ISSN 0249-6399

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Shadow Computations using Robust Epsilon
Visibility

Florent Duguet

N° 5167
April 2004

THEME 3

apport
derecherche

% I N RIA

SOPHIA ANTIPOLIS

Shadow Computations using Robust Epsilon Visibility

Florent Duguet

Theéme 3 — Interaction homme-machine,
images, données, connaissances
Projets TSI and REVES

Rapport de recherche n° 5167 — April 2004 — 109 pages

Abstract: Analytic visibility algorithms, for example methods whicompute a subdivided mesh to
represent shadows, are notoriously unrobust and hard tm ysactice. We present a new method
based on a generalized definition of extremal stabbing limbich are the extremities of shadow
boundaries. We treat scenes containing multiple edges ntice® in degenerate configurations,
(e.g., collinear or coplanar). We introduce a robustethod to determine whether each general-
ized extremal stabbing line is blocked, or is touched bydlsene elements, and thus added to
the line’s generators. We develop robust blocker predictite polygons which are smaller than
e. For larger values, small shadow features merge and evbndiisappear. We can thus robustly
connect generalized extremal stabbing lines in degenscatees to form shadow boundaries. We
show that our approach is consistent, and that shadow bogodanectivity is preserved when fea-
tures merge. We have implemented our algorithm, and shawwhaan robustly compute analytic
shadow boundaries to the precision of our choséhreshold for non-trivial models, containing
numerous degeneracies.

Key-words: Computer Graphics, Computational Geometry, Visibilitighting, Shadows

* INRIA Sophia-Antipolis and Ecole Nationale Supérieure @é&communications,Paris

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis €¢Beance)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Calculs d’ombres en utilisant I’ e-visibilité robuste

Résumé :Les algorithmes de visibilité analytique, par exemple le&thades calculant une subdi-
vision de maillage pour représenter des ombres, sont eateint fragile, et difficiles a utiliser en
pratique. Nous présentons une nouvelle méthode basée sutéfinition généralisée des droites
poignhardantes extrémes, supportées par les extrémitésdaes. Nous traitons des scénes conte-
nant de multiples arétes ou sommets en configurations déggs@ar exemple colinéaires ou copla-
naires). Nous introduisons une méthode robuste pour digtersi chacune des droites poignardante
extréme est bloquée, ou est touchée par les éléments denky, stainsi ajoutés a 'ensemble des
générateurs de la droite. Nous développons des prédicdtodage robustes pour les polygones
plus petits qué. Pour des valeurs d’plus grandes, les détails des ombres fusionnent et finissent
par disparaitre. Nous pouvons donc connecter de facontebas droites poignardantes extrémes
généralisées dabs des scenes dégénérées pour former desess d’ombres. Nous prouvons
que notrtre approche est cohérente et que la continuitéatgswurs d’'ombres est préservée quand
les détails fusionnent. Nous avons implémenté notre dlgue et nous montrons que nous pou-
vons calculer de fagon robuste les contours d’'ombres a Ggiwé de la valeur @ choisie pour des
modéles non triviaux, contenant de nombreuses dégénéoesce

Mots-clés : géométrie algorithmique, graphique 3D, visibilité, écdgie, ombres

Robust Epsilon Visibility 3
1 Introduction 7
2 Previous Work 9
2.1 Visibility 10
2.2 Shadows e 18
2.3 Interval Techniques e 21
3 Framework 23
3.1 Visibility predicates 24
3.2 Extremal StabbingLine e 26
3.3 Swath e 3
3.4 Graph 4
4 Epsilon Visibility - Epsilon Predicates 35
4.1 EpsilonCriteria e 35
4.2 EpsilonPredicates. 38
4.3 TheMultiface e e 48
4.4 Epsilon Visibility Complex 53
5 Algorithms 55
5.1 ESLCaStng 55
5.2 Swath Validation 61
6 Lighting 67
6.1 Shadows and Visibility Events oo 68
6.2 Intersectionsand Contacts e 71
6.3 SharpShadows 75
6.4 SoftShadows e 78
6.5 Meshing 81
7 Implementation 83
7.1 Acceleration Structure e 83

RR n° 5167

w

4 Duguet

8 Conclusion 97

A Line Space and Pliicker Coordinates 99

INRIA

Robust Epsilon Visibility 5

Acknowledgements

This work has been done at Ecole Nationale Supérieure désdmimunications in Paris under
supervision of Francis Schmitt. It is however the transfatf the french masters thesis internship
performed at INRIA Sophia-Antipolis under supervision cgdege Drettakis, to which have been
added implementation details and other contributions.

This thesis, written for the obtention of a "Brique Projetttie compilation of all the algorithmic
and implementation techniques, and explanations on treedtieal framework oRobust Epsilon
Visibility [DD02].

RR n° 5167

Duguet

INRIA

Robust Epsilon Visibility 7

Chapter 1

Introduction

In this thesis we present several algorithms and technimglated to visibility, shadow computa-
tions and computational geometry. The main focus of our virark been to compute shadows for
polyhedral scenes using robust epsilon visibility.

The spectrum of shadow algorithms in the literature is wigi@mm the most hardware oriented
to analytic techniques, each has its benefits and drawb¥ékdevelop here techniques for analytic
visibility computations, and shadow computations as ariegtjon.

In this work, we focus on robustness issues and problemtedeta precision. Indeed, com-
puters are not capable of infinite precision computationiskvare needed for stable and consistent
geometric algorithms. Our choice in front of this problens li@en to handle degeneracies, and to
consider things degenerate when the computer calculatmrid not be trusted. This choice resulted
in a new framework on analytic visibility we called epsiloisitility.

Each computation we do each result and we expect and rettonbis considered correct up
to an epsilon error threshold. Beyond this epsilon valusulte are not fair and even topology
consistency is not guaranteed. In some applications, thiklde a severe problem, but for shadow
computations, a well chosen epsilon leads to fair results mbust algorithms.

This thesis can be seen as an extension, both in terms ofige@snand presentation of the 2002
Siggraph paper Robust Epsilon Visibility, by Florent Dugaed George Drettakis.

RR n° 5167

Duguet

INRIA

Robust Epsilon Visibility 9

Chapter 2

Previous Work

In this chapter, we briefly present previous work in termsisibility and shadows, with a very short
presentation of interval techniques in computer graphics.
The section is structured as follows:

« we first discuss visibility, in particular analytic, apgimate visibility and occlusion culling.
This part deals with visibility only.

» we next discuss shadows, subdivided in sharp shadowsgsaftows using discrete tech-
nigues, and soft shadows using analytic techniques.

« finally a small part on interval techniques in computer ¢iap.

RR n° 5167

10 Duguet

2.1 Visibility

Visibility is a central problem in computer science. It hagb addressed extensively in the literature,
in different ways, for specific applications. An extensitedy of visibility problems and previous
work has been done by Durand in his PhD [Dur99]. We descriterd three kind of visibility
problems : analytic visibility, approximative (discretasibility, and occlusion culling.

Analytic Visibility

(@)

Figure 2.1: lllustration of the aspect graph : (a) Objectp@rtitioning, (c) orthographic projection
partitioning, (d) aspect graph, (e) aspect graph for ontayplgic projection - figure from [Dur99]

Aspect Graph Model oriented pattern recognition needsiawpointoriented representation of
objects; that is a structure which can code all the possikel@s/of an object. Koenderink and Van
Doorn [KvD79] have developed thasual potentialof an object, known as thaspect graph This
technique consists in partitioning viewpoint space intltlscé~=rom any two viewpoints of a given
cell, the object looks the same in a qualitative point of vigee figure 2.1). We call this invariant
the aspect The set of cells is then represented by a graph structurellasvé : each node is an
aspect of the object; and each arc is associated to a wvigieilent, that is a transition between two
aspects.

INRIA

Robust Epsilon Visibility 11

Shaft Culling Visibility between surfaces is the
most expensive part of radiosity computations. 1
One approach is to compute visibility using a
p:

discrete technique such as ray casting methods.
Haines and Wallace [Hai93] presented an algo-

rithm which takes advantage of object space co-
herence. The method is based on the use of shafts

which overlap the volume between the emitter and j
the receiver of an energy transfer. Then a candi- @ é
date list of elements partially or fully within this
volume is generated. This list is thus used for @ A
visibility test (ray casting), avoiding unnecessary
computations with irrelevant elements. This shaft
technique is widely used in lighting simulation al-

gorithms and hierarchy-oriented applications.

@

Shaft illustration - from [Hai93]

Occlusion Culling - Portals and Anti-penumbra
Teller and Hanrahan [TH94] proposed an algorithm to
compute visibility for architectural scenes, that is in-
door buildings. The idea is to first partition the scene
into convex polyhedral cells. Within these cells, the
visibility computations are trivial. Once the cells are
Portals illustration - from [TH94] computed, they are linked by portals. For example, a
building with rectangular rooms has rectangular cells
(the rooms themselves), and the doors define the por-
tals. In order to compute visibility, we compute the
set of portals between two cells, and we clip the set of
lines between these cells by the portals. We thus ob-
tain a visibility shaft. Each line within this visibility
shaft is free. We can compute the partial/complete/non
- visibility of any pair of polygons with this structure.

In order to compute the visibility shaft, through a se-
quence of portals, it is necessary to compute the anti-
penumbra and anti-umbra. Teller [Tel92a] proposed an
algorithm to build the shaft. To achieve these compu-
tations, Teller uses extremal stabbing lines and critical
line sets. He gives fundamental definitions later used in
analytic visibility.

Anti-penumbra - from [Tel92a]

RR n° 5167

12 Duguet

The Visibility Complex The Visibility Complex is a formal approach of 2D visibiligyroblems
addressed by Pocchiola and Vegter [PV96]. This technigtieeistudy of maximal free segments,
which are segments of the 2D space, in intersection with fecoland with extremities on the
limit of objects. See fig 2.2 for an illustration. The authgige an optimal output construction
algorithm for such a structure, for smooth objects. Rivi®&95], [Riv97] proposed an algorithm
for polygonal scenes.

(a) (b)

Figure 2.2: lllustration of the 2D visibility complex

3D Visibility Complex The 3D Visibility Complex is an extension of the visibilitpmplex to 3D
space. Durand et al [DDP96] extended the visibility compte8D scenes for smooth and polygo-
nal objects. The set of maximal free segments of a 3D scenstipex set of a dimension 4 variety
(because of the possible multiplicity of segments on a lifk&ces of the complex are bounded by
tangent segments (critical set of dimension 3), bitangegiments (dimension 2), tritangent seg-
ments (dimension 1), and quadritangents, which are thécesrof the complex. It is difficult to
describe such a structure since it lies in a 4D space whiclng to draw. For further details on
the 3D visibility complex and a clever way to explain it, s&1f99] and [DDP02]. See fig 2.3 for
illustration.

The Visibility Skeleton In lighting simulation algorithms such as radiosity, sonshility infor-
mation is useful and can be retrieved from the visibility gdex. Durand et al [DDP97] presented a
data structure storing this data for polygonal scenes : thibility Skeleton. The visibility skeleton
can be seen as a graph, with nodes being extremal stabb@sgViertices of the complex, i.e. quadri-
tangents), and arcs being critical line sets of dimensian Guch elements are visibility events of
dimension one for nodes and two for arcs. The authors prdwadsonstruction algorithm based on
a catalogue of extremal stabbing lines, giving adjacerfoiethe nodes. The visibility skeleton has
been used in a global illumination algorithm based on ragidsr which analytic extended source
- point form factor computations were achieved. Umbra antup#ra limits are deduces from this
data structure. Such visibility computations are analgtid thus exact up to the machine precision.

INRIA

Robust Epsilon Visibility 13

=12
‘O b2

v b1
[-
so -
G

62
%ezo R

6 G

G
B

=2

Figure 2.3: lllustration of the 3D visibility complex. A-slice. Image taken from - [Dur99]

@) (b)

Figure 2.4: lllustration of a visibility skeleton node arrd adjacencies. Image taken from - [DDP97]

RR n° 5167

14

Duguet

Approximate Visibility

Depth Buffer Hidden surface removal has been
an active research topic for several years. In order
to display a scene on an image, we have to project
thevisible partof the objects of the scene on the
screen. A first algorithm has been presented to
draw such objects: the painters algorithm. This al-
gorithm consists in drawing objects on the screen
in order of decreasing depth (distance from the

Wire-frame drawn object

screen). Such an algorithm fails for overlapping

elements or in the case of unorderable elements

(imagine a mikado game with three sticks, each

being above another and below the last one). Sev- ‘
eral algorithms which cut polygonal scene objects .

have been presented, but the problem remains for M

curved objects.

Catmul [Cat74] proposed an algorithm which kept

in memory a map of distance of pixels drawn, so
that a further point did not erase a nearer point
and vice versa. This map is known as the depth
- or Z buffer and is widely used today. This tech-
nigue is implemented in OpenGL and available on
most graphics cards nowadays. Other techniques
are inspired from this one, such as the shadow map

(described below).

