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Abstract: Processing noisy point data is a tedious task. It often requires smoothing and meshing, followed by mesh
processing algorithms. In this work we present a robust filter which operates directly on points using higher order surface
approximations, computed iteratively. We extend the bilateral filter by using and filtering surface curvature, and intro-
ducing a quality parameter based on our local surface approximation. Using this process input point data is denoised
and smoothed, while preserving features. We also extend our filter to allow feature enhancement, by controlling shock
formation resulting in sharp edges in regions of high curvature. We show results of our algorithms on several scanned
point sets.
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Filtrage Robuste de Points avec Pŕedicteurs Non Linéaires

Résuḿe : Le traitement de nuages de points bruités est une tâche difficile. Il est souvent nécessaire de filtrer et mailler les
points avant de pouvoir les traiter. Dans ce travail, nous présentons un filtre robuste qui opère directement sur les nuages
de points en utilisant des approximations de surface d’ordre deux, calculées it́erativement. Nouśetendons le filtrage
bilatéral en utilisant et filtrant la courbure de la surface, ainsi qu’en introduisant un coefficient de qualité baśe sur notre
approximation locale de surface. En utilisant cette technique, les points sont débruit́es puis lisśes, tout en pŕeservant les
éléments caractéristiques. Nouśetendonśegalement notre filtre afin de pouvoir accentuer leséléments caractéristiques
tout en contr̂olant la formation des arêtes vives dans les régions de forte courbure. Nous présentons des résultats de notre
algorithme sur plusieurs nuages de points scannés.

Mots-clés : géoḿetrie algorithmique, filtrage, d́ebruitage, ǵeoḿetrie baśee points
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Original mesh Noisy mesh [Jones et al. 2003] Our new approach

Figure 1: Comparison between our technique and a recent feature-preserving filtering method. Artificial Gaussian noise
was added to a mesh (σ = 1/5 of the mean edge length), and the mesh was then smoothed using the two techniques. The
meshes are flat shaded to better reveal the geometry.

1 Introduction

Advances in scanning technologies have resulted in a widespread availability of large 3D datasets, e.g. [LPC∗00, BR02].
These advances put an important emphasis on the robust and efficient treatment of these models for modeling and ren-
dering operations. In this work, we perform filtering and geometric processing directly on the acquired points using local
surface approximations. We performlocal processing on theoriginal data points.

The core of our approach is a robust local approximation of the surface based on point-neighborhood information with
no connectivity. We robustly estimate second-order polynomial height functions calledJets[CP03, GKS00]. They corre-
spond to a Taylor expansion and encode differential properties such as normal and curvatures. We show that jets define
a high-qualitylocal surface approximation and alleviate the need for connectivity for a number of important geometric
operations. Computation islocal, robust to outliersandpreserves sharp features. Our central contribution is the develop-
ment of a feature-preserving filter on jets. It extends bilateral filtering [JDD03, FDCO03, CT03] in two important ways.
First, our jet estimation alleviates the need for connectivity or normal information in the input data. Second, we exploit
and robustly filter curvature information. This better captures shape information and results in higher-quality filtering.

Our approach also enables general point-data processing and display. Note that for all the applications we describe,
we work on theoriginal points (potentially moved during filtering). The result of the filtering process permits meshing of
noisy input data using standard meshing algorithms [BBX95, ABK98, Cha03, JDB02], and the control of shock formation.

In summary, this paper makes the following contributions:

• An iterative evaluation of jets that provides normal and curvature from scattered noisy point clouds.

• The extension of bilateral filtering to point clouds using, and filtering, surface curvature.

We perform all operations directly on the scattered points with no need for connectivity. We do not require regular
sampling of the geometry. The results of filtering, when combiningJetsas second-order surface approximations and the
bilateral filter, are much better than using planes or normals; See Figures 1, 13 and 12.

1.1 Related Work

Taubin [Tau95b] pioneered mesh filtering from a signal processing perspective. Desbrun et al. [DMSB99] improved stabil-
ity for irregular meshes using a geometric-flow algorithm. However, these methods indistinctly smooth high-frequencies
due to noise and features.

