gorithms [Yee et al. 2001; Haber et al. 2001; Cater et al. 2003;
Sundstedt et al. 2007].

Experiments using virtual environments, with stimuli presented
to the participant via a head-mounted display, have shown
that saliency is not a good predictor when performing natural
tasks [Rothkopf et al. 2007]. It has also been shown that when
saliency is extended with top-down features, gaze behavior can be
predicted more accurately [Canosa 2003; Lee et al. 2007].

Recent studies suggest that in adventure games, fixation behavior
can follow both bottom-up and top-down processes [El-Nasr and
Yan 2006]. Visual stimuli are reported to be more relevant when
located near objects that fit players’ top-down visual search goals.
In first-person shooter games, gaze tends to be more focused on the
center of the screen than in adventure games [Kenny et al. 2005;
El-Nasr and Yan 2006]. In an experiment involving active video
game play, nine low-level heuristics were compared to gaze behav-
ior collected using eye tracking [Peters and Itti 2008]. This study
showed that these heuristics performed above chance, and that mo-
tion alone was the best predictor. This was followed by flicker
and full saliency (color, intensity, orientation, flicker, and motion).
Nonetheless, these results can be improved further by incorporating
a measure of task relevance, which could be obtained by training a
neural network on eye tracking data matched to specific image fea-
tures [Peters and Itti 2007].

Our hypothesis is that the success of low-level image features, col-
lected into saliency maps through computational models, depends
strongly on the type of task performed. In the context of games,
saliency, as measured by contrast, luminance, edges, and the like,
may correlate with task relevance if this is designed explicitly into
the game. However, this need not be the case: saliency may corre-
late very poorly with fixation behavior, and therefore with attention.
In this paper we present a study that demonstrates this lack of corre-
lation. The consequence is that task relevance, while more difficult
to model, should play a larger role in models of gaze behavior than
currently assumed.

3 Psychophysical Experiment

We designed an experiment to analyze the validity of the concept of
saliency in the context of games. Our first hypothesis is that each
object type in the maze carries different significance with respect
to solving the maze. The distribution we compute therefore relates
directly to the importance that each object type carries for executing
the task. Within the maze, for instance, we expect players to focus
more on the one path that leads from the starting position to the
target than they would focus on dead ends, and other task irrelevant
areas and objects. Note that such a distribution cannot be predicted
by current saliency maps.

The second hypothesis is that solving the maze actively does not
lead to statistically different behavior from passively viewing a pre-
recorded game. This is on the basis that the task involved in solving
a maze is directly evident, even if no specific instructions are given
to solve the maze. Finally, we make a first attempt at assessing the
ability of additional features to add to or distract from the task.

Our aim is therefore to design a game which is sufficiently com-
plex to bear relevance to real games, while being controlled enough
to allow rigorous analysis. We have found that a good trade-off
between playability and visual complexity on the one hand, and
the necessity to obtain robust and reproducible data, is afforded by
a maze puzzle (Section 3.2). In conditions involving active game
play, the task is to navigate a red ball from its starting position to
a designated target position. To make the task more challenging,
a physics engine simulates various attributes of the ball, including
weight, acceleration, and how it bounces off other surfaces.

After a calibration step, performed for each participant individually,
we employ a Tobii x50 eye tracking device to record gaze behavior.
The raw eye tracking data are subsequently filtered to detect fixa-
tions (Section 3.3), which are mapped back to different object types
in the scene (Section 3.4). For each participant, we compute the dis-
tribution of fixation points over the different object types that can be
discerned in the scene (Section 3.5). This distribution is computed
for every participant, over a set of different conditions (Section 3.6),
before being analyzed using standard techniques (Section 4).

3.1 Experimental Setup

The Tobii x50 eye tracker, running at 50 Hz, was placed in front
of the display, and angled toward the participant according to the
manufacturer’s instructions. We employ a chin rest, ensuring that
the participants’ eyes are 60 cm away from the display, and remain
accurately positioned within the detection region of the eye tracker.
The game itself was modified so that it can start and stop the eye
tracker automatically at the start and end of each trial.

All experiments were carried out on a Pentium 4 PC clocked at
3.46 GHz with 2 GB RAM, and an NVIDIA 8600 graphics card.
This setup is sufficiently powerful to run the game (at 16 frames
per second), record the game state, as well as drive the eye tracker.
The display is a Viglen TS700 LCD display with dimensions of 34
× 27 cm, and a resolution of 1024 × 768 pixels. The setup was
located in a blackened room with fluorescent lighting built into the
ceiling, positioned to avoid undue reflections off the screen.