‘ '4 A 4
S
I

image taken from [SK98]

Its depth buffer

Result

Approximative Visibility Map Stewart and Karkanis
[SK98] proposed an hybrid visibility technique, between an
alytic and sampled visibility. This method computes the ap-
proximate visibility from a point, which is the part of the
scene visible from the given point. The algorithm first ren-
ders the scene in a buffer in the same way as the depth buffer,
giving each pixel a colour corresponding to a polygonit rep-
resents. Once this buffer is computed, a graph is extracted
from this buffer via a re-computation of vertices positions
towards an exact value. The nodes of this graph are the vis-
ible intrinsic or apparent vertices, and the arcs are the par
of edges visible from the viewpoint. This technjgug uses the
hardware acceleration for expensive visibility compwtasi

and for example gives a fair approximation of a form factor.

Robust Epsilon Visibility 15

Occlusion Culling

Walkthroughs are typical applications using large vireralironments. In this application, the user
is located in the virtual world as an observer, and does rotlswhole scene. Most of the scene
elements are hidden by near objects. To optimize rendesirsgt of objects is computed, which
corresponds to a super set of actualy visible objects. Htissknow as théotential Visible Set

it is often computed on the fly with clustering precomputasiodepending on the position of the
viewer.

Architectural Geometry Scenes Teller et al [TS91] proposed a technique for hidden object re
moval for architectural geometry scenes. The technique theeproblem characteristics to trans-
formitinto a 2D problem.The input scenes represent buislinith axis aligned walls. The key idea
is to subdivide the scene into cells, and to place portalwdwt neighbour cells. Then, two cells
mayseeeach-other if a line of sight through portals exists. Viipis computed progressively from
a cell through a stab tree. This tree gives the set of visielle rom a given cell. For visibility from

a viewpoint, the stab tree has to be searched with lines gfirthe visibility cone. This approach
has been extended to less restrictive scene models [Tel92b]

““1. 'Q

Hierarchical Z-Buffer illustration - from [GKM93]

RR n° 5167

16 Duguet

Hierarchical Z-Buffer ~ Green et al [GKM93] presented a hidden surface removal iguabrbased
on Catmull's depth-buffer [Cat74]. This technique givesierdérchical algorithm of the problem.
Instead of using a fixed resolution depth buffer for each cthjé the scene, the idea is to use a
hierarchy of depth buffers, and to test objects with theirmiting boxes. This technique has several
benefits since it takes advantage of spatial, object-spatérae coherence. For spatial coherence:
near objects are grouped in hierarchies of bounding boxase &nd object space coherence are
used to define and update a list of visible objects.

INRIA

Robust Epsilon Visibility 17

Hierarchical Occlusion Maps Zhang et al [ZMHI97] proposed a conservative hidden surface
removal algorithm. This technigque removes occluded objattifferent levels of a hierarchy. Oc-
clusion maps are built from preselected occluders usingvneae acceleration: the occluders are
rendered, and a conservative algorithm is used to build i#r@ifthy of occluders. Occluder selec-
tion follow a strict list of criteria upon distance, sizeagle... Once established, maps are applied on
the hierarchy of the scene to solve visibility. The occluiiis updated during the walk-through.

Viewer Submarine image - from [ZMHI97]
Occluder selection - from [ZMHI97]

RR n° 5167

18 Duguet

2.2 Shadows

The literature on shadow algorithms is vast, and we do nehihto address it exhaustively. Woo
et al [WPF90] presented a survey on shadow algorithms, wikiah excellent reference for earlier
shadow algorithms.

Sharp Shadows

Shadow Map Williams [Wil78] proposed an algorithm to compute sharpdtwas from directional
sources, from curved objects to curved surfaces. This tqubris based on the depth buffer tech-
nique: the scene is rendered from the viewpoint of the so{pamt or directional), and the depth
buffer is stored as the shadow map. We associate the tramsfion matrix to the map. Then, we
render the scene from the viewpoint of the camera. Finahgéch pixel of the resulting image, we
restore its 3D coordinates, and compute its depth with mtdpahe viewpoint of the source. The
resulting depth is then compared to the one given in the shatkp, and if above the stored value,
the pointis in the shadow. SGI Origin 2000 and nVidia GeF@&@cards implement this algorithm in
hardware. The main benefit of this technique is that evenyetg which can be rendered with the
ZBuffer can thus be shaded. However, precision problemappad resolution of the shadow map
quickly become critical.

Perspective Shadow Maps Stamminger and Drettakis [SD02] improved the shadow malp-tec
nique to overcome the main shadow map drawback: aliasing.siiadow map technique is based
on a global shadow map for the whole scene whatever the vipasition is, the resolution of the
map is thus insufficient when the scene is closely examinedlafge scenes, the problem quickly
result in imprecise and aliased shadows. The idea of theadeés$hto adapt the shadow map to the
current viewpoint, by computing the map after perspectioggetion.

standard shadow map perspective shadow map
courtesy of M. Stamminger courtesy of M. Stamminger

INRIA

Robust Epsilon Visibility 19

Shadow Volumes Crow [Cro77] introduced the shadow
volumes. Igorithmfor a given point or directional light
source, polygonal elements defined by the source and the
scene edges are cast into the scene to define shadow bound-
aries. The polygonal elements are given by the source posi-
tion/direction and the silhouette of objects. This techeits
used for interactive display of sharp shadows. The computa-
tions of shadows can be performed using the stencil buffer,
avoiding numerical failures, and most recently, Everitalet
lllustration of shadow volumes [EK] gave a robust version of this technique.

from [EK]

Soft Shadows

Soft Shadow Textures Soler et al [SS98] proposed

a technique to compute soft shadows based on tex-
tures. For a given source-receiver pair, each in-between
blocker is approximated by a flat blocker parallel to the
source or the receiver, at a given distance. With this
given set of flat blockers, a convolution of the source
and the blocker images is done, giving a shadow im-
age. The resulting image is applied as a texture to the example of soft shadow textures
receiver. from [SS98]

Image-Based Methods Agrawala et al [ARHMOQ]
presented a couple of techniques for rendering soft
shadows. The first one produces soft shadows at an
interactive rate, the second produces high quality im-
ages including soft shadows. The first is Layered At-
tenuation Maps, is based on the use of Layered Depth
Images [SGHS98], built from sampling points on the
light source. The maps are computed from the LDI and
modulate the illumination of the image. The second
technique is a hierarchical ray tracing technique which
images from [ARHMOOQ] is achieved through the shadow maps instead of scene
geometry. The source is sampled at uncorrelated posi-
tions, avoiding artifacts from the previous method.

RR n° 5167

20 Duguet

Discontinuity Meshing Heckbert [Hec92] and Lischniski et al [LTG92] studied theddintinu-
ities of the radiance function due to the presence of objeetaeen light sources and receivers;
for example in a typical radiosity light transfer. Thesecdistinuities are of several kinds and or-
ders. Order 0 discontinuities are generated by contacttersection of objects. Order 1 and 2
are generated by occluders between source and receivese Giseontinuities appear along visual
events, which are changes in the visibility of the sourcenftbe receiver. Algorithms related to
visual events were already presented by Teller in [Tel9Z&lese discontinuities are projected on
the receiver and a constrained triangulation is thus coetho that no visibility event is present
on subdivided polygons. This technique has been used in@sigdalgorithm addressing one of its
main drawback.

2NN

. N
fS~-\

discontinuities in radiance function

from Heckbert [Hec92] image using improved radiosity algorithm

from Lischinski et al [LTG92]

Backprojection Drettakis and Fiume [DF94] and Stewart and Ghali [SG94] gméed techniques
to accurately compute lighting from extended sources. & beshniques are based on the concept
of back projection. A backprojection instance at a point Phwespect to a source is the set of
polygons forming the visible parts of the source at P. Thekpaijection in a region is a data-
structure containing all bp-elements (intrinsic and appawertices), such that from any point P
in the region, these elements projected onto the sourceedéfen backprojection instance. The
backprojection is constant in each full discontinuity mesh. Then, the irradiance from a constant
area source can be computed analytically for each pointdh segion, with this information. Once
the discontinuity mesh and the backprojection are comps®dral images can be computed with
little additional computational expense.

INRIA

Robust Epsilon Visibility 21

image using backprojection, and superimposed
discontinuity meshing
from [DF94]

discontinuity meshing
from [SG94]

Vertex Tracing One of the main drawback in radiosity is
the lack of precision in shadow boundaries fidal gather
step has been introduced to compute accurate soft shadow
boundaries for radiosity solutions. In order to achievs thi
final step, Stark et al [SRO0] introduced vertex tracing. The
idea of this technique is to compute, for each pixel of the
final image, the contribution of each source (each surface
in radiosity). This final computation is done with analytic
computations using a modified version of the Lambert for-
mula, expressed at vertices. Two kinds of vertices are con-
sidered in this formula : intrinsic vertices which are vegt

of the initial mesh visible from the point, and apparent ver-

: X i tices which are intersection of edges. Then, each visibte pa
Image using vertex tracing of source define a lighting slice, which contributes to the il
from [SROO] lumination of the pixel.

2.3 Interval Techniques

Epsilon Geometry One of the main drawbacks of using floating point units (FRUhe lack of
precision of such computations. The IEEE-745 norm on FP ctations is indeed satisfactory for
range of applications, but the precision obtained is oftesufficient for geometrical computations.
Salesin et al [SGS89] presented a general framework for g&aral predicates from imprecise
computations. Each geometrical element is thus flattenedusier-defined epsilon and predicates
are allowed to return a result asknown The authors presented an extensive study of typical 2D
geometrical problems.

RR n° 5167

22 Duguet

Interval Analysis Snyder [Sny92] presents a formal framework on interval ysigs] especially
for problems arising in computer graphics applications.o Blgorithms SOLVE and MINIMISE
are presented in an interval arithmetic computational@ggr. He describes several applications of
these algorithms for computer graphics, mainly in the iciptiurves / surfaces field. The key idea
is to use inclusion functions which are functions with Soligaproperties over intervals. Problems
defined with such functions can be solved by an iterative@gugr in the spirit of divide and conquer
algorithms.

INRIA

Robust Epsilon Visibility 23

Chapter 3

Framework

As explained in the previous work, analytic visibility is argeral geometric framework for several
applications including shadow computations, occlusidlfirmy etc. Elements of interest for such
applications are visibility events. We will describe inghihapter tools used for visibility com-
putations, and a general framework on the topic, regardiepsecision problems or degenerated
configurations; these topics are detailed in following ¢begp

This chapter is an introduction to analytic visibility, teetunderlying concepts and tools. For an
extensive detailed presentation of analytic visibilite teader should refer to Durand’s PhD Thesis
[Dur99].

For the rest of the discussionseeneis a set of polyhedra, given in a 3D space. These polyhedra
are made ofertices(points with given 3D coordinategdgeqfinite segments between two points),
andfaces(2D surfaces between points and edges, restricted to ptanaex polygons).

The visibility complex [DDP96] is a good theoretical framak on visibility, which uses con-
cepts like tangency. These concepts seem obvious in theematfcal field, but need proper defini-
tion to understand problems which eventually appear in agergraphics.

In the first section, we will describe the set of predicatesneed for visibility computations,
then we define the extremal stabbing lines, which are visib#vents of dimension 0; then we
define swaths, which are visibility events of dimension 1d &nally we give a brief description of
the visibility skeleton introduced by Durand et al [DDP97].

RR n° 5167

24 Duguet

3.1 \Visibility predicates

As stated, we only consider scenes made of convex planag@aty More complex geometry
is not addressed in this thesis. By the way, we are confidetitdrassumption claiming that all
graphical objects can be approximated by a polyhedron,tasittiangulated to fulfill the previous
requirements.

Also, we consider, for the simplicity of the discussion,tthe have infinite precision computa-
tion tools at our disposal. This simplification assumptidh e overridden in the next chapter.

Visibility studies lightrays, which are considered infinitely thin, as lines in geomednd di-
rected from an origin to a destination. Thus, a ray has anrofmpint in the 3D affine space), and
a direction vector (in the 3D underlying vector space). A gags along a line which is called its
supporting line.

We call object a scene element, whether it be a vertex, an edge, a face, @oamosition of
objects. Note that an edge contains its boundary verticéssatus a composition element, as for
the face containing its boundary edges.

Hit Criterion

The hit criterion defines whether a ray hits an object or neerikind of object may be hit by a ray.
A ray hits an object if and only if at least a point of the ray lies on thgeob Note that in this
definition, objects may be defined by single points, edgessfaopened polyhedrons, etc.
This criterion can be extended to paths, which can be seemrasctrays.

