
The 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2005)
M. Mudge, N. Ryan, R. Scopigno (Editors)

Rapid Visualization of Large Point-Based Surfaces
Tamy Boubekeur∗, Florent Duguet+ and Christophe Schlick∗

∗: LaBRI - INRIA - CNRS - University of Bordeaux +: INRIA Sophia Antipolis - ENST Paris

Abstract
Point-Based Surfaces can be directly generated by 3D scanners and avoid the generation and storage of an explicit
topology for a sampled geometry, which saves time and storage space for very dense and large objects, such as
scanned statues and other archaeological artefacts [DDGM∗]. We propose a fast processing pipeline of large
point-based surfaces for real-time, appearance preserving, polygonal rendering. Our goal is to reduce the time
needed between a point set made of hundred of millions samples and a high resolution visualization taking benefit
of modern graphics hardware, tuned for normal mapping of polygons. Our approach starts by an out-of-core
generation of a coarse local triangulation of the original model. The resulting coarse mesh is enriched by applying
a set of maps which capture the high frequency features of the original data set. We choose as an example the
normal component of samples for these maps, since normal maps provide efficiently an accurate local illumination.
But our approach is also suitable for other point attributes such as color or position (displacement map). These
maps come also from an out-of-core process, using the complete input data in a streaming process. Sampling
issues of the maps are addressed using an efficient diffusion algorithm in 2D. Our main contribution is to directly
handle such large unorganized point clouds through this two pass algorithm, without the time-consuming meshing
or parameterization step, required by current state-of-the-art high resolution visualization methods. One of the
main advantages is to express most of the fine features present in the original large point clouds as textures in
the huge texture memory usually provided by graphics devices, using only a lazy local parameterization. Our
technique comes as a complementary tool to high-quality, but costly, out-of-core visualization systems. Direct
applications are: interactive preview at high screen resolution of very detailed scanned objects such as scanned
statues, inclusion of large point clouds in usual polygonal 3D engines and 3D databases browsing.

1. Introduction

Most of the visualization systems designed for large 3D ob-
jects (tens or hundreds of millions samples) are based on an
initial mesh. Even high-quality multiresolution systems such
as QSplat [RL00] or the Sequential Point Trees [DVS03],
regularly mentioned for their ability to use points in order
to display gigantic models, require such an initial mesh, and
do not directly handle point clouds. In the case of very large
scanned objects (e.g. Digital Michelangelo [LPC∗00]), a non
trivial surface reconstruction has thus to be performed. This
process is very time consuming (from hours to days of com-
putation on a single workstation), and is followed by other
several expensive algorithms before interactive display is ac-
tually possible [CGG∗04, GBBK04]. Moreover, in addition
to the point data, a large memory overhead is required to
store the topology, which becomes challenging when work-
ing on standard workstations.

It is clearly out of the scope of this section to recall all
the approaches that have been proposed in recent years to
obtain an interactive visualization of large objects. Essen-
tially, these works can be classified according to three differ-

ent principles. The first one, distributed rendering [WDS04],
has shown its efficiency on models reaching one billion
samples. However, this method requires expensive hardware
configurations (PC clusters) and, since it is based on ray-
tracing, is limited to low resolution rendering if an inter-
active framerate is required. The second one, out-of-core
visualization [Lin03, Tol99], proposes to use some cache
friendly data structures, both for storage and rendering,
which offer efficient disk-to-memory updates according to
the modification of viewing parameters. Adaptive Tetra Puz-
zle [CGG∗04] is currently one of the most efficient systems,
reaching the competitive framerate of 60 frames per second
with the well-known St Matthew model [LPC∗00]. Other
out-of-core methods have also focused on advanced real-
time rendering effect, such as shadows [GBBK04]. Finally,
the last proposed principle tries to (dramatically) reduce the
amount of data, while preserving almost the same appear-
ance for the rendered object. In [COM98], the very innova-
tive idea of mesh simplification combined with simultane-
ous texture generation to capture the underlying details has
been proposed. Multi-resolution approaches, such as Pro-
gressive Meshes [Hop96], can also be enhanced by com-

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

bining a normal map with simplified geometry [SSGH01].
Nowadays, such a process can be directly implemented on
programmable GPU that allow the use of normal maps to
represent fine details within a per-pixel shading [TCS03].
But it should be noticed that a complete parameterization of
the model has to be performed to construct the normal map,
which is a challenging task for huge models.