Borrowing inspiration from image processing [PM90], a number of researchers introducedfeature-preservingmesh
smoothing, e.g.,, [DMSB00, CDR00, ZF02, BX03]. The central idea of these techniques is to prevent diffusion across
sharp features using a non-linear term depending on the curvature tensor. Other authors perform anisotropic diffusion on
the normal field and later evolve the surface to match the normals [Tau01, BO01, OBS02, TWBO02].

Locally-adaptive Wiener filtering has been successfully adapted to meshes [PSZ01] and point-sample surfaces [PG01].
However, this method requires parameterization and/or a regular mesh topology. Alexa [Ale02] defined Wiener filtering
of meshes using a technique closer to diffusion, but connectivity is still needed.

Bilateral filtering [TM98, DD02] was recently adapted to meshes by Jones et al. [JDD03], Fleishmann et al. [FDCO03]
and Choudhury and Tumblin [CT03]. Filtering is not expressed as a diffusion but as a weighted sum of neighboring values.
The weight depends not only on the spatial distance, but also on a similarity term that penalizes values across features. In
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4 Duguet et al.

the adaptation to meshes, the local geometry is decomposed into a tangential and a normal term to allow the definition of
spatial distance vs. similarity. The normal information allows vertices across sharp corners to be rejected as outliers. Our
work builds upon bilateral filtering for the calculation of robust local surface approximation as we will discuss further in
Section 3.

These techniques need connectivity or a good initial guess of the normal information. In general, the computation of
reliable differential properties from discrete geometry is an important step for a number of geometry processing operations.
Hoppe et al. cast normal calculation as an eigenvalue problem [HDD∗92]. Taubin [Tau95a] also uses eigenanalysis and
computes the curvature tensor. Desbrun et al. [DMSB99] propose a normal computation scheme for irregular meshes.
They later extended it to higher-order quantities [MDPS02]. These methods however require connectivity. Mitra et
al. [MN03] discuss the effect of noise on computation of normals for point clouds. Gopiy et al. [GKS00] define local
polynomial approximations similar to jets, but they use a very local neighborhood and a simple estimation scheme. Cazals
and Pouget [CP03] use a least-square formulation to compute jets. We extend these approaches to evaluate robust second-
order surface approximations. In addition, we show how jets can be used for feature-preserving filtering.

Medioni et al. [Mea00] introduced a tensorial formulation of the shape of a point set. At each point, a symmetric
quadratic form is estimated and its eigenanalysis reveals the shape of the sampled geometry: an isolated point, a curve or
a surface. These surface tensors are similar in formulation to the 3D curvature tensor we use, but we present a new and
robust method to construct and exploit them.

The moving least squares (MLS) [ABCO∗03] is an iterative local surface approximation technique. For any input point
close to the surface, and an input normal, the algorithm iterates on a polynomial height function as a local approximation
of the surface. This approximation is iteratively refined by intersecting the ray defined by the point and the normal,
with the height function, and doing a least squares fit on the neighboring points. Pauly et al. [PKKG03] use MLS to
perform boolean operations on point clouds and obtain sharp features at the boundary between the two objects. The MLS
reconstruction of point clouds itself is however smooth and does not preserve sharp features.

2 Differential properties for point clouds

Throughout this paper we consider the point set as a sampling of an underlying surface. In the case of data resulting from
a 3D scan, this is the real surface of the scanned object. We will not construct an approximation of the complete surface
at any time; We will rather construct local approximations to the surface, using a height function defined in a local frame
at each input point. The estimation of local surface differential properties has been used for rendering in [KV01] for the
case of parametric surfaces.

2.1 Jet definition

For our surface approximation, we will use height functions in a local frame for a given neighborhood. For conciseness,
we will call these polynomial height functions, together with their local frames ‘Jets’, as in [CP03]. The first-orderJet is
the tangent plane. In our approach we use second-order height functions, or 2-Jets. We choose a local coordinate system
for these height functions so that they can be expressed in the Monge form:

h(x, y) =
1
2
cxx2 +

1
2
cyy2 (1)

In this coordinate system, the local surface normal is theez axis,cx andcy are the two principal curvatures,ex andey are
the associated directions.

We next describe the process of surface approximation with 2-Jetsbuilt on the input point cloud. Since we restrict our
approach to 2-Jets, we will simply use the term jets from now on.