Blocking Criterion

The blocking criterion defines whether a ray is stopped bylgeab or not. Note that this criterion
applies on the neighbourhood of the object. For exampleri@wenight be a blocker, even if its
spatial extend is null, since it may have neighbouring faces

Intuitive definition: a ray isblocked by an object af if and only if the ray crosses the surface
of the object. That is for example, for a solid shape, if thesi@ps inside the object at poift

Formal definition: Let P be the intersection point of the object and the ray. 4 be a strictly
positive value, let5. be a sphere arouns of radiuse, let P_ and P;. be the intersection points of
the ray supporting line anfl., P_ beforeP in the ray’s direction. A path (continuous set of points)
betweenP_ and P, is said to bdree if and only if there is no point which both lie on the path and
on the object except foP,. or P_. A ray isblocked by an object at poinP if and only if all the
following conditions are satisfied:

1. The ray hits the object &.

2. There is am for which there is no free path betweén and P—

INRIA

Robust Epsilon Visibility 25

Tangency Criterion

The tangency criterion is complementary to the blockingedidn. If a ray hits a surface, it is either
a blocked or tangent to the object.

Intuitive definition: a ray istangentto an object if it grazes the object.

Formal definition: a ray istangentto an object at poinP if it hits the object at poinf’, and is
not blocked by it there.

graze hit object A
Generator
ray
block hit
Blocker
object B

Figure 3.1: Ray classification illustration

Ray Classification

A ray is said to have no interaction with the object if it does hit the object.

As a direct consequence of the previous definitions, for argdbject, an interacting ray is either
(at each interaction point), blocked, or tangent. Thus, o call objectsblockers with respect to
rays if the ray is blocked by an object, generatorsif the ray is tangent to an object.

RR n° 5167

26 Duguet

3.2 Extremal Stabbing Line

Teller [Tel92a] first introduced the concept of extremabsiag lines (ESL). The concept has been
more formally defined by Durand et al in [DDP96], as quadgemts. A tangency criterion indeed
sets one degree of freedom, out of the four available in tieedpace. Degenerate configurations,
with tangency multiplicity greater than four are not addeskin this chapter, by the way, they are
the main motivation of our work, and are extensively studier on.

In [DDP97], Durand et al claimed that for non degenerate gométions, extremal stabbing
lines can be classified into a catalogue. The main types oémal stabbing lines are VV, VEE and
E4, other including faces correspond to handling some dagénconfigurations with the catalogue
tool. Besides, degeneracies are most frequent since latisje€ts and structures such as buildings
contain degeneracies (aligned vertices, collinear orasapl edges). By the way, for the clarity of
the discussion, we only present here hints for extremabgtghines, and study VV,VEE and E4
genericESLs.

Catalogue Approach

An extremal stabbing line is a line defined by generators Wwhianstrain its degrees of freedom.
Constraining a line to pass through a point (vertex) dee®hbyg two its degrees of freedom, and by
one for a line (edge). See figure 3.2 for illustration.

» Two distinct vertices define in a unigue manner a line, wisch VV extremal stabbing line.

» A vertex and two edges may define and extremal stabbing ifitiee edges, seen from the
vertex, appear to intersect on a single point, differentiftbe vertex, which is called apparent
vertex. This configuration defines the VEE extremal stabbimey

» Four edges, supported by four lines may define one or two E8tdeed, if the two lines
hitting the four lines actually hit the four edges, the fodiges may define two extremal
stabbing lines.

Besides this degree of freedom concern, an extremal stglihasshall also be a maximal free
segment.

Algebraic Approach

Before reading this part, please refer to Appendix A for aroihuction to Plicker coordinates, and
line space.

The generators of the scene (vertices and edges) may be séiaraa maps in the line space
(of dimension 6), and the lines through these generatoitseatl part of the kernel of these linear
maps. Indeed, a real ling, 7) runs through a verteX,, if and only if V x @ — & = 0. This vector
equation can be rewritten so that the line appears as an ei@fthe kernel of a linear map. For an
edge, the linear map is the Plicker form with the supporiime |

INRIA

Robust Epsilon Visibility 27

oV

Vv

<VV> <VEE>

Figure 3.2: Three generic kinds of extremal stabbing ling¥,:VEE and E4

Thus, if the intersection of kernels associated to sceneeai¢s contains a finite set of real nor-
malised elements, this set of elements may define an extstaidding line. Note that this approach
automatically handles degenerate configurations. Theitigoproposed to compute the E4 ESL is
inspired from this approach.

For a given set of linear maps, the computation of the dinmenef the intersection between
the kernels and the normalised variety and real variety $sipée and detailed in appendix A. This
algorithm is not straightforward and not necessary hetss tot detailed.

Algorithm
We present here algorithms to compute the extremal stabiiag in the Pliicker space (see Ap-

pendix A). These algorithms take as input a set of generadarsas output one or two lines gener-
ated.

\AY
The algorithm to compute a VV ESL is trivial since the line isquely defined, we know at least

one point on the line, and the line direction is given by thetoeii = V> — V1, V5 andV; being the
two input vertices.

RR n° 5167

28 Duguet

VEE

The algorithm to compute a VEE ESL is divided into three stéfdse first for the direction of the
line, the second step for the position of the line (trivialcgd we know a vertex of the line), and the
third step to check if the line passes through the two edges.

Let V be the vertex of the input set of generatdrs,= [A4;, B1], andE; = [As, Bs] be the two
edges, see 3.3 for illustration.

Figure 3.3: VEE ESL computation technique

We first compute the two planes containing an edge and thewert; = (A;, B;,V) and
e = (Ag, B2, V), with normalsri; and#z. Then, the direction of the line is given by the vector
i = 11 X fio. We know a vertex of the line, given in the set of generatowrking the second step
trivial.

Finally, to check whether the line actually runs throughtiie edges, we test the positions of
the vertices of the edges with respect to the plane formethéwpther edge. That is, the line runs
throughF; if B is on one side ofry andA; is on the other side.

E4

The algorithm to compute E4 ESLs is a bit more complicatedis llased on the one of Teller
[Tel92b]. As for the previous algorithm, we first compute time, and then check whether the line
runs through the four edges.

For a better understanding of the following algorithm, teader should take a look at appendix
A, which deals with Pliicker parametrisation of lines, usereh

INRIA

Robust Epsilon Visibility 29

The four edges supporting lines are expressed in Plickediczdes (as detailed in appendix A),
and a 4x6 matrix is thus computed. We look forward to extriaetikernel of this linear map, made
of two vectors, in the generic case, which we suppose here.

Teller proposes an algorithm which uses a singular valuemeosition, but since all com-
puted elements are not necessary here, we have a diffeesatekpensive approach. We com-
pute a Gauss reduction of the matrix which saves the singalares (operations of the kind :
L;:=1L;+ ZKZ. L;). We allow columns permutations, if stored, and thus obaagiartially upper
triangular matrix. We then rise the pivots to obtain a p#ytidiagonal matrix. We then deduce the
kernel elements with the two last columns.

Once the kernel is computed, we have two vectors,/sandl,. Note that the Plicker space
is a projective space, which represergtal andimaginarylines. Given these two vectors, a finite
number of lines shall represent real lines, with a unit diogcvector. We use an algorithm proposed
by Teller in [Tel92b] to compute the resulting line. Sevarahfigurations are possible :

» The two lines are real
* One line is real, sal; and the other is imaginary
» The two lines are imaginary

The first case is impossible for the following reason : albéin combination of the two real
lines is a real line, which would mean that the kernel is of eligsion one in the normalised real
lines variety. A whole swath would run through (or be coplatmg the four edges which means
that the edges are in a degenerate configuration. This case &udied here, and we avoid such
configurations a priori.

In the second case, all linear combination of the two ling) @ non null weight foii; leads to
an imaginary line, which is not an expected result here, ¢gsersd weight of the linear combination
is thus null. Our solution i, and is unique (save for its orientation).

In the third case, both weights shall be non null. Since wéraagrojective space, we consider a
linear combination with a weight set to ong(and the other noted as we then compute the value
of \ so that the resulting linear combination is the parametosaf a real line. We have to solve
a second degree polynomial equation, which leads to onemsdhutions (since the discriminant is
always positive).

Finally, to check whether the line(s) actually run(s) thghuhe four edges, we do for each edge
the following test. We compute thg,; = o x M — ¥ vector,M a point on the edge; the direction
vector of the line, and’ its other vector. Note that if a poirit/ of the edge is on the line, itg,
vector is null. We then compute the sign of the dot product 7. If the sign is negative or null,
it means that there is a point on the line and on the edge (indem A and B), otherwise, it means
that the intersection point between the line and the edggsosting line is not on the edge.

RR n° 5167

30

Duguet

Figure 3.4: The on-edge test

INRIA

Robust Epsilon Visibility 31

Note on the degenerate configurations In the previous computations, we supposed we had a non
degenerate configuration to be handled, but we need tosetgeneracy beforehand. A degeneracy
is defined by a kernel dimension greater tRalVe first note that if two lines are at a distance below
¢, then their side operator is belevas well. When reducing the matrix using a Gauss pivot apfroac
we allowed column switching for getting a better pivot. Ifigqi is belowe, it means that the side
operator with the line in the image of the linear map is betoWve thus exclude pivots smaller than
epsilon and consider them as zeros for the reduction. Thégewation with kernels dimensions
greater than two is thus encouraged.

RR n° 5167

32 Duguet

Occlusion Concerns

<VEE>

Figure 3.5: lllustration of the occlusion concern.

The main issues of visibility are to compute occlusions. Pphevious definitions of extremal
stabbing lines and algorithms to compute them did not takéson into account.

A complete algorithm on occlusion for extremal stabbingéirvalidation is detailed in section
5.1. The main idea of the algorithm is to go forth onto the E&hd to test if all the elements of
the input set of generators for the ESL computation algoritine hit before hitting the first blocking
element. If not, then the ESL is said to het validated and is not taken into account.

INRIA

Robust Epsilon Visibility 33

3.3 Swath

Associated to the concept of ESL is the concepswhth. A swath is a continuous set of lines,
which defines a critical line set regarding visibility. Foraenple, for a given viewpoint, the set of
rays from the viewpoint hitting an apparent boundary edgadlvis called asilhouette edge) is a
swath. It defines the visible boundary of an object and thedithits of space it occludes.

Swaths are critical line sets of dimension one, and can baeattthe same way as ESLs, either
with the catalogue approach, since the catalogue implidiefined swaths as connections between
ESLs, either with an algebraic approach as a critical lin@ftdimension 1.

<VE>

Figure 3.6: lllustration of a planar swath, and a non planatis

Swaths and Shadows

As seen in the previous work, shadows casted by point lightcgs can be computed using the
shadow volumes algorithm. Such a technique is a good exampliestrate swaths. The boundaries
of shadow volumes are infinite polygons with ESLs origingith the point source, and a silhouette
edge. A swath with generators the point source and the gitt®adge supports this infinite polygon.
The shadow boundaries casted on receiver surfaces ardehgeiction between the infinite polygon
and the surface, which is also the intersection betweenththsand the receiver.

RR n° 5167

34 Duguet

Swaths and Algebra

In the previous section, we presented ESLs in an algebraimaph. ESLs were defined as inter-
sections between linear maps kernels and real and nortiatisariety. Swaths may be defined the
same way, but with a dimension restriction of one (instearkod for ESLS).

In that definition, we can see that if two ESLs have linear niapemmon so that the intersection
of their kernels and real and normalisation variety is ofelision one, then the set of linear maps in
common defines the swath (which is a set of generators). Atdibnsequence of this remark is that
the two ESLs sharingnoughgenerators (or linear maps by extend), are the boundareswéath.

3.4 Graph

Let us consider the following example : we want to study theo$&SLs and Swath originating at
a viewpoint. This visibility query on the scene has many mapibns, such as the computations of
shadows casted by a point light source.

In this example, ESLs are of kind VV and VEE, with first V beiingtviewpoint. Swaths are of
kind VE.

All swath boundaries are ESLs of kind VEE for apparent vegior VV for intrinsic vertices.
Note that, in our approach, a swath is partitioned into suatises if ESLs lie between its boundaries.
Computing all these discontinuities in visibility resuitsa set of ESLs and swaths, in which swaths
have ESLs as boundaries, are planar and ESLs are surroundecths.

This structure can naturally be seen as a graph with ESLglleénnodes and swathes being the
arcs.

This graph approach can be extended to other visibility iggeand is not restrictive to planar
swaths. It has first been presented by Durand et al in [DDP97].

INRIA

Robust Epsilon Visibility 35

Chapter 4

Epsilon Visibility - Epsilon Predicates

In the epsilon context, every predicate described prelydwas to be exmained or redefined. Indeed,
what is true with infinite precision arithmetic is not neaasdy true with a floating point arithmetic,
and especially for 3D geometrical computations. For exatrihle alignment of three points in 3D
space is not always well defined. Whether it be because ofdhmgspcoordinates which are given
in floatting point arithmetic and thus are not exact anymordghe computations are done using a
regular FPU which has finite precision.

4.1 Epsilon Criteria

Epsilon Contact

In section 3, we presented the hit criterion. An objet is lyitabray if they share a point. In our
epsilon approach, we want to keep this hit criterion evemhéf tay and the object do not exactly
share a point. Also, some definitions required a vertex toiblyha ray which is very difficult to
insure using floating point arithmetic.