Multi-resolution directly on point clouds is proposed in
the Layered Point Cloud [GM04], as well as an efficient
compression scheme in the DuoDecim system [KSW05],
but these methods require several hours for processing a
model like the St Matthew [LPC∗00]. We rather target one
order of magnitude faster preprocessing, and we would like
to take benefit from polygonal rendering. To our knowl-
edge, the only appearance-preserving simplification that
does not require a meshing or parameterization, is the Phong
Splatting [BSK04], following [KV03], which uses surfels
[PZvBG00] (usually a point with a normal and a color) com-
bined with normal mapping to render point sets with fewer
points but similar appearance. Unfortunately, surfel splat-
ting [ZPvBG01] is not well adapted to high resolution dis-
play, and requires complex multi-pass rendering, and inten-
sive use of vertex/fragment shaders [BSK05]. Moreover, the
technique proposed in [BSK04] to encode the normal distri-
bution for each rendering primitive performs a strong low-
pass filtering, and the intensive use of an underlaying kD-
Tree makes it difficult to extend the technique to an out-of-
core implementation.

In this paper, we propose a general pipeline for converting
a large point set into a coarse polygonal mesh with high reso-
lution normal maps, which is exactly the kind of representa-
tion suitable for real-time hardware supported visualization.
We use as an input an unorganized set of samples where each
sample is a 3D point and its associated normal vector (we
will use indifferently “point” and “surfel” for such a sam-
ple). Our major goal is to avoid time-consuming steps such
as surface reconstruction or precise parameterization, while
keeping nice visual results. By introducing a new rendering
primitive, called Normal Surfel Strips, we show that in-core
appearance-preserving models can be created starting from
huge point sets through a very fast out-of-core process. Our
technique has been tested on various very detailed scanned
objects and statues, for which an interactive visualization has
been obtained with a global preprocessing time that repre-
sents only a couple of minutes.

2. Our Approach

2.1. Overview

Our algorithm can be decomposed in four steps (see Figure
1):

1. we perform an out-of-core simplification of the huge
model (see Section 2.2)

2. the resulting simplified point set is quickly converted

into hardware friendly rendering primitives, called Sur-
fel Strips, organized in a bounding box hierarchy, named
the Stripping Tree, following the fast lower dimensional
meshing of [BRS05] (see Section 2.3).

3. the Stripping Tree is used during the out-of-core normal
mapping; all the points of the original model are streamed
through the tree and distributed to their corresponding
leaves, where the point normal is projected onto a quad
texture associated to each Surfel Strip (see Section 2.4).
This streaming process is the key step of our technique,
as it allows us to handle large models with limited mem-
ory. At the end of this step, each leaf of the Stripping Tree
contains a low definition Surfel Strips and a high defini-
tion (possibly sparse) normal map.

4. a normal map diffusion fills the holes of each normal map
by using diffusion algorithm, to get a continuous normal
field, interpolating the original normals of the huge model
(see Section 2.5).

The resulting object in each leaf (a coarse piece of mesh plus
a high resolution normal map), is what we call Normal Surfel
Strips. This collection of primitives, stored on the leaf of the
tree, are directly used to provide a high quality interactive
rendering by using conventional per-pixel shading.

Figure 1: Overview of our approach for interactive visual-
ization of large models. The usual expensive step, the mesh-
ing, is only performed on a very reduced point cloud, and
is no more the bottleneck. Most of the fine details are ex-
pressed through the normal maps, generated on a per-surfel
strip basis with diffusion, a faster process than geometric
reconstruction algorithms.

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

2.2. Out-of-Core Simplification

Out-of-core simplifications of meshes are usually based on
differential geometry properties, expressed as error metrics,
which drive the polygon decimation. Such a criterion is
not available on point clouds without some kind of surface
reconstruction. On the other hand, state-of-the-art down-
sampling methods [PGK02] for point-based surfaces are dif-
ficult to use with out-of-core models. Actually, a precise
down-sampling is not mandatory in our particular case: we
are not looking for the n best points to represent a given large
model, we just need a reasonably-looking point cloud that
can be quickly tessellated with the algorithm presented in
Section 2.3. This algorithm can generate a fast local trian-
gulation for point sets up to few millions of points in a rea-
sonable time (typically about one minute for two millions of
points).