Jets are stored as a simple data structure associated with the input points. The structure contains the origin (which is
the relative position with respect to the point), the local frame, in particular the vectorex and the principal curvaturescx

andcy.

2.2 Jet Estimation

We estimate the jets using an iterative algorithm, illustrated in 2D in Figure 2. The initial step of the algorithm provides a
first approximation of the tangent plane. This coarse approximation is then refined using an iterative algorithm. The input
of the algorithm is an origin (first estimation), and a small set ofk nearest neighbors to the origin.

We use the method of [CP03], to approximate theez axis, and fit a second degree height function to the point set.
In contrast to [CP03], Gaussian weights are used for the minimization step. We obtain an initial estimation of the height

INRIA
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Figure 2: Illustration of jet estimation. (1) first estimation of the tangent plane, (2) first estimation of the jet, (3) refinement
of the tangent plane, (4) refinement of the jet.

function which has the following form:

h(x, y) = c0 + a0x + b0y + d0x
2 + e0xy + f0y

2 (2)

We then extract the normal from this height function:~n = [−a0,−b0, 1]. We change the local frame according to the new
normal and iterate (Figure 2(3)-(4)). Iterating four times provided sufficient precision in the examples we tested: Theai

andbi factors decrease rapidly to a very small value. At this point, we fix the normal of the local frame, and the height
function is given by:

h(x, y) = ci + dix
2 + eixy + fiy

2 (3)

We then move the origin of the local frame along theez axis such that we can eliminateci, and rotate theex andey

axes around the normal to eliminate theei coefficient. The height function is thus in its Monge form, and the principal
curvatures, curvature directions and tangent plane are known. Results of jet estimations are illustrated in Figure 4, upper
row.

Around boundaries, the quadric which best fits the existing points will be estimated. It is symmetric and will extend the
surface further with the same second-order differential properties. This surface extension will be therefore second-order
smooth.

Our approach for local surface approximation is related to the moving least squares (MLS) [ABCO∗03]. For any
point on the surface, given a normal, the MLS can provide a polynomial height function approximating the surface. The
iterative algorithm for the polynomial height function estimation is quite similar to the one described above. However, the
two techniques differ: in the MLS, the normal to the plane used for the height function definition is not modified during
the process. Since the initial normal is obtained with a rough estimation (which depends on sampling uniformity), the
normal needs to be refined during the process, so that the curvature estimation is more precise.

2.3 Sampling rate and jet quality

The jet estimation is the result of a minimization process. The function which is minimized is a weighted sum of the
squared distance between a point and the jet. If the function is zero then all points are on the jet. We can thus assume that
the jet is a good approximation of the surface. When the function has large values the jet is a poor approximation of the
surface. We next define a quality function which is used during filtering, to control the influence of the jets. Intuitively,
the influence of the jets in the various filters is high when their quality is high, and low otherwise.

RR n◦ 5165



6 Duguet et al.

Figure 3: Illustration of the quality of ajet. (left) a cube randomly sampled. (right) the bunny point set. Blue is high
quality, red is low quality.

We define the quality function as follows. Letwi be the weight used for pointi for the weighted least squares
minimization. Letsd be the average sampling distance, andn = h(x, y) − z. We define the cost of a jet as:

c(j) =
k∑

i=0

wie
− s2d

n2 (4)

Using this cost function, we define a quality coefficient between 0 and 1 for a jet using an exponential:q(j) = e−c(j).
This quality coefficient is illustrated in Figure 3. Note in the cube example that the quality coefficient is excellent in flat
regions, and gets worse around sharp edges; overall, jets have lower quality in presence of noise and around sharp edges.

3 Bilateral Filtering of Jets

After local surface estimation using jets we proceed with bilateral filtering. A jet can be seen as a position, a normal, and
two principal curvature directions and magnitudes. Each of these is filtered separately.

We introduce a new element to bilateral filtering which is the quality coefficient (see Section 2.3). This coefficient
corresponds to the quality of the jet as an estimation of the surface.