Our epsilon hit criterion is the following: A raghits an object if the distance between the object
and the ray is bellow the predefined

This definition is consistent with the previous for a nullualfore. Also, we use the term
e-contactfor a configuration satisfying the hit criterion.

By the way, as showed through figure 4.1, an object may-bi¢ by a ray for some value of
but not for another smaller value.

For the rest of the discussion, we suppose tHatsal value ofe has been given as input.

Epsilon Block

The redefinition of the hit criterion implies the redefinitiof the generate / block interaction. The
formal definitions are not exactly the same, but the key idesinilar. See figure 4.2 for illustration.

RR n° 5167

36 Duguet

€ contact
~ C
¢’ contact ray

Figure 4.1: lllustration of the-contact concept

Let C. be a cylinder of radius around the ray. An object is said ¢eblock a ray if there is no
path around the object bound into the cylinder.

In the same way as before is defined the tangency criteridting@ consistent binary ray clas-
sification.

INRIA

Robust Epsilon Visibility 37

¢ block ray

object

e

Figure 4.2: lllustration of the-block concept

¢’ generate

RR n°5167

38 Duguet

4.2 Epsilon Predicates

As stated in chapter 3, we consider scenes made of polyheithhajertex, edge and face primitives.
We present in this section the visibility predicates fortspdmitives.

Hit Criterion

d>¢
‘_@ @nearest point on ray

Qvertex position

@nearest point on edge

Figure 4.3: lllustration of the-hit criterion for vertex and edge

Vertex A vertex ise-hit by a ray if the distance between the ray and the vertexl®w . The
distance function used is the usual Euclidean distanceghwikicomputed in this case between the
vertex itself and the nearest point on the line. The neawst pn the lined is obtained by orthogonal
projection of the vertex on line.

See figure 4.3 for illustration.

This distance may also be obtained another way using Pliscckadinates, see Appendix A for
details.

Edge The distance between an edge and a ray is computed betwetvothearest points. These
points are obtained by orthogonal projection of lines (nagt adge support) into the planes orthog-
onal to the line directions. This technique is only valid Euclidean distance, which is the main
motivation of our choice for this distance.

By the way, if the nearest point on the edge supporting lioenfthe ray is not on the edge
(segment between the vertices), then the distance is givéretdistance to the nearer vertex.

Once the distance computed, the test is performee-fmmntact.

See figure 4.3 for illustration.

INRIA

Robust Epsilon Visibility 39

It is interesting to note that the edge is in fact a compasitibject, made of its segment and its
boundaries, which are vertices. If a ray is in contact withesi of this element, then it is in contact
with the edge. This remark leads us to thhit criterion for the face, which is also a composition
object.

RR n° 5167

40 Duguet

Face The interaction between aray and a face can be of differadskiThese types of interactions
are separated into thhegular andspecialface hit configurations.

] full hit vertex hit
(8 no hit edge hit \

@nearest point on ray

Qvertex position
@nearest point on edge

@intersection point on face regular face hit configurations

Figure 4.4: lllustration of the-hit criterion for a face - regular interaction

The regular face hit configurations are the one present withooncern, that is (see figure 4.4
for illustration):

* no hit : the ray does not hit any part of the face

« full hit : the ray hits the face in its main frame, withouttimg any boundary element
 edge hit: the ray hits an edge of the face (and no vertex)

« vertex hit : the ray hits a vertex of the edge

These configurations are well known and do not require furttedails. The hit criterion is
straightforward and further predicates are describedvadtels.

The special face hit configurations are the one introducedune approach. They are the
following (see figure 4.5 for illustration):

» non planar double edge : due to the fatness of the edgesadeys) a ray may hit two edges
which are connected by a vertex without neither being caplémthe face (even almost), nor
hitting the shared vertex.

« planar hit : this configuration could have appeared in trecearithmetic approach. By the

way, we still consider it special since there is no conststeay to distinguish between this
configuration with two edges hit and the previous one.

INRIA

Robust Epsilon Visibility 41

non planar planar hit
double edge (edge and vertex)

@nearest point on ray

Q@vertex position

special face hit configurations

@nearest point on edge
@intersection point on face

Figure 4.5: lllustration of the-hit criterion for a face - special interaction

Both these special configurations are handled the same wiag the multiface tool, described

bellow in section 4.3. Besides, the hit criterion is stitbaghtforward, block and generate predicates
are detailed in the Multiface section 4.3.

In order to compute the interaction between a ray and a faeapply the following algorithm:

RR n° 5167

42

Duguet

face-hit algorithm

=<

)
—0

—

or each vertex of the face
if hit, insert into V
for each edge of the face
if connected to a vertex of V do nothing
else if hit, insert into E
if #V =0 AND #E =0 t hen
if hit main frane of the face
return FULL-HIT
el se
return NO-HIT
else if #V =1 AND #E =0 t hen
return VERTEX-HIT
else if #V =0 AND #E =1 then
return EDGE-HIT
el se
return SPECIAL-HIT

Figure 4.6: face-hit pseudocode

INRIA

Robust Epsilon Visibility 43

Vertex Block / Generate

Now the hit criterion has been established for scene elesnemrthave to define the Block / Generate
test. Remember that these scene elements represent palydredi thus shall not be considered
individually but as a whole; still local computations ardfiient. Besides, we make the assumption
that we have connectivity information at our disposal. If,lease refer to section 5.1 for such
configurations.

A vertex is a spatially localised point of a polyhedron, laitist another point for the underlying
object. The neighbourhood of the vertex has to be considergatoper treatment of this Blocker /
Generator test.

The idea of the Blocker / Generator test is to check if the nagz@s the object, that is if at this
particular position, and from the viewpoint of the ray, thgemt is hit at a silhouettepoint or not.

Figure 4.7: lllustration of the vertex block predicate. 1-.e8D scene, right : projection on plane.
Up : the vertex is 8locker, down : the vertex is &enerator

1The silhouette is the apparent boundary of an object fromengiiewpoint.

RR n°5167

44 Duguet

To achieve this test, we orthogonally project the neighboad of the vertex (faces), on the
plane which is orthogonal to the ray. Then, in this plane, wegute the angular part around the
vertex covered by surrounding faces. If this angular pavec®the whole angular sector, then the
vertex is a blocker, otherwise, it is a generator. See figuiéot illustration. The red disc represents
the whole angular sector. In the top example, the whole disovered, the vertex is a Blocker, in
the bottom example, a part is uncovered, and the vertex ssalteenerator.

INRIA

Robust Epsilon Visibility 45

Figure 4.8: lllustration of the special hit for a face coreelto a vertex for vertex Block / Generate
test. The special-hit face is not taken into account for argection covering

Besides, robustness issues may appear. For example, ieasfatmost orthogonal ta@, the
result is unpredictable: on which side will the face be petgd ? The angular portion covered by
such a face is not the result of robust computations See fig8rior details.

To avoid arbitrary results and ensure the robustness of adigate, we apply the following
filter on the faces: A face projects anif no edge nor vertex of this face, other than the two edges
connected to V, and V, is hit by the line, that is if the faceastex-hit by the ray (and no special hit).

Note that this filter is consistent with the original defioitiof the Block / Generate test since if
the face is special-hit by the ray, it means that there aregeghs in the ray’s-cylinder around the
face.

RR n°5167

46 Duguet

Edge Block / Generate

The concept of this criterion is quite similar to the one foe wertex, but the algorithms differ.
An illustration is given with the 3D scene and the projectionthe samer plane, figure 4.9. The
following algorithm only applies for any edge-hit and ha$ydhe direction of the line as input. The
predicate is also silhouette predicate.

dot product

o—s negative
o— null
o—> positive

Figure 4.9: a, inconsistent normal orientation; b, flat edgesilhouette - flat; d, flat-silhouette; e,
silhouette; f, block

The algorithm is as follows: Letbe the direction vector of the ray, Iftbe the normal to a face
andg to the other. The normals must be consistently oriented jsithe normal continuously goes
from fto g around the edge. Then, we compute the dot produgts: f 7, sq = g - 7. Thenwe
have the following configurations:

* sy = 54 = 0, the edge is flat and thus not silhouette.

* sy =0o0rs, =0, the edge is flagged as silhouette, with a planar face.
* 5t - 54 <0, the edge is silhouette.

* s5-54 > 0, the edge is not silhouette.

See figure 4.9 for illustration.

INRIA

Robust Epsilon Visibility 47

Note that this predicate does not takanto account. In fact, the geometrical extend of the face
connected to the edge would lead to inconsistencies foedmsed silhouette predicate, since for
the same angles, an edge connected to small faces wouldhbeedile whereas with a bigger face, it
would not be silhouette. This kind of inconsistencies ispermitted in our approach.

RR n° 5167

48 Duguet

4.3 The Multiface

As stated in the previous section, aumodel has introduced special hit configurations leading to
the necessity of a specific treatment. Thus, for a specidhbé, a whole group of faces has to be
studded in order to get consistent predicates. For exasipler triangles or small (bellow spatial
extend) triangles cannot be considered alone, and thgjhbeurhood has to be taken into account.
This is the main motivation of the multiface tool.

sliver face

planar hit

Figure 4.10: Example of configurations needing the mukfiol

The multiface is a technique related to euapproach. The tool is only necessary for degen-
eracies or special configurations which arise from opredicates and criteria. Examples of such
configurations are given in figure 4.10.

As hinted by its name, the multiface idea is to consider a &&ta@ as a whole group, and run
consistent predicates on the group instead of individugdda The first part of this section is the
construction algorithm followed by the Generate / Blockdicate. Note that as far as the multiface
is only used when a special face-hit is encountered, theiterion is not needed here.

It also should be noted that the multiface ig@atile object, which is valid for only a given ray,
and the results of the predicates are given without retgrtiia multiface structure. We thus suppose
that the ray is fixed, and we have as input a special-hit face.

INRIA

Robust Epsilon Visibility 49

Construction

The construction algorithm needs connectivity. If conivigtis not available, then the results
should not be what expected: the multiface will not work pdpand set of faces (unconnected) will
not block a ray they should block. For unconnected facertreat, please refer to the Blockerfan.
Besides connectivity, the algorithm also need the sillteymedicate for edges.

O hit
Q not hit

o si | houette

Q €ray

mul ti face constru

Figure 4.11: Construction of the multiface

The construction of the multiface is made from the spedcialdte and around the ray, getting
away from the first face. We start with the input special-aitd, and we add a connected face if the
following conditions are fulfilled:

« the face is hit by the ray
« the connection between the face and the multiface is dorerton silhouette edge

We proceed all the connected faces this way, recursively.aldgorithm stops when no connected
(by non-silhouette edges) faces are touched by the ray. §ee #1.11 for illustration.

Figure 4.12, is given a complete pseudo code of the congirualgorithm, in this pseudocode,
the f* set is the set of faces connectedftwith a non-silhouette edge.

RR n°5167

50

Duguet

multiface construction

MF = {f}
C=f"
D ={f}
while C#0
pop g fromC
D=DuU{g}
if g hit by ray
MF = MF U {g}
C=CuU(¢g*—-D)
end while
return MF

Figure 4.12: multiface construction pseudocode

INRIA

Robust Epsilon Visibility 51

Predicate

The Generate / Block predicate is quite similar to the ondefvertex. The same slice approach is
used, but in a slightly different way.

|

virtual edge

O virtual vertex

o not hit

Q 8 ray

Figure 4.13: Block configuration

We project all elements of the multiface in the planerthogonal to the ray. The intersection
point betweenr and the ray i€2. We then get the boundary of the multiface which are edgeseit
silhouette, or not hit by the ray. For each non hit boundagegdan be silhouette or not), we build
avirtual face (which will be a triangle) which is defined by the virtwaktex(2, and the boundary
edge. Additional virtual edges are drawn betwégand the boundary edges bounds. We then
consider this local virtual mesh as a vertex surrounded bgsiaand we then apply the previous
predicate. Note that elements hit by the ray do not coneibuthe predicate as detailed as a special
configuration in the vertex case. Two examples are givenrdigul3 for block and figure 4.14 for
generate.

RR n°5167

52 Duguet

[
virtual edge

O virtual vertex

o not hit

@ silhouette

@ Eray

Figure 4.14: Generate configuration

INRIA

Robust Epsilon Visibility 53

4.4 Epsilon Visibility Complex

The visibility complex has first been introduced by DurandlefDDP02] for generic configurations.
It can be extended to an epsilon visibility complex in the samay the visibility skeleton has been
extended. However, on a topological point of view, the digienality of the events is not respected
since the epsilon hit “fuzzy” criteria make the set of lindsamD event go 4D. For example the set
of lines through a point is 2D, but the set of lines throughladfaadiuse is a 4D algebraic variety.

Let us consider the set of oriented lines in space. If we demdihe representation of lines
presented in appendix A, this set of lines is an algebraietaof dimension 4 embedded in a 6D
space. This variety is the set of zeros of the ideal defineidpormalization quadric and the reality
quadric. Studying subsets of oriented lines in space is/atgrit to studying subsets of the variety.