But a final down-sampled point set of 2 millions points
is not interesting enough to take full benefit of our fast ap-
pearance preserving approach (Section 2.4). What we need
is to get very quickly a good looking coarse representation
of the point cloud. Since the target objects of our applica-
tion (large point clouds acquired with 3D scanners) are usu-
ally very dense (see models in Figures 5 and 10), we pro-
pose to use a simple grid to filter the point cloud. Similarly
to Lindstrom’s filtering for polygons [Lin00], each surfel of
the model is read and tested against a 3D grid enclosing the
whole model. If the intersecting grid cell is empty, then the
surfel is simply stored in the cell where it becomes an accu-
mulation surfel, and the cell cardinal is set to 1. If not, all
the properties of the current surfel (position, normal, color,
etc) are added to the accumulation surfel of the cell, and the
cardinal is increased.

At the end, for all non empty cells, we divide all the prop-
erties of the accumulation surfel by the cardinal of the cell,
and put the resulting surfel in the in-core surfel set. Note that
for semi-automatic applications, the user may enter the de-
sired grid resolution; we have observed good results when
using 2blog10(n)c where n is the total number of points. This
simple grid filtering is extremely fast, as it processes more
than 5 millions points per second.

2.3. Surfel Stripping

As our goal is to design a visualization system, watertight
surface reconstruction is not mandatory for the coarse mesh
generation. We propose to use an efficient lower dimensional
triangulation, the Surfel Striping, that have been recently de-
veloped in [BRS05]. This technique converts the point set
into a collection of overlapping triangle strips that offers a
convincing smooth visualization, despite the lack of geomet-
ric continuity (see Figures 5 and 10).

First, the in-core point set is partitioned into small point
sets, locally expressed as height maps, organized in an
octree-like structure: the Stripping Tree. This is done by re-
cursively splitting the bounding box of the decimated point

(a) (b) (c)

Figure 2: Surfel Stripping. (a) The simplified point cloud
obtained after the out-of-core simplification. (b) The local
piece of meshes quickly generated thanks to the Stripping
Tree partitioning (in green). Each colored patch corresponds
to a surfel strip, locally generated in 2D. (c) The coarse mesh
obtained, made of local triangle strips interpolating the in-
put points.

cloud, until having in each leaf i a set Si = {si0...sin} of sur-
fels, that respects the following predicate:

∀si j ∈ Si

ni j.ni > δa δa ∈ [0,1]

|(pi j−ci).ni|
maxk(||pik−ci||)

< δd δd ∈ [0,1]
(1)

with pi j the position of si j , ni j its normal vector, ni the av-
erage normal of Si, which can be computed as the normal-
ized eigen vector associated to smallest eigen value of the
covariance matrix of Pi = {pi0, ..., pin} (Principal Compo-
nent Analysis) or simply by averaging the normals of Si; ci
is the centroid of Si. The δa value corresponds to the normal
cone. In order to avoid distortion resulting from bent parti-
tions, we set δa = 0.25 in all our tests. The δd corresponds to
the geometric displacement in the average normal direction.
It can be set according to the sampling density if available,
or by some heuristics. We have chosen in our experiments
δd = 0.25. To obtain regular leaves, we impose a maximum
population threshold for the leaves, which may thus be sub-
divided, even if they are already consistent with a height map
definition. The resulting partitioning is shown in Figure 2(b).

Before the generation of a local piece of surface and in
order to avoid holes in-between leaves, an inflation pass is
done on each leaf, by enlarging its associated point set with
the points located in its volumetric one-neighborhood (i.e. all
the points of the leaves adjacent to the current one). Actually,
this is on this inflated surfel set S′i that must be tested the
predicate of Equation 1.

Then, a fast incremental 2D Delaunay triangulation of
each inflated point set S′i (leaves of the tree) is done in the
average plane Π′

i = {c′i ,n
′
i} of each surfel set S′i . In order to

remove redundant triangles in overlapping zones introduced
by the inflation process, a decimation pass is performed by
comparing triangles of neighboring surfel strips. In practice,
the decimation pass actually discards about 99% of the over-
lappings when using the simple rules described in [BRS05].

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

Finally, a fast stripping of the resulting local mesh is done
using a cache-friendly adjacency graph [RBA05].