3.1 Bilateral Filtering

For each of our filters, either curvature, normal or point filtering, we use the same filtering equation. Only some of the
distance functions will change from one filter to another. CallX the quantity to be filtered. For bilateral filtering, we use
a spatial weight, an influence weight, the quality coefficient and a predictor forX. Spatial and influence weights are given
by Gaussians on distances.Πj(p) is the predictor of the quantity for pointp on jetj. The quantityq(j) is the quality of
jet j. Let ds(j, p) be the spatial distance of pointp with respect to jetj, anddi(j, p) the influence distance, then:

X ′(p) =
1

k(p)

∑
j∈Ω

q(j)e
− d2

s(j,p)

kσf s2
d e

− d2
i (j,p)

σgs2
d Πj(p) (5)

wherek(p) is the normalization factor.

k(p) =
∑
j∈Ω

q(j)e
− d2

s(j,p)

kσf s2
d e

− d2
i (j,p)

σgs2
d (6)

We use the same distance functionds(j, p) for each filter: the Euclidean distance between pointp and the origin of jet
j, and the same value ofσf . Since the distances are divided by the average sampling distance, the absolute size of the
model is not a parameter, and we used the same value forσf = 1 for all models. The value ofσg however depends on the
distance function.

INRIA
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(1) (2) (3)

(4) (5) (6)

Figure 4: Illustration of the jet filtering. upper row: estimation, lower row: after filtering. (1,4) Gaussian curvature,
(2,5) mean curvature, (3,6) normal. The false color scheme is the following: normals: xyz converted to rgb color; Mean
curvature: blue for zero and red for high magnitude; Gaussian curvature: Green for zero, red for positive and blue for
negative.

3.2 Using Second Order Predictors

Predictors Jones et al. [JDD03] presented a bilateral filter on meshes. In their technique, they used point predictors
for filtering: the projection of the point on a plane defined by a neighboring face. We reused this idea of a predictor, but
instead of a plane, we use our second order surface approximation (jet). We can use the predictor for both point prediction
and normal prediction. Each of these is illustrated in Figure 5 for points and 6 for normals.

In what follows, we distinguish the processing of noisy and less noisy data. This depends on the input; noisy data will
typically be filtered twice, passing the output of the first filter to the subsequent filter.

The position filter for noisy data is that of Jones et al. [JDD03] using new coefficients and new predictors. The
influence distance is the distance between the point and its predictor on the jet. Our approach for less noisy data is
inspired by Fleishmann et al. [FDCO03]: we filter point positions along their normals. We cast a ray originating at the
point in the direction of the normal. The intersection of this ray with the jet is the predictor. We thus need good normals
for this technique. The distance function is the distance between the point and the predictor projected on the axis of the
normals. In what follows, the first approach, inspired by Jones et al. [JDD03], is called the drifting filter, and the second
is called the non-drifting filter due to its behaviour during iterations.

Normal filtering For noisy data the influence distance is a distance between normals:

di(n, n′) = (1 − ‖n · n′‖)2 (7)

This approach is close to that of Choudhury and Tumblin [CT03]. For less noisy data, the influence distance is the
Euclidean distance from the point and the point predictor (similar to Jones [Jon03]).

RR n◦ 5165
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(a) (b)
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Figure 5: 2D illustration of point predictors using jets.
Predictors using jets (b) are closer to the underlying
surface (in dashed black) than predictors using planes
(a) when the surface is curved.
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Figure 6: 2D illustration of normal predictors using
jets. Normal predictors using jets (b) are better than the
normals of neighboring jets (a) for filtering in curved
regions. In this illustration, normals of the neighboring
jets (q1 andq2) are poor estimators for the normals at
pointp.

3.3 Curvature Tensor

Curvatures on a surface are defined in the tangent plane as two vectors and magnitudes. Filtering two curvature magnitudes
from two different curvature directions does not make sense. In order to filter curvatures, they must be reformulated in
a frame-independent manner. Similar to the 2D curvature tensor, we rewrite our height function as a frame-independent
equation using a 3D curvature tensorΓ. Let p be a point on the surface, taken from the origin of the local frame, andn
the normal. The height function is thus given by:

n · p = p · Γ · p (8)

In the local frame of the Monge form, the normal is theez axis, and the curvature tensor a diagonal matrix with the two
curvature magnitudes atx andy, and 0 atz. This equation can be used in any frame, the normal and curvature tensor
being expressed in the frame of the jet. We thus have a frame-independent quantity which represents the curvature of the
surface: the 3D curvature tensorΓ, with Q the frame transformation matrix.