The visibility complex is a graph in the algebraic varietyinés. For example in the very simple
scene containing two disjoint spheres (see Figure 4.15¢hef free lines (stabbing no sphere) is a
cell, the set of lines stabbing one sphere only is anothéfAeind B), and the set of lines stabbing
two spheres is another cell (A&B). Each cell is a variety ahdihsiord. The boundaries of these
varieties are sets of lines tangent to a sphere or two. Thefdiees tangent to the two spheres is
of dimension2 (the two small magenta spheres on illustration). If we adesi-events, the graph
is no longer a graph but a set of cells. Each cell represenésamt of dimension frond to 4. On
Figure 4.15, is illustrated the set of cells for two differgalues of epsilon. On top, all the events
of the complex (without the concept efevents) are present in thecomplex. In the bottom, with a
greater value of (greater than the spheres radius), some events have vdnisigler dimensional
events have been swallowed by smaller dimensional everds.examples every line stabbing a
sphere is considered tangent to it.

We can thus make a remark on the size ofdtemmplex compared to the regular complex: it is
smaller !

RR n° 5167

54 Duguet

small epsilon

large epsilon

Figure 4.15: lllustration of the epsilon visibility comple

INRIA

Robust Epsilon Visibility 55

Chapter 5

Algorithms

Topics presented here :
» ESL casting

» Swath validation

5.1 ESL Casting

Basic ESL Casting

Inthe framework (chapter 3), we presented a way to computergeESLs, without taking occlusion
into account. Since only a part of these lines will indeed B&& the results of these algorithms
are calledESL candidates These candidates avalidated or not through the ESL casting process
which tests the occlusion of the candidates ESLs.

The ESL casting process takes as input the ESL candidaténanidt of itsnative generators,
that is the scene elements (vertices and edges), which wetkta actually compute the ESL; also
is given as input a starting point - or source point - for thé_E8e light source for example). This
algorithm is similar taray casting: the scene is traversed along the ESL from its source potheto
first blocker encountered.

The ESL casting algorithm is provided in pseudocode 5.1.

RR n° 5167

56

Duguet

ESL casting

N = native generators

S=0

begi n at source point

whil e no bl ocker found
go to next itemhit

if is blocker then
bl ocker found

el se
add itemto S
end while
if NCS
return valid
el se

return not valid

Figure 5.1: ESL casting pseudocode

INRIA

Robust Epsilon Visibility 57

BlockerFan

Introduction Some special configurations, especially objects in cowtegpecial-hit faces, do not
lead to a well-defined, or even any blocker. To prevent thismsistency in the ESL casting process,
another tool has been provided: the BlockerFan. This toobed to gather blocking information
along the ESL casting process to provide a well-defined lglock

For example, let us consider the configuration drawn in figuPe The first face encountered
along the ray lead to a regular edge-hit, the edge beingusiie does not block the ray. The second
face encountered is a special-hit since two of its edgesiaréhis leads to the multiface but which
does not extend since the edges are boundary edges, sodigotnot block the ray. Finally, the
last face is hit with a regular edge-hit, and thus does natkotbe ray either. A cut is provided on
the right of the figure.

By the way, the underlying object should block the ray, andlsauld do the polyhedron. The
BlockerFan tool is then used.

L.

=

Figure 5.2: Configuration using the blocker fan.

Gathering The BlockerFan is a tool which gathers blocking informatéong the ray through
the ESL casting process. As its name stands, it works as affpartial blocker. Each element
encountered (whether is be a vertex, an edge or a face) hadrébation to the fan with a slice, or
with depth. The angular sector around the ray, inithane is partially covered by partial blockers,
and if enough slices are gathered to fill the whole pie, thenrdly is blocked by the last element
providing a slice.

For a better representation, imagine the ray as a cylindevtooh you cut fat slices. If the
cylinder is cut into two separate parts, then you found aksoc

RR n°5167

58 Duguet

Figure 5.3: Computation of slices for vertex and edge

Slices are generated by edge of vertex hits. See figure SilBufstration.

For each encountered element, a slice is added to the Bleakeavith a fatness set &z, that is
a spatial extend along the ray from the hit position miau® the hit position plus.

Faces which are regular hit do not contribute the the blotkeisince either they are blockers
themselves (which is the most frequent case hopefullyh&y make a contribution through a vertex
or an edge. Special hit faces behave differently: as ibtistt in figure 5.4, the spatial extend along
the ray is computed. An interval of positions along the ray(arhich is fattened of, at each bound).
Besides, slices may also be computed: if an edge of the fau# st by the ray, it generates a slice
of fatness, the spatial extend of the face on the ray. Thie &i computed the same way slices are
computed for the multiface.

Figure 5.4: Computation of interval for face

INRIA

Robust Epsilon Visibility 59

This special contribution (the interval) will extend theepiously encountered slices fatness, if
they hit the face. That is for example, in figure 5.2, the fiestef, which is edge-hit will have a thin
slice of sizer (half the full pie), and the second face, planar-hit will trdsute with a very small
slice (planar hit), and a thick interval. This interval isdontact with the first face’s slice, which is
thus extended. Finally, the first slice will be in contacthwilhe last one, and they will merge in a
whole pie, blocking the ray at this last position.

To summarise, each scene element contributes to the Bleakavith a thick slice. Faces will
have thick slices, but with a reduced angular sector extslice(of the pie in 2D - which can be
null). Vertices and edges will have a thin slice, but with dai@ angular sector extend.

A naive version of the algorithm would be to compute all Siemd intervals and to extend the
intervals in intersection. A progressive version of thealltpm is provided bellow.

The gathering algorithm is as follows: a pool of slices isldhaind updated at each object en-
counter. If at any update, the pool merges into a full slisentthe last object inserted is the blocker.

1 @ blocker @ blocker
@ generator R Ve @ generator
=
E

.\o .\o
step 1 step 2

@ blocker @ Dblocker
e @ generator S / @ generator
& ‘

step 3 step 4
Figure 5.5: BlockerFan steps
If we reconsider the example given figure 5.2, detailed syegtdp in figure 5.5.

» Step 1, The first element encountered is a vertex, with a(tipslice. The pool is update
with this element.

» Then, step 2, the second object encountered is at a furtiséign, so the pool is updated by
removing the slice of the vertex (too far), and inserting @& skce provided by the edge.

* Step 3, the third object encountered is an edge, the po@ldated by removing the inserted
slice and inserting another one for the same reasons asbefor

» Step 4, a face is special-hit, the interval is in intersmttvith the previous slice, and the slice
of the pool is thus extended.

RR n° 5167

60 Duguet

» Then finally a last edge is encountered at a position intslibes ray extend, and as the slices
merge into a whole pie, this last element is a blocker.

As hinted by the algorithm, a progressive traversal aloegaly of the scene is necessary for such
an algorithm to work well. Also, the intersection positicofsthe elements on the ray in intrinsic
coordinates is needed. These late algorithms are eithaitestkin appendix, or usual enough not to
be detailed here.

Itis important to note that even if the multiface is a gooddicate for blocking for a face, it does
not necessarily provide in a uniqgue manner a blocker. Itterohecessary to use the blocker fan
to get such information. Even if the BlockerFan does not g®exact information for the blocker
(especially for small or sliver faces), the result providedt most at a distaneeof the exact result,
which we considered satisfactory in our context - definioda.

Note that the BlockerFan provides a unique blocker whethee & vertex or an edge (the face
case being trivial since it does not need the blocker fan)l this will lead us to both consistent and
easy to use results for the potential triangulation of tloeiresr.

INRIA

Robust Epsilon Visibility 61

5.2 Swath Validation

Swaths are built the same way as are ESLs. Fistjath candidateis proposed, and then validated,
depending on occlusion computations. As introduced in@e&.3, a swath is a continuous set of
lines between ESLs. This set may be defined by generatots iseime manner ESLs are.

Generic swaths are the followingV’ £ and EEE' in the same notations as ESLs. They are
also subdivided into two typesplanar andquadric. Planar states for a set of lines contained in a
plane. Quadric states for the other configuration : the sknes is a ruled surfacé/ £ swathes are
necessarily planar whereadd” E swathes my be planar or quadric.

A swath is proposed as a set of generatdi&'(or EEE), then the validation process is started
resulting in one or severalib-swaths Indeed, several ESLs may lie on the same combinatorial (in
terms of generators) swath, that is for instancellé&te a vertex andv;, E», E5 be three edges, and
F; is bounded byAd and B and finally F; and E, appear to intersect frof as for £, and Es. In
this configuration, shown figure 5.6, the following ESLs ntilgh build : V E, E5, VE E3, V A, and
V' B. These ESLs lie on the same swathF;. This swath will be cut into three sub-swathes, one
betweenV A andV E E», the other betweeW ', E>, andV E; E3 and the last one betweé&nhF; F'3
andV B.

Figure 5.6: Swath validation illustration : left, three sslvathes, all validated; right, three sub-
swathes, the midline in the centre is blocked before regadksrgenerators, and thus eliminated

Once this partitioning is made, the occlusion tests aretaked swathes are eventually validated
or rejected. These steps are detailed in the following @estiFirst, generic swaths are studied, and

RR n°5167

62 Duguet

algorithm provided, then some degenerated swath, andyfittelextension of swaths to 2D planar
critical sets.

Swath partitioning

The swath partitioning algorithm is the following : for easlvath proposed, all ESLs in the swath,
that is a combinatorial approach : all ESLs hitting the gatws of the swath, are listed. This set is
then ordered as position of intersection along an edge ofwhah (the reference edge). As planar
swath may have an apex on an edge, and not necessarily ores, be extend along all edges is
computed, and the edge which is hit on the greatest exterliebgwtath is taken as reference edge.

Then, each intersection point between the ESL and the referedge is computed, and ESLs
are ordered by position of this point on the edge. Finally,.&£8&re taken pairwise, with the nearest
further one, and the swath is partitioned, exactly the samethe segment of intersection between
the edge and the swath would be (see figure 5.7 for illustratio

Figure 5.7: Swath partitioning illustration

Sub-swath Validation

It is important to note that as far as all ESLs are supposea tcomputed and validated, all dis-
continuities in visibility along the swath are known andretb as the ESLs. This hypothesis is
fundamental to insure the consistency of our algorithm.

The result of the previous remark is that visibility is contbus along each sub-swath, so that
it can be sampled at any position of the swath, and the sampleéis constant all over the sub-
swath. That is if all generators of the swath are hit by a lihthe sub-swath which is not blocked

INRIA

Robust Epsilon Visibility 63

in-between, and has a blockBr then all lines of the sub-swath hit all generators of thetbwand
have the same down blocksx.

The validation process is thus straightforward : we samdibility in the middle of the sub-
swath (along a line we call thmidline), applying the ESL-casting algorithm to the computed ray,
with the set of native generators provided by the generafdie swath. Additionally hit generators
are also stored and if the boundary ESLs of the sub-swathhitleese generators, then the set of
generators is enriched by this last element. Such a swattgisnerated

Midline Computation The midline has to be robustly computed in any configuratla.assume
that each sub-swath, whether generic, or degenerated l{dsevdeen further on), has at least two
distinct generators. This assumption is currently satiséad will not be overridden in the following
section for degenerate configurations.

The computation technique for the midline is the followinge compute the best two points
we know of the midline and get the line running through therhe Best two points are given by
the furthest midpoints on the generators. The midpointsherdarycentres of the two intersection
points on the generators. Through these midpoints runs edely one line. The alignment of
these midpoints if proved bellow.

Midpoints Alignment Proof Let:

* 0o = (Uq,7,) andd, = (1, U) be the two ESLs bounding the sub-swath to be validated.

* G =g1,99,...,9, be the set of generators for the sub-swath, that is the adtom of the
connexion generators of the two bounding ESLs.

» 7, be a plane orthogonal t@,, andm, to .
* ¢; the projection ob, onr,, ands the projection ob, onmy,

The set of generators, projectedon(andm, resp.) have an apex at the intersectiomrpfand
04 (resp.m, andd,). The midpoints on the generators are aligned in each plaangks to Thales
theorem, and so in spaceiif, x u; # 0, otherwise, the two lines being parallel, the midline ials
parallel and runs through all generators, which are on tiheneon plane.

The midpoints on each generator are thus aligned and carcoelputing the midline.

RR n° 5167

64 Duguet

Extension to 2D Planar Critical Line Sets

Some configurations of edges may lead to special swathgr@itlerlapping or made of two planes.
These configurations appear when two edges are coplanarasado be studied specifically.

We will study each possible configuration of coplanar edgediguration specifically, and pro-
pose a unified algorithm to treat them.