3.2 Game Design

The design of the maze is shown in Figure 1. Several features are
included to help improve the robustness of the results. In many
game designs, the camera follows an avatar representing the player,
or, in the case of first-person shooter games, the player has full
control over which part of the environment is explored. This would
not affect our ability to collect data, but does not let us pool the
data obtained from different participants within the same condition.
Hence, we have fixed the view point, so that each participant has
access to the same information during each trial.

The maze itself includes several design features which help us
maintain control over the robustness of the results. The enclosing
walls ensure that the playing field is located away from the edges
of the display, where we have found the accuracy of the eye tracker
to be unsatisfactory. The total lengths of the paths in each quadrant
of the screen are approximately equal. In addition, we have in-
serted five separate regions of equal length in which we may place
distracting objects. These regions are not connected to the paths



Figure 2: Item buffer showing all color coded objects which enable
us to relate fixation points to objects and object classes (left), as
well as the different object classes in our experiment (right).

accessible by the player to avoid polluting the task with the pos-
sibility of collisions. With the exception of the balls, all surfaces
are textured with a random achromatic texture which exhibits 1/ f
image statistics [Deriugin 1956], bringing the imagery statistically
closer to natural scenes. The contrast of the texture was reduced
to ensure that paths and walls are easily distinguished, thereby not
hindering the task. The balls are colored red to make them easily
distinguishable from the remainder of the scene. The scene is illu-
minated approximately uniformly with four light sources, with one
located above each quadrant of the playing field.

3.3 Fixation Detection

The eye tracker outputs a sequence of time-stamped (x,y) pixel co-
ordinates, representing momentary gaze points, which can subse-
quently be analyzed. It is typically assumed that if gaze points re-
main within a small region during a time exceeding 200 ms, then we
may speak of a fixation point [Salthouse et al. 1981]. The premise
is that such fixation points correlate with the focusing of attention,
and therefore constitute our features of interest [Duchowski 2003].

The eye tracker is rated to be accurate to within a solid angle of
0.7 degrees. Taking into account the distance between the observer
and the display, and its size and resolution (see Section 3.1), this
corresponds to an error of ±11 pixels.

We have implemented a fixation filter which detects fixations of 200
ms or longer (i.e., > 10 consecutive sample points), whereby gaze
points remain within a circle with a radius of 11 pixels of each other.
The output of this filter is a set of time intervals with an associated
center point of the fixation.

3.4 Item Buffer

We are interested in determining which objects in the scene are fo-
cused on, at any time during an experiment’s session. The fixation
points are therefore mapped to the objects making up the scene. To
this end, each scene object is first assigned a unique number that
represents a color value. Each frame of the session is then rendered
out as an item buffer image, shown in Figure 2 (left), which color
codes all scene objects. Each item buffer is also stamped with a
start and end time over which it was displayed. Thus fixation points
can be subsequently correlated, both temporally and spatially, with
the scene objects using these item buffers.

3.5 Fixation Binning

The item buffer is used to map fixation points to objects. During a
trial, we count how many times each object was fixated upon. In eye
tracking experiments, it is common to use relatively sparsely popu-
lated environments, because the analysis of fixation points becomes

Name Description
� Closed paths These are the parts of the maze that are

separate from the main paths and may or
may not contain distracting elements.

� Correct path The floor and walls of the path that must
be traversed to go from the starting point
to the designated destination.

� Incorrect path The floors and walls of dead ends.
� User-contr. ball The ball under the participant’s control.
� Distractor balls Balls not under participant control.
� Main walls The four enclosing the playing field.
� Top surface The top surface of the walls that are not

adjacent to the correct path.
� Adj. to correct The top surface of the walls that are ad-

jacent to the correct path.

Table 1: Description of object classes. The color coding is consis-
tent with Figure 2 (right).

more complicated if several objects are located in the vicinity of a
fixation point [Lee et al. 2007]. A common technique is to simply
select the object directly underneath the fixation point.

However, games environments can be cluttered and complex, mak-
ing such a simple approach error-prone. We have therefore devel-
oped a novel approach, taking the distance between pixels and a
fixation point into account. With the accuracy of the eye tracker
at 0.7◦, and the foveal region of human vision spanning approx-
imately 2◦ of visual angle [Palmer 1999], the area over which a
fixation point bears relevance is a circle with a radius of around 43
pixels (corresponding to a solid angle of 2.7◦).