All those operations are performed at coarse level, on the
decimated model and so require only a negligible processing
time, even with a non optimized implementation.

When rendering the resulting collection of Surfel Strips,
a visually continuous surface is obtained, almost equivalent
to a provable watertight surface mesh in practical cases, but
about one order of magnitude faster. Usually, residual over-
lapping does not produce visible artefacts in the shading,
even under multiple light sources (see Figure 2). Each inte-
rior node of the stripping tree provides an average position,
an average radius and a normal cone, in order to perform a
hierarchical culling in a similar fashion to [RL00].

We have used this triangulation method because it natu-
rally proposes a quad of projection for the normal map con-
struction on a per surfel strip basis, simply by reusing the
average plane Π′

i used for performing the Delaunay triangu-
lation.

2.4. Streaming Normals

At this point, the Stripping Tree of the down-sampled sur-
fel point set is available, and can be visualized as a coarse
representation of the huge model (see Figure 2). In order to
retrieve the original appearance of the large model, a nor-
mal map will be associated to each Surfel Strip. These nor-
mal maps are generated during a normal streaming process,
where all points of the initial huge point cloud are streamed
through the Stripping Tree, to quickly find the set of Surfels
Strips they belong to. This second reading pass of the model
requires only to deal with one of these points at the same
time in the main memory. Note that one point may belong
to more than one Surfel Strip, because of the inflate-and-
decimate pass described above.

Then, for each intersected leaf, the local parameterization
of the point relative to its Surfel Strip is computed by project-
ing the point on the average plane Π′

i of the strip. Actually,
we parameterize the projected point according to a bound-
ing quad, including P′

i , and aligned to the two eigen vectors
associated to the two highest eigen values of the covariance
matrix of P′

i , previously computed and stored as leaf data
with n′i and c′i .

This parameterization is used to fill the relative pixel value
of the associated normal map with the normal vector of the
streamed point. We use floating point textures, so if more
than one normal is projected onto the same pixel, we just add
the normal vector value to the existing pixel, and normalize
all the normal maps after having processed all the points of
the original model. This also prevents from aliasing artefacts
that may occur.

The resolution of each normal map is proportional to the
number of points of its corresponding Surfel Strip, but can
also be specified by the user as a “global quality” parameter,

or restricted to the amount of available GPU texture mem-
ory for very large models or less competitive graphics cards.
Similarly, its aspect ratio is equivalent to the bounding rect-
angle of its Surfel Strip. Using a flat parameterization of a
non-flat Surfel Strip may generate some distortions, espe-
cially in areas of high curvature that would result in a global
loss of details. But in practice, the constraints imposed dur-
ing the construction of the stripping tree lead to close to pla-
nar Surfel Strips, which limit distortion. No artefacts were
visible in our experiments. Since the normal maps are gen-
erated on a quad basis (aligned to the surfel strip), they are
easy to pack in few large textures, an optimized way to store
textures on the GPU memory.

(a) Surfel strips (b) Sparse normal map

Figure 3: After the normal streaming step, a sparse normal
map is attached to each Surfel Strip. (a) Coarse topology
computed from the sub-sampled point cloud. (b) Color visu-
alization of the spare normal map: pixels color is set with the
XYZ coordinates of the normals. Black points corresponds to
pixels of the normal map where no surfel as been projected.

2.5. Normal Map Diffusion

After the normal streaming process, each surfel strip is en-
riched with a sparse normal map since several pixels may
not have been filled by projected normals (as shown in Fig-
ure 3). For using this map as a texture for our coarse sur-
fel strips, holes need to be filled (black pixels in Figure 3).
Many approaches have been developed over the years to fill
holes in an image, which is a basic operation for image re-
pairing. Exploration-based approaches such as [BWG03] di-
rectly compute an illumination value for a pixel given by ex-
ploring its neighborhood. On the other hand, iterative PDE-
based approaches such as [PGB03], spread existing color in
the image using PDEs such as Poisson equation, or diffu-
sion equation. We use the PDE-based diffusion technique
presented in [XP98], for its guarantees of continuity and
smoothness. The implementation is based on a multigrid res-
olution scheme that first solves the problem at a coarser res-
olution, and then uses this coarse result to initialize the algo-
rithm at finer resolution:

Solve (h, Axh = b)

1. Pre-smoothing steps: Ax = b
2. Downsample: xh−1 = Dxh
3. Solve (h-1, Axh−1 = b)
4. Upsample: xh = Uxh−1
5. Post-smoothing steps: Ax = b

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

where Ax = b corresponds to the matrix formulation of
discrete diffusion equation with finite differences, and h cor-
responds to the quadtree level associated with the resolution
of the processed image (see also the Push-Pull algorithm in
[GGSC]).