Figure 5.8: Overlapping swaths illustration - example afeving

Overlapping Swaths As stated in [Hec92] and in [LTG92], if an occluder silhoeettige is copla-
nar to a source edge, then it generates!alighting discontinuity. In fact, in this configuration,
several swaths overlap, see figure 5.8. Every critical kniadeed listed in this configuration, but
the main problem is that on the receiver, for a given pointrenghadow limit, two critical lines in-
tersect the receiver at this point. This double informakgaus to robustness issues for triangulation
of the receiver mesh. We thus want to describe these disuotidis in a proper manner to avoid
such robustness issues.

Two-planes Swaths On the other hand, two edges of the same face are also capltier faces
supporting plane intersects a source edge, this configuratill generateC? lighting discontinu-
ities. In this case, as illustrated in figure 5.9, some swathsmade of two parts, on two different
planes, but no extremal stabbing line between them. We tteadecwhat we call pseudo-ESLat

INRIA

Robust Epsilon Visibility 65

== Edge
= ESL
=== Pseudo-ESL
1 Discontinuity

Figure 5.9: lllustration of pseudo-ESLs

the intersection of the two planes, in order to give boundkeainderlying planar sub-swaths of this
two part swath. This pseudo-ESL will be treated exactly traesway as a regular ESL, in terms of
validation, but enumerated specifically.

2D Planar Critical Line-Sets Partitioning In these configurations, the swath partitioning will not
be made the same way as for the generic configuration.

In the Two-planes swath configuration, the partitioninglisast the same, since the only differ-
ence is that the sub-swaths are bounded by non-ESLs, buppineach is identical.

In the other case, the result depends on the receiver. Intéaavoid robustness issues during
triangulation, we give for constraints a polyline on theaiger which is the intersection of the
swaths and the receiver. The vertices of the polyline agrsettions of ESLs with the receiver, and
the segments connect nearest vertices pairwise. Notéhisas & 1D problem.

To achieve this polyline creation, we compute the inteieastpositions of the ESLs on the
receiver, and we sort the ESLs in order of increasing positimng the intersection line of the
swaths plane and the receiver, see figure 5.8. Then, we g&iShe pairwise, which gives the
swath partition. The swath generators set is the intesebitween the ESLs generators sets of the
boundary ESLs, these sets being extended by edges conteettices of the original set. In the
configuration of figure 5.8, swath{g,2) and(3,4) are EV kind, and swath2, 3) is EE, which is

RR n° 5167

66 Duguet

not enough to specify a 1D critical set. The latest swath isnbled by two coplanar ESLs which
can define an apex for the swath, at their intersection point.

INRIA

Robust Epsilon Visibility 67

Chapter 6
Lighting

In the previous sections and chapters, we presented dlgwito compute and validate ESLs and
swaths. These discontinuities have to be identified froms#teof scene elements. We need to
enumerate combinations of scene elements, which can gilzeceBS&didates or swath candidates,
and maybe ESLs and swathes.

This section is divided into several subsections: the firgt states the relationship between
shadow boundaries and visibility events, the second orzitdes shadow discontinuities generated
by contact and intersections of objects (which &%discontinuities). The third part describes an
application to compute sharp shadows (point or directithglat sources), and finally the last one for
soft shadows (from area light sources).

For each application subsection, a naive algorithm is gif@lowed by optimisations. Besides,
Algorithms given here only concern enumeration of candidaBLs and swath, no other scene
traversal or clustering optimisation technique is proditiere. For such optimisation techniques,
the reader should refer to ray-tracing related optimisatihniques, since the scene traversal and
related algorithm are only needed for fat ray casting.

As in [DDP97], the ESLs, and swath are gathered and storedhilgraph structure: ESLs are
stored as nodes, and sub-swath as arcs.

RR n° 5167

68 Duguet

6.1 Shadows and Visibility Events

This section describes the link between the radiance fomctéscribing lighting and shadows, and
the visibility events described in the previous chaptelgese paragraphs are inspired from [Hec92]
and [LTG92].

The Radiance function

Global illumination problem is often formulated usinadiance functions. These functions repre-
sent the energy flux leaving a surface, originating from tinfage itself or re-emitted from other
surfaces. An example of formulae for a radiance functiongtofacei, at positionz, with lamber-
tian surfaces) is given by:

L) = Li@ + i Y [L)

s;€8 x'ES;

cosf; cos;

5 v(z, 2")dA(x)

r

Where

» L¢ is the emitted flux

p; is the Bidirectional Reflectance Distribution Function stamt in lambertian context

v(x,z") is the visibility function between andz’: 1 if visible, ando if not

» dA(x') is the differential area element centred:gton s;

* ris the distance betweenanda’

* 0; andd; are the angles between the surface normals and the line ciomne andz’

In the expression of the radiance function, we can find thibility function: v(z,2’). We note
V(z, s;) the part ofs; visible from x. The integrand in the radiance function camstbe split into
two parts, one being equal to zero (sincef6bput of V (z, s,), the visibility function equal to zero.
The radiance function can thus be rewritten:
cos 0; cosb;

Li(x) = L{(z) + ps Z /.'ev() Lj(z)) —dA(a')

5;€S

r

If we assume that the radiance function is smooth over lightees, and that is not on the
light source, then the integrand is also smooth. Discoittewiin the radiance function originate
from discontinuities in the visibility, that is along boueries of thel/ («x, s;) function.

We will study discontinuities in the visibility function, lich apply discontinuities in the radi-
ance functions. A similar discussion first appeared in HedkbPhD thesis [Hec91], we therefore
use the same terminology. If the radiance over the soursesasth, the radiance function may have
D, D! andD? discontinuities; ab* discontinuity is where the function 1, but notC*.

INRIA

Robust Epsilon Visibility 69

DY Discontinuities

These are discontinuities in the function itself. Theyeitbriginate from sharp shadows, thatis from
point sources; or they originate from occluders lying onréeeiver, that is contacts or intersections
between occluders and receivers.

In the first case (point sources), critical swaths studietiénprevious chapters define the limits
in space of visibility or occlusion of the source. ThE discontinuities in the radiance function thus
lie on these surfaces. Locating such discontinuities camde by intersecting the swaths with the
receiver (as is made by the graphics hardware with the shadmmes technique).

This application is studied in section 6.3.

The second case is different, since such discontinuitipea@pwhatever the source shape is.
These discontinuities are due to the presence of geomletpieaial configurations (contact or inter-
section), and can thus be identified as a preprocess, indeptyfrom the lighting of the scene.

Intersection and contact elements are studied in sectibn 6.

occluder
A,ﬂa occluder
7
N
/

visible portion of the source

e
source is not visible
from x
x y Xy
(©) (d © (d)
lllustration of D° discontinuities lllustration of D! discontinuities
- taken from [LTG92] - taken from [LTG92]

D' Discontinuities

These discontinuities come from degenerate configuratibmsection 5.2, we saw through a pair
of coplanar edges runs a two dimension set of lines, whiclabuentained in a plane. this plane
is the locations ofD! Discontinuities in the radiance function, since, on one sttle source is not
visible, and going to the other side, the visible area of these will grow linearly, leading to ®'*
discontinuity.

These discontinuities are identified by edges coplanar twcsoedges. They are studied in
section 6.4.

RR n° 5167

70 Duguet

D? Discontinuities

These discontinuities are the most common discontinuifibsy run along the swaths described in
the previous chapters, when generators are in generic coafign (that is except for th®' case
just above). Note that for two coplanar edges, discongnuithe radiance function is of ordér

only if one edge is a source edge !
D? discontinuities may be umbra or penumbra boundaries asaséfiner penumbral disconti-

nuities. They lie along swaths either planar or quadratic.
These discontinuities are studied in section 6.4.

occluder E \ A
s\ E
g \ i
\
\
\

v
w' D
¢ ,{f/
T oxe a
A
(b)
—

(@) (b) (@)
visible portion of the source visible portion
A ¢ ofthe source
B Cc
D
1 1 E
X y
© (d) © (d)
lllustration of D? discontinuities, planar lllustration of D? discontinuities, quadratic
- taken from [LTG92] - taken from [LTG92]

INRIA

Robust Epsilon Visibility 71

6.2 Intersections and Contacts

Introduction

As stated in section 6.1)° discontinuities in the radiance function originate in @mitof objects
and intersections. Such features can be identified indegmtlydrom the source shape and position.

In order to get consistent and robust identification of suements, the same way we did for
visibility events, we compute contacts and intersectiarit) the same threshold. The definitions
of contact must be consistent with the ones given for ESltirogs More precisely, an object at a
distance bellow epsilon of another is said to hit it.

Besides, most intersection computations techniques reegteshing. The aimed application is
not to compute the intersected meshes for a further usetdtéempute visibility events on such
meshes. We thus do not need to re-mesh the input geometrgnhuto store locations of such
discontinuities.

Note that intersections and contact elements are vertamige(and face intersection, or vertex
and face contact, in generic configurations), and edges(add face contact, or face and face
intersection, in generic configuration); faces in contachdt imply any computations, since they
do not imply any visibility discontinuity.

We compute a virtual mesh, we call thenesh. Such a mesh is madeiofertices and-edges,
which are described bellow. These elements are computestaretl in a separate structure and do
not imply any change in the input mesh. The visibility redaes) the mesh are filtered to take this
additional structure into account avoiding imprecise amabust computations due to re-meshing.

Eachi-element as a structure, which holds references to elenremtteraction (contact or in-
tersection). For eachelement, depending on its origin, is given a structure, amelgorithm to
identify its instances in the scene.

RR n° 5167

72 Duguet

i-vertices

ertex on edge) ’

‘. edge and edge

()
e vertex on vertex

vertex on face

edge and face

Figure 6.1:-vertices from contact (left) and intersections (right)

contact i-vertices from contact, that is a vertices which lies on haoface, edge or vertex (see
figure 6.1), have the following structure:

* vertex
+ face / edge / vertex

The precise location of such an element is given by the verbexdinates for face and edge
configuration, and at the middle point of the two verticeshia vther case.

An algorithm to identify them is to compute the distance kesw vertices and other scene el-
ements, using an acceleration structure (such as an qdmea)ly test elements which can be at
distance bellovg.

intersection i-vertices from intersection originate from edges in intetBn with faces or edges,
see figure 6.1. They have the following structure:

» edge

» face/ edge

* point of intersection

The location of the vertex is explicitly given by the cooraties of the intersection point.

An algorithm to identify them is to cast a ray on the edges suiig line from a vertex bound
of the edge, stopping at the other. All encountered elemegngther it be edges or faces, generate
such a structure. The intersection point is computed on dige éor the face-edge case (generic),
and in the middle of the two edges nearest points in the edge-eonfiguration (degenerated).

INRIA

Robust Epsilon Visibility 73

i-edges

face and face
edge on face

Figure 6.2:i-edges from contact (left) and intersections (right)

i-edges are segments lying at the intersection or contadeofeselements, but behave exactly
as regular edges with respectitvertices, that is: an edge is a line segment between twicesrt
i-edges are thus computed from the data giveirbgrtices, which are considered computed at this
point.

contact i-edges from contact originate at contact of edges on facedges, see figure 6.2. They
are bounded by contad¢tvertices which either lie on the face or on one of the facegeed The
structure is the following:

« edge
e face/ edge
* j-vertices bounds

An algorithm to identify them is to combinatorially identithei-vertices generators for vertices
on a given face, and its boundaries. The main benefit of suelgamnithm is that it is local.

intersection i-edges from intersection originate at the intersectionnaf faces, see figure 6.2.
They are bounded by intersectidwertices or contactvertices. The structure is the following:

* face

* face

RR n°5167

74

Duguet

* j-vertices bounds

The same algorithm as above is still valid to identify suamnants.

INRIA

Robust Epsilon Visibility 75

6.3 Sharp Shadows

This application computes sharp shadow limits from poirdicectional light sources. All computed
visibility discontinuities are light discontinuities amtkfine sharp shadow limits. This application
can be seen as an optimised (in terms of acuity of elementsipweof the shadow volumes.

Theinput of the algorithm is a light source (point or direction), angalygonal scene made of
connected (or not) elements.

Theoutput is the complete list of shadow discontinuities represebtesivaths with the apex at
the source, and blocker as shadow boundary receiver.

The source, whether it be a point light source or a directiight source, is considered as
a native generator for the ESL candidates. Any other vigjbdiscontinuity of the scene is not
computed. Hence, ESLs originate at the source positionsesath are planar and their apex is at
source position.

For this application, the graph built is topologically eeplent to the apparent boundaries of the
scene objects viewed from the light source.

Naive The construction of the graph is divided into four steps:
1. ESLs enumeration
2. ESLs validation
3. swaths enumeration
4. swaths validation

The first step is purely combinatorial. All potential ESL&ggric) are computed and stored for
further validation. The second step is straightforward:efach enumerated ESL, take the validation
test, and if success, store the ESL as a node.

The third step is also purely combinatorial: potential @gte) swaths are computed and stored
for further validation. The fourth step is also straightfiard: for each enumerated swath, take the
validation test, and if success, store each sub-swath ascamrad connect the arc to the nodes
corresponding to the ESLs, boundary of the sub-swath.