Considering frame number f , we assign a non-zero weight w f to
all pixels (xp,yp) in a window of 400 × 400 pixels (large enough
to be accurate, and small enough to be computationally efficient)
according to their distance to the fixation point (x f ,y f ):

w f (xp,yp) = exp





−

√

(x f − xp)2 +(y f − yp)2

2σ2



 (1)

where σ = 43 pixels. With the aid of the item buffer, the weights
computed for frame f are then added to the weights of the different
objects. This process is repeated for all frames for which a fixation
point exists1. After normalization, necessary to account for the fact
that each trial may last for a different amount of time, this produces
a weight ŵi associated with object i.

In the design of the maze, different objects may have the same rel-
evance to the task. For instance, the walls are made up of different
segments. Therefore, we group objects playing a similar role into
object classes. The classes we distinguish are based upon their an-
ticipated relevance to solving the maze (described in Table 1). A
color-coded image showing the location of each of these elements is
shown in Figure 2 (right). After classification, each participant pro-
duces a normalized distribution of fixations per object class. This
set of distributions is then subjected to further analysis, as discussed
in Section 4. We first describe the collection of conditions used in
our experiment.

3.6 Conditions

The four conditions are developed to test the distribution of fixation
points over object classes in active and passive tasks, as well as in

1Note that not all frames have an associated fixation point, as saccadic
eye movements are of non-zero duration.



the presence of distracting and focus-enhancing elements. In the
first condition, participants were asked to navigate the ball to the
destination position, located in the top left corner of the playing
field. No distracting objects or sound is present in this condition.

The second condition adds five static distracting spheres to the five
separate areas. The task was otherwise identical to the first condi-
tion. In the third condition, we additionally add two types of sound,
both connected to the sphere under participant control. A contin-
uous sound change pitch in association with the current speed of
the ball. A transient sound indicates collisions. It is anticipated that
these sounds help with the control of the sphere, rather than distract.

For the remaining condition, the game was modified to enable its
state to be recorded. This is achieved by writing all events (such
as object movements) which affect the game state to a file. This is
less data and compute intensive than encoding a video of the game.
It can therefore proceed in parallel to gathering gaze data from the
eye tracker, as well as driving the game itself without affecting the
responsiveness of the game, or its frame-rate.

Further, the recorded game data can be played back in real time,
with the same frame-rate as the original recording, yielding an ex-
act replica of an earlier trial. Each participant in the second con-
dition was recorded in this manner, producing data for the fourth
condition. This last condition consists of participants observing
pre-recorded game data, without having been set a task. As the
same number of participants were used in each condition, each par-
ticipant in the fourth condition was exposed to a different recording
obtained in the second condition.

3.7 Participants

Forty participants (36 men and 4 women, age range 18− 42) with
normal or corrected to normal vision were recruited for our exper-
iments. As the eye tracker occasionally loses calibration during a
trial, especially for participants wearing glasses, trials which have
clearly produced unreliable data were replaced with new ones, for
which new participants were recruited. No participant was exposed
to more than one condition, so that learning effects between trials
could be avoided. As a result, each condition was evaluated by
exactly ten participants. The participants were asked to read in-
structions before the start of the experiment. The instructions for
the active and passive conditions are shown in Appendix A.

4 Results

First, we wanted to analyze whether habituation plays an important
role in the analysis. It may be anticipated that participants learn
the path to the destination first, and then spend the remainder of the
trial steering the ball. It is equally likely that participants frequently
alternate between navigation and steering. To assess whether par-
ticipants change their fixation behavior during the course of a trial,
we have computed the number of fixations occurring per second
for each participant and each condition. For each point t on the
time line, we counted the number of fixations in a window span-
ning t ± 15 seconds (except near the start and end of trials, where
the window size was reduced to accommodate for the lack of data).

The results are plotted in Figure 3, and indicate that fixation behav-
ior for each participant is relatively stable over time. As a result,
we infer that participants do not change their solution strategy dur-
ing the course of the trial. It is more likely that most participants
use a strategy whereby navigation and steering are alternated. The
average trial duration for the four conditions was 72±12 seconds.

Given that the number of fixations per second is stable over the
course of each trial, we conclude that habituation and learning ef-

fects do not play a major role, and therefore do not complicate our
analysis. There is also no significant difference between the four
conditions in the total durations of the trials (F(3, 36) = 1.767, p =
0.171), the number of fixations (F(3, 36) = 0.291, p = 0.832), or the
total fixation durations (F(3, 36) = 1.092, p = 0.365).

The distribution of fixations over the different object classes for
each participant and each condition is shown in Figure 4. We note
that these distributions are markedly different from the distribution
one would obtain by counting the number of pixels that are cov-
ered by each object type (shown in Figure 5). Thus, we conclude
that none of the results presented next can be explained by random
fixation behavior.