The approach of [PG01] corresponds to a multigrid iter-
ation with no pre-smoothing step, a single post-smoothing
step and a specific down-sampling algorithm that only takes
into account existing samples. We inspired from [PG01] by
skipping the pre-smoothing, and only using existing samples
for down-sampling, but ran the post-smoothing iterations un-
til the convergence criterion is met. Indeed, without these ex-
tra iterations, some blocky interpolations are present in the
texture we obtained, especially around holes.

The multigrid resolution algorithm proved to be very ef-
ficient in practice (see Table 6), only a few iterations (e.g.
5) were needed for convergence with 10−3 error bounds in
most cases. Note that the same approach can be used to cre-
ate maps for other per-surfel attributes (e.g. color, geometric
displacement, etc). The Figure 4 shows the resulting set of

(a)

(b)

Figure 4: Normal diffusion. (a) The Omphalos model (11
664 466 points). (b) Close-up. Left: coarse surfel strips
quickly generated after the out-of-core decimation of the
large point cloud (random per surfel strip color). Right:
real-time rendering, with per-pixel illumination using the
high-resolution normal maps. High quality rendering at high
resolution, with minimal pre-process. Note the nice auto-
matic filtering of the model, thanks to the intrinsic hardware
mipmapping of the normal maps.

high resolution normal maps attached to coarse surfel strips.
The hole-filling process provides normal maps that express
the essential part of the original large model appearance.
These maps are stored as texture in the GPU memory, and
benefit from the automatic filtering provided by the hard-
ware mip-mapping. This property is quite interesting, since
it can be interpreted as both an anti-aliasing process and an
hardware supported multiresolution rendering, thanks to the
different levels of the mip-mapping.

3. Results

We have implemented our system under Linux on an In-
tel PIV 3.2 GHz, 1GB RAM, 160GB UDMA HD, NVidia
Quadro FX 4400. We use C++ and the OpenGL Shading
Language (for normal mapping). We consider input binary
files where points are encoded as an unorganized list of
chunks of 6 floats (3 for the position and 3 for the normal).
Table 6 summarizes the preprocessing times of our system.
Figure 5 shows the real-time rendering obtained on vari-
ous point clouds with our approach. It appears that the nor-
mal map initialization is the main bottle-neck. Obviously,
tree-traversal and local projections involved in this out-of-
core streaming remain costly since they are performed on
the whole model. Nevertheless, all the different stages in-
volved in our approach are highly parallelizable (each point
is treated separately), and can take benefit from recent dual-
core CPUs (an improvement factor of 1.5 can reasonably be
considered for dual-core CPUs, more for multi-CPU work-
stations). Note also that we use a pointer-based implemen-
tation of the Stripping Tree, which could be enhanced. Our
resolution criteria for the normal maps works quiet well in
most of the cases. Actually, even when a high density varia-
tion occurs inside a leaf of the tree, aliasing is prevented in
the normal map thanks to the iterative diffusion step (see
Figure 7). Note that the use of compression for textures
could reduce the GPU memory footprint. The hard-drive
latency strongly influences the performances of simplifica-
tion and normal mapping passes. Better performances can
be reached by using high-speed hard-drives (U-SCSI) and a
dedicated workstation, where useless processes are stopped
(usually between 20 and 30 on our Linux system). The ex-
cellent framerates given in Table 6 are reached thanks to
the highly optimized polygonal hardware graphics pipeline,
particularly adapted to display at high resolution polygonal
models with high definition textures.