Γ = Qt

 1
2cx 0 0
0 1

2cy 0
0 0 0

Q

n =
[

0 0 1
]
Q

(9)

We filter the curvatures using the 3D curvature tensor in the bilateral filter (Eq. 5). The influence distance is the
Euclidean distance between the tensors as 9D vectors. The tensor is considered as a regular 9D vector, the predictor is the
tensor itself, and all linear computations can apply. However, the filtered tensor is modified to conform as a 3D curvature
tensor. We cannot recover the normal from the curvature tensor using an eigensystem since the result is unpredictable
for cylindrical or planar regions, and is highly prone to numerical precision errors. We thus use the previously estimated
normal, and extract the closest tangent vectors which represent the principal curvature directions. Curvature magnitudes
are then re-evaluated from the tensor. A final filtered curvature tensor is rebuilt using these values. Results of curvature
filtering are shown Figure 4.

4 Applications and results

Our higher-order bilateral filtering method can be directly applied to achieve high-quality feature-preserving filtering on
original 3D point data, and also effect feature enhancement. In addition, we show that the result of the filtering process
allows direct meshing of noisy data, without the limitations of previous methods. We also enhance features of the models
with an additional modification of the filter, by a penalization of high curvature regions.

4.1 Feature-preserving filtering

As described earlier, our process can have two passes, one for raw, noisy data, and a second for less noisy data, which
may be the output of the first pass.

INRIA



Robust Higher-Order Filtering of Points 9

(a) (b) (c)

Figure 7: Results: (a) a partial triangulation of the original point set, (b) a triangulation of the point set after the first
filtering pass, (c) after a second filtering pass.

Figure 8: Example of filtering on an edge with irregular sampling. On the left, the edge (top is the flat shaded mesh, and
bottom is the wireframe). Then artificial noise is added to this point set, which is then remeshed and rendered using flat
shading for display. The top row illustrates the results for a uniform noise of amplitude2/5 of the average edge length.
The bottom row illustrates the results for a uniform noise of amplitude5/2 of average edge length.

We applied our smoothing algorithm on several data sets. We applied it in particular to the bunny data set fromThe
Stanford 3D Scanning Repository, made of approximately 360,000 points. These points are the aligned scanner data
points before any reconstruction operations. After a first jet estimate, we applied a bilateral filter of curvature, normals,
and points using drifting techniques, with a first result. We then reprocessed the data using non-drifting techniques, and
obtained a second result. It it interesting to note that the average distance between the original points (aligned output of
the scanner), and the final points is of the order of magnitude of the scanner’s precision.

Existing methods ([BBX95, ABK98, ACK01] and [JDB02, Cha03]) can mesh noisy data, but often result in topolog-
ical inconsistencies. Given that our approach filters the points directly, we choose to first smooth the data and then create
the mesh, which resolved a number of these problems. In addition, meshing smoothed data is often faster in practice since
we avoid the pathological cases of meshing approaches which often slow down execution. We used Geometry Factory
software [Geo] to triangulate the point sets, see Figure 7 and 8 for results. The noisy point set was triangulated using the
method of Chaine et al. [Cha03], since it provided a better result.

We implemented our algorithms on a Pentium 4, 2GHz, using the GNU Scientific Library for eigenanalysis and least
squares minimization. Timings are given fork = 25 neighbors. Jet estimation (with four steps of local frame refinement)
requires 2.1ms per jet; Curvature filtering 0.67ms; Normals filtering 0.63ms and Point filtering 0.64ms. See Table 1 for
results.

In Figures 13 and 12, we compare our results to results of Jones et al. [JDD03]. We used the same models as input and
compared to the output available on Jones’s web page. We also illustrate the influence of the curvature tensor smoothing.
We validated our results using Metro [CRS98] and measured the error with respect to the original geometry. The output
of our technique has an RMS error 2.5 lower than that of Jones et al.
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10 Duguet et al.

Figure 9: The Stanford Bunny. Left: a Photograph (from http://graphics.stanford.edu/data/3Dscanrep/); Right: a rendering
of the reconstructed mesh.