The first important observation is that the number of fixations at-
tracted by the correct path and its neighboring adjacent to correct
form the majority of all fixations points, regardless of condition.
This can also be seen by plotting the fixation points on top of the
maze stimulus, as shown for a representative participant of condi-
tion 2 in Figure 6 (a). The fixation points in this figure roughly map
out the correct path between start and destination points, showing
that the task of solving the maze has a strong impact on where fix-
ation points are likely to occur. The fixation points for a represen-
tative participant of condition 4 are shown in Figure 6 (b).

The raw data of Figure 4 were subjected to a one-way analysis of
variance (ANOVA), the null hypothesis being that no statistically
significant differences between these distributions are found. All
preconditions for ANOVA regarding independence and normality
were fulfilled. By using the four conditions as groups (our indepen-
dent variable), we found that the test of homogeneity of variances
was met for all the object classes (our dependent variables), bar the
distractor balls (p = 0.001).

Tukey’s HSD post hoc test shows that there are statistical differ-
ences between condition 1 and the other conditions for this object
class (p = 0.000). This is explained by the fact that no distractors
exist in one of the conditions (their weight was set to 0 in condition
1). If we exclude condition 1, then the test of homogeneity of vari-
ances was met for all object classes. The ANOVA values for both
tests are shown in Table 2.

We find that the null hypothesis is supported for all object classes
over all four conditions, with the exception of the distractors class.
Once again, if we exclude condition 1 from the analysis, then the
null hypothesis is supported for all object classes in the three re-
maining conditions. Thus, we have found no statistical differences
in fixation behavior of participants in each of the four conditions.

There are several implications of this result. First, comparing con-
ditions 2 and 4, we see that there is no significant difference in
the distribution of fixations, independent of whether the game was
actively played or passively observed. This result is important, be-
cause it proves that the absence of a task (other than simple ob-
servation) does not guarantee that participants will not assume a
task. For this particular game, free viewing of a pre-recorded game
encourages the observers the solve the task “in their heads”. As in
this case the distribution of fixation patterns continues to follow that
of the active condition, we conclude that any computational metric
that assumes the absence of a task cannot be applied. Importantly,
this includes saliency algorithms.

Second, comparing conditions 1 and 2, we see that the addition of
five distracting objects did not have any effect on task performance:
the distribution of fixations over all object classes remains the same,
with the exception of the distracting objects themselves which were
absent in condition 1. Once more, this result would not be predicted
by saliency algorithms, which would indicate a difference between
these conditions due to the contrasting color of the distracting balls.
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Figure 3: The number of fixations per second for each participant.

Third, conditions 2 and 4 enable us to assess the influence of sound,
which was present in condition 4. Here, rather than distract, the
sounds were designed to support the steering component of the task.
We would anticipate this to have an influence on the distribution of
fixations over object classes. However, we did not find such an
influence, showing that the task was not facilitated by including an
auditory indication of speed and the occurrence of collisions.

4.1 Comparison with Saliency Maps

While saliency maps are currently advocated as a useful tool to un-
derstand fixation behavior in games [Peters and Itti 2008], on the
basis of our experiments, we are now able to argue that such algo-
rithms can only be used with the utmost care, and possibly in the
context of games should be avoided.

In a sense, the design of the maze forms a worst-case scenario for
saliency maps. These algorithms determine saliency on the basis
of low-level image features. In our design, these image features
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Figure 4: The output of our fixation classification algorithm.

are more or less evenly distributed across the playing field. A
saliency map will therefore have a substantially uniform distribu-
tion, as shown in Figure 6 (c), which plots the saliency map com-
puted using Itti and Koch’s [1998] algorithm. Comparing this with
the actual distribution of the fixation points (Figure 6 (a and b)), we
see that the actual fixation pattern is not predicted by the saliency
algorithm, even if no task is specified.

The number of times that the fixation point was in the vicinity of the
ball that was being controlled was unexpectedly low (see Figure 4).
As this was the only object that moves, we cannot attribute the dif-
ferences between the outcome of our experiment and the saliency
maps shown in Figure 6 (c) to the fact that we did not take motion
into account for the computation of the saliency map.