Comparison The critical point in our work was to re-
duce as much as possible the pre-process time needed for
obtaining a convincing visualization of large point clouds.
Compared to QSplat [RL00], our preprocessing is faster (on
order of magnitude in the worst experimental case) and it
does not require a previous surface reconstruction (huge ad-
ditionnal processing time). Compared to the Layered Point
Clouds [GM04], our preprocessing is about ten times faster.
Of course, these multiresolution methods are conservative,
and do not perform a low pass filtering on the geometry

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

(a) Omphalos (11 664 466 points) (b) Drum 2 (22 877 845 points) (c) Dancers (31 620 449 points)

Figure 5: Visual quality for various large models. Antialiased rendering with 3 color light sources on a 1600x1200 screen
resolution. From left to right in each image: the sub-sampled point cloud decimated at the first out-of-core reading pass,
the coarse piece of mesh locally generated, colored with random per-surfel strip colors and the interactive rendering of this
collection of piece of meshes, enhanced with normal map expressing the fine details, generated during the second reading pass
of the point cloud.

Models Omphalos Drum 2 Dancers St Matthew
Number of points 11 664 466 22 877 845 31 620 449 186 810 938

TIMINGS
Simplification time 5 s 10 s 14 s 61 s

Surfel Stripping time 2 s 4 s 5 s 7 s
Normal mapping time 45 s 151 s 213 s 667 s

Diffusion time 35 s 35 s 34 s 152 s
Total time 100 s 201 s 274 s 887 s

RENDERING
Number of surfel Strips 1602 1721 2013 2457

Number of triangles 45 504 51 012 66780 79030
Textures memory used in MB 68 71 94 185

FPS (frames per second) > 200 > 200 198 165

Figure 6: Preprocessing time and rendering framerate for various large models. The total timing represents all the steps needed
for the preprocessing, starting from an unorganized point cloud on disk up to a ready-to-render data structure in memory. The
framerates are given for 1600x1200 screen resolution.

such as ours, but from the visualization point of view, we
keep the essential appearance thanks to high resolution nor-
mal maps reconstructed in 2D (see Figure 10). Note also
that our system provides a polygonal rendering, highly opti-
mized on today’s GPU. This allows us to reach high framer-
ates at high resolution. Actually, our approach provides re-
sults that confirm [PGK02]: performing decimation on the
point cloud and then applying reconstruction methods is def-
initely more efficient than meshing and optimizing the full
resolution point cloud, at least for our visualization purpose.
Finally, the diffusion process of normal maps can be seen
as a kind of surface reconstruction, where not the geome-
try, but the normal field is reconstructed from points, in the
lower dimension (the average plane of the leaf node). Fig-
ure 8 shows our normal mapping reconstructed directly from
original samples: the same order of visual quality is reached
when comparing to prior art methods where a full resolution
surface reconstruction and parameterization were necessary
before performing the appearance preserving simplification.

Figure 7: Upper part of the St Matthew model with our
method rendered at 165 FPS, without (left) and with (right)
the normal maps. The maps are recreated directly from the
point cloud, providing a convincing appearance, while us-
ing less than 80k triangles (left image). Most of the “ap-
pearance” information carried by the original point cloud
is directly stored through these normal textures on the GPU
memory (185 MB) and used for the per-pixel lighting.

Limitations: We have made the choice to use a very sim-
ple Sub-sampling scheme at the beginning of our algorithm
(see Section 2.2). The choice has been made after various
experiments with real data set, which show essentially that

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

Figure 8: Left: coarse surfel strips rendering. Right: normal
surfel strips rendering. High frequency details of large scans
models are preserved, using detailed normal textures instead
of huge polygons sets. Globally, our approach provides sim-
ilar results to usual appearance preserving methods that re-
quire full resolution tessellation, parameterization and sim-
plification, while we deal only with the original samples.

most of the time, large scans are dense enough to support this
decimation, and so allow for this fast pre-process. Neverthe-
less, one could imagine situations where small topological
features are lost during this first out-of-core sub-sampling.
In this case, more adaptative decimation scheme must be
used. Unfortunately, this usually means a much longer pre-
process. The reader must also note that our approach is still
a “simplification” one, which exhibits drawbacks and ad-
vantages. On one hand, even if most of the fine visual de-
tails are kept thanks to the high resolution normal maps
(see Figure 9), a slight shrink effect can appear in silhou-
ettes because of the coarse mesh definition. This is the price
for reducing the time preprocessing and improving the ren-
dering framerate compared to “multiresolution” approaches
[RL00]. On the other hand, this low-pass filtering has fre-
quently removed the registration noise present in our exam-
ples. Figure 9 shows the rendering of the St Matthew model
with the publicly available QSplat software. We can observe
that our method provides a globally equivalent appearance,
with a much higher framerate, even under a strong close-
up. Note that we have compared with QSplat because it is
the only software publicly available for large dataset. Note
also that QSplat is not tuned for recent graphics hardware,
which explains the poor framerate obtained. One of our fu-
ture work will be to compare our results with a combination
of [DVS03] and [BSK05], which should be the stat-of-the-
art point-based rendering system. In order to avoid the slight
shrink effects, we have also plane to compute displacement
maps on top of normal maps, using the dynamic GPU tessel-
lation method proposed by Boubekeur and Schlick [BS05].