Model size estim. Γ ~n p
Femme 40k 86s 26s 22s 22s

Dragon head 100k 210s 65s 57s 61s
Igea 135k 296s 82s 79s 76s

Bunny 360k 760s 243s 228s 232s

Table 1: Timings of our implementation. The machine used is a Pentium 4, 2.0 GHz with 2Gb RAM. The columns are
the model name, model size in points, the time for jet estimation, for curvature tensor filtering, normal filtering and point
filtering. Timings do not include precomputation ofk = 25 closest neighbors finding. Those precomputation are about tens of seconds
in our unoptimized implementation.

4.2 Shock Formation Control

Another application of our technique is a more aggressive filtering by curvature penalization. Our goal is to smooth
parts of the model where high curvature regions are present. Adding a curvature constraint of a surface leads to shock
formation, but in our approach, we ensure that the shock appears around features. We penalize high curvature regions
of the data set in a manner similar to our previously defined quality parameter. The usage of the quality parameter in
our filter penalized jets when they were bad approximations of the surface, typically around sharp features. The idea of
curvature penalization is quite similar: we introduce a new coefficient in the filter so that jets of high curvature have a low
weight for filtering. Then, points will rather align to flat regions and high curvatures will become sharp edges, or corners.

The parameter we propose to reflect this behaviour is the following:

s = tr(Γ2) < d̂ >2 (10)

wheretr is the trace (The trace of a matrix is the sum of its diagonal elements),Γ is the curvature tensor and< d̂ > is the
sampling distance.

This parameter is dimensionless, it does not change while the model is scaled, but if the sampling density is increased
on the same model, this parameter decreases. The weight we use for the curvature penalization filter is

wΓ = e−s∗s0 (11)

wheres0 is a user-defined threshold. Ifs0 is zero, then the weight is always one and no curvature penalization occurs.
While increasings0, the high curvature jets have a lower weight in the filtering. We do this filtering iteratively increasing
s0 with small steps. We use the non-drifting version of the filter to perform these iterations. Figure 10 illustrates the shock
formation in 2D. Results in 3D are shown on the Igea model on Figure 11.

INRIA



Robust Higher-Order Filtering of Points 11

(a) (b) (c)

Figure 10: Shock Formation. In (a), the curve is smooth, in (b) it is created and in (c) the shock has been enhanced.

Figure 11: Top: Illustration of curvature penalization on the Igea model: on the left, the noisy Igea model, in the middle,
the denoised Igea model, and on the right curved regions have been penalized and sharp edges have been created, smooth-
ing further flat regions.We performed 20 iterations of smoothing withs0 from 0 to 400. Bottom: Illustration on the dragon
head: on the left the smoothed model, on the right, sharp edges appear.We performed 10 iterations of smoothing withs0 from
0 to 200

RR n◦ 5165



12 Duguet et al.

original noisy

Jones et al. 2003 This Technique

Figure 12: Comparison between our filter and the filter of Jones et al. 2003. Jones at al. usedσf = 4, σg = 1, we used
σf = 5, σg = 1.

input withoutΓ smoothing withΓ smoothing

Figure 13: The femme model smoothed with our technique without and with curvature smoothing.

5 Conclusion

In this paper, we presented a new feature-preserving filter that leverages curvature to faithfully capture local shape. The
second order predictors we use afford high-quality local surface estimators. Combined with our extension to the bilateral

INRIA



Robust Higher-Order Filtering of Points 13

filter, these jet predictors allow for robust estimation of geometry and differential properties. We introduced a new weight
parameter based on the quality of our surface estimation. We also derived several filters with different behaviours and
purposes, one closer to a denoising filter, another for fine tuning of surface smoothness. We introduced a new weight
parameter in the bilateral filter, permitting curvature penalization and thus shock formation control around high curvature
regions of the input model. We have shown the results of our algorithms on several models, illustrating the high-quality
filtering achieved by our new approach. All these processing algorithms do not require connectivity, alleviating the
fastidious process of meshing noisy point data. We believe that this new filter can facilitate modeling of geometries in a
point or mesh representation, and lead to the development of a feature-aware editing tool.
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