Figure 6 (d) shows the relative importance assigned to the object
classes based on the eye tracking results from condition 2. Note
that the unevenness of the importance distribution suggests that our
initial division of objects into object classes was highly correlated
with the task performed. Such correlation does not exist between
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Object classes Four Conditions Conditions 2, 3, and 4
Closed paths (F(3, 36) = 2.748, p = 0.057) (F(2, 27) = 1.843, p = 0.178)
Correct path (F(3, 36) = 2.052, p = 0.124) (F(2, 27) = 0.619, p = 0.546)
Incorrect path (F(3, 36) = 0.239, p = 0.869) (F(2, 27) = 0.397, p = 0.676)
User-contr. ball (F(3, 36) = 0.885, p = 0.458) (F(2, 27) = 1.738, p = 0.195)
Distractor balls (F(3, 36) = 21.99, p = 0.000) (F(2, 27) = 3.002, p = 0.066)
Main walls (F(3, 36) = 1.149, p = 0.343) (F(2, 27) = 1.554, p = 0.230)
Top surface (F(3, 36) = 0.775, p = 0.516) (F(2, 27) = 0.105, p = 0.901)
Adj. to correct (F(3,36) = 1.376, p = 0.266) (F(2, 27) = 1.292, p = 0.291)

Table 2: Statistics for each object class. The second column shows
the results if all four conditions are included. Due to the absence
of distractor balls in condition 1, we have repeated the analysis for
conditions 2, 3, and 4 in the last columns.

the saliency map (see Figure 6 (c)) and the eye tracking results.
Comparing conditions 1 and 2, the distracting objects do not al-
ter the distribution of fixations over object classes. However, their
contrasting color does produce a pattern of saliency, which is not
supported by our experiments.

We assume that for many games, designers frequently adjust the
amount of detail, motion, contrast, luminance, etc., to direct play-
ers toward their goal: objects more relevant to the task to be ac-
complished may exhibit more motion, contrast, etc., than objects
with lower task relevance. This may explain the fact that in some
games, saliency maps are able to predict fixation behavior better
than chance [Peters and Itti 2008]. However, our experiment shows
that this correlation does not necessarily generalize to other game
scenarios. Finally, there is a possibility that the predictive power of
saliency maps is in essence a measure of how much game designers
make their task-relevant objects stand out from the background.

5 Conclusions

The aim of our work is to assess the distribution of fixation points
over a set of pre-determined object classes. The object classes were
chosen to correspond with the expected relevance to the task of
solving a maze and steering a ball through it. We find that the dis-
tribution of fixation points deviates significantly from those which
would be predicted by current saliency algorithms. Moreover, no
difference was found between active game play and passive obser-
vation.

We attribute this result to the fact that tasks and objectives in games
are typically designed to be easily apparent or understandable. This
means that even if no task is specified, observers will assume a
task. Related work have shown that when an observer is watching

a block stacking task, the gaze prediction is highly similar to when
they perform the task themselves [Flanagan and Johansson 2003].

Whereas existing studies explored average-case behavior by using
existing games [Kenny et al. 2005; El-Nasr and Yan 2006; Peters
and Itti 2008], i.e. without control of salient features in the game
design, our work has for the first time created a worst-case scenario
for saliency algorithms. As our maze design shows, actual fixa-
tion behavior can deviate by an arbitrary amount from the predicted
saliency. Further, objects which a saliency algorithm would flag as
distracting do not necessary impede task efficiency.

We hypothesize that the correspondence between fixation behavior
and saliency algorithms depends strongly on the efforts of the de-
signer to impose salient characteristics to objects that happen to be
task-relevant. This may explain the above chance performance of
saliency algorithms in existing games [Peters and Itti 2008]. As a
result, in the context of game design we would argue for caution
when using saliency algorithms.

Instead, the direct use of eye tracking during the design of games
can be extremely valuable. We have shown that a relatively straight-
forward modification to the game engine (namely tagging each
object with a color-coded identifier), is sufficient to map fixation
points back to objects. While eye tracking sessions during actual
game design by necessity will be less controlled than our experi-
ment, simply accumulating fixations over different object classes
may prove to be a fruitful approach in understanding where game
players focus their attention. Such information cannot currently be
extracted from an analysis of low-level features alone.
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A Appendix

For participants in conditions 1, 2, and 3 (all actively playing the
game), the instructions are as follows:

“Please read this information carefully: The task in this experiment
is to play a game. The goal of the game is to guide a ball through
a maze. The finish point of the maze is indicated with a cross, as
shown below. When you reach the finish point the game will stop
and the experiment is over. The ball can be moved in four directions
by using the keys shown below. Please ask now if you have any
questions.”
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An example maze was also shown to the participants. For partici-
pants in the passive viewing condition, the instructions are:

“Please read this information carefully: In this experiment you will
be shown an animation. Please watch it. If you have any questions
please ask now.”
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Figure 6: The location of fixation points for a representative participant of condition 2 (a) and the passive condition 4 (b). Image (c) shows
a saliency map of the maze, computed using a saliency algorithm [Itti et al. 1998] and (d) shows our distribution map over object classes
generated from the ten participants in condition 2.
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