First step: generic ESLs enumerated here have to hit thespwhich is considered as the first
generator. This element behaves the same way as a vertegoifarlight source, it is trivial; for
direction light source, the light source constrains theation of the line, which is two degrees of
freedom our of the four available.

Generic ESLs are the$iV andS E E for source-vertexandsource-edge-edgd&he enumeration
algorithm is the simple enumeration of vertices and pairsdgfes.

Third step: same remark, generic swaths &fe necessarily planar, and enumeration is the
enumeration of the edges of the scene.

The combinatorial complexity of the enumeratiorCi$n?), which has to be multiplied by the
complexity of the ESL-casting process which is, in a naiyerapch or in bad configurations, linear;
resulting in a complexity 0O (n?).

RR n° 5167

76 Duguet

Besides, we do not address the problem of ESL-casting het@shfar as it is only defendant
on the intrinsic complexity or the scene and the configuratibis an independent parameter for
enumeration. These two aspects of the whole algorithm arglkaiely separated. And we only
work on theO(n?) complexity algorithm which is the pure enumeration, withany validation or
casting concern.

Nested Calls The first remark is that the second and fourth steps do nottodselseparated from
the first and third one. As far as each ESL enumerated will tidatad, the ESL casting process
can be called into the enumeration process, storage beied since number of candidates are not
validated for occlusion matters.

This remark is valid for any other enumeration, and the iegploptimisation is considered as
always used.

Silhouette Elements This optimisation will not change the formal and theordtiesult of our
algorithm. Besides, in most cases, this optimisation redacastically time consumption.

The idea of this optimisation is very simple, from the lightusce, edge which are not silhouette
edges do not cast shadow in the scene. Indeed, silhouetts adgthe apparent boundaries of the
objects of the scene, and thus are the only element castadpgls on other elements (may be on
the same object if not convex). So, in the above enumerationswaths, only silhouette edges are
taken into account. Thus, as a direct consequence, vevittied are not connected to a silhouette
edge cannot be boundaries of swath and thus cannot gene&hte Hhe number of vertices in
enumerations is also reduced.

By the way,V EE ESLs are made of a silhouette edge, necessarily, and altoesiealge, which
can be non silhouette. The enumeration of such ESLs is thae raBone silhouette edge, and
another edge, which reduces drastically the amount of edige {in nice configurations).

Swath Casting Once we chose a first edge, a silhouette edge, for the conputdtthe VEE
ESL candidate, only edges which intersect the line set mgdeebsource, and the silhouette edge,
can contribute for an ESL candidate.

Another optimisation is thus possible using an accelenattoucture. Suppose that edges of the
scene have been stored in an octree structure by theirqrositspace. An edge is referenced in an
octree cell if it hits such a cell.

For a given silhouette edge, we compute three planes: oma diiy the source and the edge
(notedr), and two others perpendiculartcand containing the source and a vertex of the silhouette
edge (notedr, andm;,). Then an edge may contribute for an ESL candidate only itstthe plant
on a point/ which is on the good side of both, and,.

To enumerate such edges in an optimised manner, we applgltbeihg recursive function on
the octree nodes (see figure 6.3).

This enumeration technique also reduces the number ofitelenents drastically. Indeed, all
elements listed with the algorithm lead to an ESL candidalkéch are ESLs besides occlusion.

Final Algorithm The final algorithm is given figure 6.4.

INRIA

Robust Epsilon Visibility

octree enumeration
potential (N)

E=0

for each C child of the node
B is the box of the child cell
if Bna=0 stop
if B on bad side of wx, stop
if B on bad side of m, stop
E=EU potential (C)

end for each

return E

Figure 6.3: octree traversal algorithm fgiZ E ESL candidate enumeration

Final Algorithm

Let
S the source
E the set of silhouette edges, in an octree
V the set of vertices connected to S
ESL
for each VeV
ESL- cast (SV)
end for each
for each EF; € E
build =, =, and m
for each E> in octree traversal
build SEE;
ESL- cast (SEEs)
end for each
end for each
swath
for each EcE
build H, set of ESLs in SE
sort H along FE
n-=first in H
for ny € H, ordered
A =mdline (n-, ny)
ESL- cast ()
store (n-, ny) if success
- ="+
end for, ordered
end for each

Figure 6.4: Final graph construction algorithm

RR n° 5167

78 Duguet

6.4 Soft Shadows

In this section, we describe an algorithm to compute shad@asted by area light sources, that is
with non null spacial extend. This section is subdivided ihparts:

1. Visibility events and shadow boundaries
2. ESLs enumeration
3. pseudo-ESLs enumeration

4. Swath enumeration

Visibility Events and Shadow Boundaries

We presented in section 6.1 the link between visibility égemd shadow discontinuities. We proved
that each discontinuity in the radiance function lies onsibifity event, that is on a swath. Besides,
some discontinuities of the radiance function, e.g. inmdeotwo discontinuities, do not contribute
to a visual change. Also, it is important to note that for thgpthe lighting is sampled, and then lin-
early interpolated between samples. The sampling has todéefiough to represent visual changes
of strong energy, but not too fine. In [CF90] is described

We make the following choices:

« only boundary shadow discontinuities are computed
« the shadow area is sampled depending on the irradianceegtad

Note that with these assumptions, we do not get the exacsbaftow boundaries, but we get
an approximate result at a reasonable cost. Still everpdisuwity in the radiance function can be
computed using a naive algorithm enumerating every pasBESL and swath. of the scene, from the
light source. But this approach is far too expensive (forage complexity scenes) to be detailed
here.

The configuration here is similar to the case of sharp shadbat is the elements of interest are
boundaries in the radiance function discontinuities. Ehasundaries are given by lines which run
through silhouette elements of the scene. But in this chsesithouette criterion is not necessarily
satisfied from each element of the source. There are two lohd®undary elements: between
the umbra region and the penumbra region which we call therarhbundary; and between the
penumbra region and the lit region, which we call the penanblmundary.

Durand and al [DDP97], presented the Visibility Skeletorstraucture storing visibility infor-
mation, and especially extremal stabbing lines and ctitina sets (swaths). We present here an
algorithm building parts of the skeleton on demand. It caisdeen as a lazy approach of the Visi-
bility Skeleton. To compute such a structure we need to enat@@nd validate extremal stabbing
lines and swaths. Once computed, these elements are usad$bing and lighting the scene.

INRIA

Robust Epsilon Visibility 79

ESLs enumeration

In [DDP97], a complete enumeration of the ESLs was perforimealir case, we only focus on ESLs
which lie on a source boundary. Inner ESLs do not contributelevant irradiance discontinuities,
and are thus not computed. We compute ESLs which have a genenathe source, that is:

* ViV, V,EE
b, VE, E,EEE

The enumeration of,V andV,EE ESLs is the same as for point light source, with silhouette
optimization.

E,V E are enumerated in the following way: we consider an edgee$tiurce, say;. Then,
we get a vertex of the scene, sey We build al’ £ structure exactly the same way we did fQiZ,
but the polygon is now made of two parts and the apex is not@adhrce. We still use this structure
to identify edges which can help generate en ESL. These awexpes hitting this polygon. We thus
have an ESL candidate, and perform the usual validation.

E,;EEFE are more complicated to enumerate. In order to do that, weséifsct the source edge
E and another edge which can be silhouette Kgr noted ;. We use a special structure called
the hourglass, first introduced by Durand et al in [DDP97]t Be use this structure differently: the
hourglass is computed, and then, we use an octree travégesattam bounded to this volume. This
algorithm is based on divide and conquer: we explore a chalderonly if it is hit by the volume
bounded by the hourglass. Note that this algorithm can bkeapto arbitrary volumes, if they can
give ahit-cubepredicate. We thus traverse the octree of edges to get gadges.

We then apply the algorithm detailed in 3.2 to compute theadESL(s) candidate(s) through
the four edges. We then perform validation.

pseudo-ESLs enumeration

As stated in 5.2, some pseudo-ESLs have to be computed toagbemsistent connectivity and
structure to sub-swaths. These lines originate from cordigpns illustrated in figure 5.9. They
contribute to inner discontinuities, but might still be qomed if wanted. They are enumerated the
following way: for each vertex of the scene, fat. . . m,, the planes supporting its surrounding faces.
For eachr; hitting an edge of the source, build a pseudo-ESL from thersetction point ofr; and
the source edge, to the vertex.

Validation is made the same way as regular ESLs, the onlgrdiffce is that the generators of
such a pseudo-ESL are rextough

Itis important to note that These pseudo-ESL were presdayt&lirands PhD thesis in [Dur99],
as ESLs with face generators (more precigely:

Swath enumeration

In [DDP97], swath were not enumerated since the catalogigedvconnectivity. In our approach,
we have to compute them separately, since they are not eledihed for degenerated ESLs.
The computed swaths are of the following kind:

RR n° 5167

80 Duguet

s VoI E;V
s IL,EFE

Vi E andE,V swaths are computed exactly the same way as for point lighteo That is, the
swath is planar, has an apex at a vertex (on the source or not).

For E, E'E, we use the hourglass to identify potential swath, and tippiyahe swath validation
algorithm. Indeed each edge hitting the hourglass migtg giswath, since a set of lines run through
the part of the edge which is inside the hourglass.

INRIA

Robust Epsilon Visibility 81

6.5 Meshing

We presented in the previous sections algorithms to comghadow boundaries, and other dis-
continuities of the radiance function. In this section, wesent techniques to subdivide the input
geometry into elements on which the radiance function is&maup to a certain degree (s&y
for example). In order to achieve this, we have to subdividsimelements along the discontinuities
computed by the previous algorithms, that is along vidipavents.

The input of the algorithm is:

« the input mesh
* the set of radiance discontinuities

The output of the algorithm is a subdivided mesh.

Constrained Delaunay Triangulation Approach

We suppose that blockers are faces (not clusters as profuysgatimisation).

Shadow boundaries, and by extend radiance function diseoties, are given by the intersection
of swaths and blockers (faces). These intersections aneeseg on the faces, which can be seen as
constraints. We thus compute such intersections and usesramed Delaunay triangulation (CDT)
algorithm to subdivide the mesh. The constraint edges wfineé radiance function discontinuities,
and on each sub-face, the radiance function will be smogihiqa certain degree). The algorithm
is thus made of two steps:

1. compute swath-face intersections
2. call a CDT algorithm

The second step is not detailed in this section. The readeddefer to triangulation literature
for further information.

The first step is made in the same idea as intersection preuations.

Remember that along a given sub-swath, the visibility isstamt, and especially, the receiver is
the same. Boundaries of the sub-swath, given by ESLs, wélsect the receiver on boundaries of
the constraint. We thus need to compute, for each sub-stha&tintersection of its boundary ESLs
and the blocker of the sub-swath. The result gives the baiexlaf the constraint on the receiver,
and thus the constraint itself.

Note that the previous technique is only valid for planartéyvaince the intersection of a planar
swath with a face is a line segment. For quadric swaths, tieesection is a part of a conic. We
approximate such a curved segment by sampling. Samplingioturve can be doneeforepro-
jection, that is, the sub-swath is sampled along its refsr@tge (we take a point on the reference
edge, and compute the line running through this point andvibeedges), and the resulting line is
intersected with the receiver. We thus approximate quaxnistraints by a chain of line segment
constraints.

RR n° 5167

82 Duguet

The main drawback of this technique is robustness issueleeth such algorithms suffer from
robustness issues especially when constraints intetsading to computation of additional vertices
which need proper placement in the structure which is sangettidifficult to handle.

INRIA

Robust Epsilon Visibility 83

Chapter 7

Implementation

7.1 Acceleration Structure

The algorithms presented here are oriented around linesoWipute the intersections of lines with
objects such as spheres (for fat vertices), cylinders @betiges), and faces. These intersection
predicates and computations are well known in graphics. & gepular algorithm has motivated
research in this direction: ray-tracing.

Since our queries on the scene are very similar to the onegyefacing, we will use the same
data structures and acceleration techniques to improvpartormances.

This section is separated into four parts: an introductmthe problem of casting a ray in a
scene, a brief presentation on some data structures desjtahinly the three fundamental types),
our choice and their implementation.

Casting a ray

The problem of casting a ray in a scene is easily stated: givi&ene of geometric objects, which
one is the first hit by a ray, and where.

The first naive technique was to test for intersection agaithshe objects of the scene, and to
get the closest (which is a linear complexity algorithm -eénms of input size). This complexity
leads to a drastic loss of performances, as the scene catyplexeases.

Glassner [Gla84] presented a technique to put objects mtetee: a tree of spacial cells, which
at each node splits the node into eight sub-nodes if negesHae tree is stored in a smart manner
with a number related to its position in the space, avoidmgfusion between a cell and its children.

RR n° 5167

84 Duguet

The main benefit of the octree is that it has few empty celigesia cell is split only if it holds
too many objects. The main drawback is that some objects pygaa twice in the traversal of the
structure.

Goldsmith et al. [GS87] presented a heuristic for the opthexarchy of bounding box compu-
tations. This approach consists in putting together objelcise to each-other considering them as a
single bigger object.