Figure 9: Eye of the St Matthew. Visual quality compari-
son between our approach at 165 FPS (left) and the QSplat
rendering (right), obtained at 0.3 FPS. Even under a strong
close-up, our method keeps the fine details as well as the
QSplat system, but with a much higher framerate.

4. Conclusion

We have proposed an efficient pre-process to obtain an inter-
active visualization of large 3D objects represented by point
clouds with appearance preserving. The main advantages of
our technique are:

• Our system directly handles the unorganized point clouds,
avoiding any kind of surface reconstruction of the large
model.

• No complex data structure or complex processing is
needed on the large model.

• Our local quad-based approach for appearance preserving
does not require a globally consistent parameterization of
the model.

• The pre-process is very fast as it basically only requires
two out-of-core passes, which makes it usable in various
applications such as large model data base browsing.

• The final in-core model is entirely stored on the GPU
memory, large enough on today graphics devices to han-
dle efficiently appearance attributes of hundred millions
of samples, through, for instance, normal textures.

• Since all details are stored as normal maps, the rendering
takes automatically benefit of the hardware mip-mapping
for antialiasing details at a given resolution.

One weakness of the presented approach may be in the initial
out-of-core grid down-sampling step, which clearly trades
speed for quality. It only uses the volume of the object and
not its surface, thus in very complex areas, some under-
sampling may appear which may generate visible artefacts.
However, these artefacts occur very rarely, and do not de-
grade the overall appearance of the object. Of course some
more accurate (but more expensive) down-sampling may al-
ways be employed as an alternative.

The whole pipeline is very easy to implement, and has
provided very convincing results when applied on a large
variety of acquired point clouds. We hope that it can become
a good complement to existing high quality but slower
visualization methods of large models, and that it will help,
following [DDGM∗], to use point-based surfaces for storing
and transmitting huge sampled models such as scanned
archaeological artefacts.

Acknowledgement : We are grateful to Electricit’e de France (EDF) and the
Digital Michelangelo Project (Stanford) for the 3D data sets. This work as been partially
done at UBC (Vancouver) and supported by LIGHT (INRIA associated team program).

References
[BRS05] BOUBEKEUR T., REUTER P., SCHLICK C.: Surfel Stripping. Tech. rep.,

LaBRI - RR-1352-05 - (to appear in Proceedings of ACM Graphite 2005), 2005. 2, 3

[BS05] BOUBEKEUR T., SCHLICK C.: Generic mesh refinement on gpu. In ACM
SIGGRAPH/Eurographics Graphics Hardware 2005 (2005). 7

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong splatting. Symposium on
Point Based Graphics 2004 (2004), 25–32. 2

[BSK05] BOTSCH M., SPERNAT M., KOBBELT L.: High quality splatting on today’s
gpu. Symp. on Point Based Graphics (2005), 25–32. 2, 7

[BWG03] BALA K., WALTER B., GREENBERG D. P.: Combining edges and points for
interactive high-quality rendering. ACM Trans. Graph. 22, 3 (2003), 631–640. 4

c© The Eurographics Association 2005.

T. Boubekeur, F. Duguet and C. Schlick / Rapid Visualization of Large Point-Based Surfaces

Figure 10: Real-time visualization of the St Matthew model (186 810 938 points). From left to right: the sub-sampled model,
the coarse mesh locally generated in the leaves of the stripping tree (in green), the coarse mesh with the high resolution normal
mapping with one white light source and 3 colored light sources.

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MARTON F., PONCHIO F.,
SCOPIGNO R.: Adaptive TetraPuzzles – efficient out-of-core construction of gigantic
polygonal models. ACM Trans. Graphics (SIGGRAPH 2004) (2004). 1

[COM98] COHEN J., OLANO M., MANOCHA D.: Appearance-preserving simplfica-
tion. Proceedings of SIGGRAPH 98 (1998). 1

[DDGM∗] DUGUET F., DRETTAKIS G., GIRARDEAU-MONTAUT D., MARTINEZ J.-
L., SCHMITT F.: A point-based approach for capture, display and illustration of very
complex archeological artefacts. In VAST 2004. 1, 7

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER M.: Sequential point
trees. ACM Trans. Graphics (SIGGRAPH 2003) (2003), 657 – 662. 1, 7

[GBBK04] GUTHE M., BORODIN P., BALÁZS A., KLEIN R.: Real-time appearance
preserving out-of-core rendering w/shadows. In EGSR 2004. 2004, pp. 69–79 + 409. 1

[GGSC] GORTLER S., GRZESZCZUK R., SZELISKI R., COHEN M.: The lumigraph.
In Proc. of ACM SIGGRAPH 1996, pp. 43–54. 5

[GM04] GOBBETTI E., MARTON F.: Layered point clouds. In Eurographics Sympo-
sium on Point Based Graphics (2004), Alexa M., Gross M., Pfister H.„ Rusinkiewicz
S., (Eds.), pp. 113–120, 227. 2, 5

[Hop96] HOPPE H.: Progressive meshes. Computer Graphics 30, Annual Conference
Series (1996), 99–108. 1

[KSW05] KRÜGER J., SCHNEIDER J., WESTERMANN R.: Duodecim - a structure for
point scan compression and rendering. In Symp. on Point-Based Graphics (2005). 2

[KV03] KALAIAH A., VARSHNEY A.: Modeling and rendering of points with local
geometry. IEEE Trans. Visualization v9, n1 (2003), 30–42. 2

[Lin00] LINDSTROM P.: Out-of-core simplification of large polygonal models. In Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques (2000), pp. 259–262. 3

[Lin03] LINDSTROM P.: Out-of-core construction and visualization of multiresolution
surfaces. In Symposium on Interactive 3D graphics (2003), pp. 93–102. 1

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ S., KOLLER D.,

PEREIRA L., GINZTON M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J.,
FULK D.: The digital michelangelo project : 3d scanning of large statues. In Proc.
SIGGRAPH 2000 (2000), ACM. 1, 2

[PG01] PAULY M., GROSS M.: Spectral processing of point-sampled geometry. ACM
Trans. Graphics (SIGGRAPH 2001) (2001), 379–386. 5

[PGB03] PEREZ P., GANGNET M., BLAKE A.: Poisson image editing. ACM Trans.
Graph. 22, 3 (2003), 313–318. 4

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient simplification of point-
sampled surfaces. In Proc. of IEEE Visualization ’02 (2002), pp. 163–170. 3, 6

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.: Surfels: Surface
elements as rendering primitives. ACM Trans. Graphics (SIGGRAPH 2000) (2000),
335–342. 2

[RBA05] REUTER P., BEHR J., ALEXA M.: An improved adjacency data structure for
fast triangle stripping. Journal of Graphics Tools (JGT, to appear) (2005). 4

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a multiresolution point rendering sys-
tem for large meshes. ACM Trans. Graphics (SIGGRAPH 2000) (2000), 343–352. 1,
4, 5, 7

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.: Texture mapping
progressive meshes. In Proceedings of SIGGRAPH ’01 (2001), pp. 409–416. 2

[TCS03] TARINI M., CIGNONI P., SCOPIGNO R.: Visibility based methods and assess-
ment for detail-recovery. In Proc. of Visualization 2003 (2003). 2

[Tol99] TOLEDO S.: A survey of out-of-core algorithms in numerical linear algebra.
161–179. 1

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An Interactive Out-of-Core Ren-
dering Framework for Visualizing Massively Complex Models. In Proceedings of the
Eurographics Symposium on Rendering (2004). 1

[XP98] XU C., PRINCE J. L.: Snakes, shapes, and gradient vector flow. IEEE Transac-
tions on Image Processing 7, 3 (March 1998). 4

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Surface splatting.
ACM Trans. Graphics (SIGGRAPH 2001) (2001), 371–378. 2

c© The Eurographics Association 2005.