Fujimoto et al. [AF86] presented a complete ray-tracingesyswith two types of acceleration
structures: one with octrees, as for [Gla84], and the otfittr avgrid (uniform space partitionning).
They proposed a very efficient algorithm to traverse these stauctures which was inspired from
the line drawing algorithm. Amanatides and Woo [AW87] imyed this algorithm to avoid divi-
sions and other costy operations.

More complex and elaborated structures have been predatdéedsuch as HUG, the Hierarchy
of Uniform Grids by Cazals et al. [CDP95]. The work on the tssticture still goes on, and the
discussions on this topic are veray animated on ray-trawéngs. ..

Existing Structures

We present here briefly the main structures used in rayrigeand other space-subdivision oriented
algorithms.

Octree The first structure we present here is the octree. The idearissimple: given a box
(axis-aligned), if it contains too many objects, we spliiniio eight non-overlapping boxes of half
length. This splitting algorithm is recursive as well as thgertion algorithm and naive traversal
with rays. The main benefit of this structure is its dynamjweas. Indeed, as a hierarchic object, the
structure can be localy modified easily. Its implementaisosso easy in its naive approach.

Grid The second structure we present is the grid, or more prggcikeluniform grid. This struc-
ture is also simple: we subdivide the axis aligned boundmgdf the scene along each axis. This
subdivision depends on the number of objects in the grid.ridi@ benefit of the grid is that a very
fast traversal algorithm is known. The main drawback is thast cells are empty, and storage space
is thus lost.

Hierarchy of Bounding BoxesThis structure is an arbitrary hierarchy of potentially dapping
bounding boxes. This structure is relatively free in terrisnplementation details and construction
result, but the optimal hierarchy is not trivial to obtaits hierarchical aspect makes it dynamic in
the same way the octree is.

INRIA

Robust Epsilon Visibility 85

Amongst the whole set of possible combination of structuhsbrids of grids, octrees, and
hierarchies, we chose two types: the grid, with a particimgnlementation, and the tri-grid, which
is impired by the octree and hag sub-cells.

Grids

In this section, we present the two structures we used: offtat iand the other is hierarchical. The
first one is a simple grid, that is, given the bounding box efshene (axis-aligned), we subdivide
it in cubic-shaped cells with a fixed number of cells alongheaxis. The second one is a recursive
grid with a fixed number of cells for each node split of the uthdig hierarchy, which is 27 subcells
(27 = 33, reason why we call it the tri-grid). We chose to use a fixed nenmainly for performance
issues, but we still wanted a finer refinement at each steptigacase of the octree.

We present in this section the structures and the algoritffioseach of them, we consider the
concept of a bounder: the bounder is a tool which can retwbtunding box of an object, and test
intersection between a given axis-aligned box and an abjBaé possibility to give the structure
queries on the objects only through this bounder makes qmoaph general to any kind of geome-

try.

Simple Grid

The simple grid is static in our case, that is we do not add &fly(@r insert elements in an empty
cell). For a dynamic structure, we preferably use the wlighkiVe give as input of the simple grid
construction the set of objects, as well as a bounder. Wedbethe number of elements of the
input, which interact with the grid. Given this number, weoke a number of cells.

The choice of number of cells has to be reasonably high satteaicceleration structure is effec-
tive, but not too high for memory consumption concerns. Vessify the objects into 3 subclasses:
BIG (more than a million elements), MEDIUM (between a thowband a million), TINY (less than
a thousant elements). Letbe the number of objects, we compute the number of significiémt:
for our grid in the following way:

« BIG: k= 2.17 * (In(n) — sqrt(in(n)))
« SMALL : k = 2.17 (In(n) — In(In(n)))
* TINY: k=217 In(n)

This empirical approach gives us a sufficient number of ckeping a reasonable grid size with
respect to the available central memory.

The subdivision of the grid is done as follows : the numbereaifscalong each axis is a power
of two. The sum of these powers of two for each axig.idMe thus allocaté bits with a specific

RR n° 5167

86 Duguet

distribution along axes. In order to have cubic-shaped cst allocate bits this way: 1&g, [, andl.
the size of the bounding box of the grid along each axis. Ag Eswe have bits left, we increment
the number of bits allocated to a direction for the axis whiels the greatest value band divide
this size value by two. We finally slice the bounding box of ¢igl along each axis for the given
number of cells by axis.

We then insert the elements into each cell which hits the eterfwe use the bounding box of
the elements for faster insertion).

The Tri-Grid

The tri-grid is our dynamic structure. It is constructedgmessively during insertion or deletion of
objects from the structure. The refinement criterion is $#mF we reach a given number of ele-
ments in a cell (parameter of the tri-grid), we split the aatib 27 subcells.

The tri-grid contains the root of the hierarchy, which is # oéthe size of the grid. Each cell
has a list of elements, or a list of children.

Implementation
Elements

Acceleration structures work with rays and elements: a sagast in the structure and returns the
elements it successively hit. For generality reasons, eésnderive from an abstract empty class,
and is simply a typed pointer. The queries of the acceleratinicture to the elements are done via
a bounder. The bounder has two functions: returning the éhogrbox of an object and answering

the boolean query of intersection between an object and igratigned box. Rays are given as an
origin and a direction in the world space.

Simple Grid

The simple grid has many empty cells. It would be a waste t@dteem all with the flagmpty We
thus use a hollow-array for cell storage. A hollow array isracture which only stores non-empty
cells, a quick query is achieved to test if a cell (index intloow array), is stored (ie non empty).

A cell is completely identified by a pointer to an axis-aligngox (of the grid), and a 32 bit
number. Indeed, we do not allow grids of more than 4G cellshesmumber of the cell is a 32 bits
number. As we split the grid along the axis by powers of twe,dbantized position of a cell has a
coordinate value from to 2¢ — 1, wherek is the number of bits allocated for this coordinate. We
can naturally encode a cell number with the value of its gaadtpositions.

For the traversal algorithm, we used the algorithm definefiy87] for a grid traversal with
few operations. Going from one cell to another is simply asrément or decrement of the cell's

INRIA

Robust Epsilon Visibility 87

quantized coordinate, and more efficiently, an additionutastraction on the cell index. Overflow
and underflow can be tested with a mask on the index number.

The structure has not been benchmarked, only a result haselstablished: for a given model
(bunny 69k polygons), we cast an average of 350,000 rayssgens in the scene.

Tri-Grid

The tri-grid, on the other hand has fewer cells, and at mostr2pty cells per node. We did not use
any particular way to store cells, or allocate new cells wésplit occurs. This part could clearly be
optimized.

For each cell, we associate an index: we quantize uniformly29 (3°) each coordinate of the
minimal corner of its bounding box. We then encode each jposih ternary representation. The
terns of each coordinates are then concatenated to fornua batweer) and274. This value is
encoded on 5 bits. The position of the cell holdsinbits, with highest weight five bits for highest
tern of the coordinates, and so on. We use tables to avoidpiicdtions and divisions. In order
to differenciate the root cell from a child cell at minimalggion (0, 0,0), we use the following
technique: for a given level of the hierarchy, all bits ar¢ significant, only the3 x nth first are @
being the depth of the tree for root). We thus end our cell number with ones. We are nofused
with a subcell sincd11115 is not betweer) and27 and is thus not a cell number. (The same kind
of technique has been used by Glassner in [Gla84] for oce#g wumbered from 1 to 8 instead
of 0 to 7.) For example, the root node(sFFFFFFFF, and the children are numbered from
0z07TFFFFFF to 0xtDFFFFFFF. The children of cel0z07FFFFFF are numbered from
02003F FFFF t00x07T7TFFFFF.

Any position for a query is uniformly quantized 29 possible positions for each coordinate
(which would result in a grid of siz887 million cells, which is enough for our needs). The position
is then encoded the same way cell minima are (without any fillieg). To access the node, we get
the highest 5 bits of the encoded position - noted index -,séad from the root node. We shift the
encoded position of 5 bits, and step to the child (if existshdex. We recursively traverse the cell
tree until we are in a leaf node, which is our result.

The traversal algorithm is based on this idea: we computetiaatized position of the entry
point in the next cell, and get the cell from the previous athm.

The structure has not been benchmarked, only a result haselstablished: for a given model
(bunny 69k polygons), we casted an average of 175,000 raysepend in the scene.

RR n° 5167

88 Duguet

Mesh Data Structures

Along all this description of algorithms, we made the asstiompthat we had immediate access to
edge description and connectivity. We describe here briklymain types of mesh data structures,
as well as ours. Each structure has its benefit and its drdsbac

We will present the half-edge, the quad-edge, the splieedgl the corner data-structures. We
then describe our choice on the data structure which has-laydtr information.

Well-Known structures

We present in this section the existing mesh data-strutdreis is an exhaustive list to the extend
of our knowledge.

Half-Edge

The half-edge data structure is, as its name states, awstumtiented around edges. Each edge is
split into two oriented half-edges, one in each directioar €ach of these half-edge, we store the
following information:

« the vertex it points to
« the sibling half-edge
* the next edge in a face loop

Figure 7.1 illustrates this structure.

A vertex is represented as its coordinates in a table.

A face is represented by one of its half-edge.

Lets consider an example mesh: the Stanford bunny. The nurhfaees i69, 473, the number
of vertices is34, 835, and the number of half-edges288, 620. The memory cost of this structure is
thus:208, 620« 3+ 34, 835%34 69,473 = 799, 838, in terms of pointers, which i3, 199, 352 bytes.

The complexity of various access and loop algorithms is @ari$or the neighboring connectiv-
ity information, except for the face access given an edgés dt¢cess is either logarithmic in terms
of the mesh size (find an edge of the face-half-edge loop wikieletually the entry for a face), or
we have to change the structure and add a face pointer in Kifignéhe structure reach 4Mb).

This structure would be very efficient in terms of access t{migh the extension), and its im-
plementation could fulfill most of our needs. But since we tanbe able to access all kinds of
geometry, whether it be solid or not, badly linked (threeefaon the same edge), we preferred to use
another kind of data-structure for our meshes.

INRIA

Robust Epsilon Visibility 89

g W | -

:I ‘.4\ f.#

:HE,H\]

ESY &

3 h ~— 4 -~

N N
o=

Figure 7.1: The Half-Edge data structttse: http://mww.graphics.lcs.mid.edu/ legakis/683@8all. SplitEdge.and.Comer. htm

Quad-Edge

The quad-edge data structure is oriented around edges) budifferent manner. Each quad-edge
has the following information: two references to verticasd two references to faces (connected).
As illustrated in 7.2, we can see the structure in action. éx@mple, the edge namegdconnects
vertices6 and2 (drawn as circles on the top-right). It is also a boundanlierfaceF'. A face can
thus be represented by one of its edge and a side, and thg weate array of coordinate values.

For the same bunny example, the cosRig8, 620 x 4 4 34,835 « 3 + 69,473 = 1,008, 458, in
terms of pointers, which is about 4Mb. The same remark faedapply in this case, which would
lead us to 4.8Mb.

Split-Edge

The split-edge is sometimes presented as the dual of theetighf. Each edge is also split into
two half-edges, but in a different manner. The differenca ithe next edge, which also points to
the same vertex, making vertices loop algorithm as facedadphe half-edge and vice-versa. An
illustration is given in figure 7.3.

The storage cost is exactly the same as the half-edge.

RR n° 5167

90 Duguet

Edge Record Showing 1
Next Links

Figure 7.3: The Split-Edge data structtise hitp:/mww.graphics.lcs.mid.edu/ legakis/683@B811. SplitEdge.and.Corner.html

Corner

The corner data structure is oriented around corners of feaeh Each corner has a pointer to the
vertex it refers, and two pointers to neighboring edges. sthecture is illustrated figure 7.4.

INRIA

Robust Epsilon Visibility 91

For example, given a corner, you can iterate to the next carhhe face, or switch to a con-
nected face. The capabilities are the same as the half-tdgéuse.

Figure 7.4: The Corner data structut@:/mww.graphics.lcs.mid.edu/ legakis/6838/598/\8plitEdge.and.Corner. htm

The main drawback of this approach is that the edge infoonadinot directly available, but can
still be encoded easily (the corner for which the next copménter connects to the connected edge).
The same concept of half-edge is also present here. The sambatk for faces is also present.

The memory cost of this structure for the example of the busng.2Mb

RR n° 5167

92 Duguet

Our Structure : Multi layer connectivity information

We designed a structure with multi-layer connectivity imf@tion giving the ability to only store
"permanently” minimal, but sufficient information, and &store acceleration structures (for con-
nectivity access) when needed. This structure is made e¢ lhyers:

1. The first layer is the fundamental layer. It stores all thdiges in an array of coordinates and
the faces with a double entry table. (Exactly the same way YRMV does for indexed face
sets). This first layer construction is cost-less since thshmas are stored this way in most 3d
Graphics file formats.

2. The second layer creates edges. With this layer, we haessto the connectivity between
vertices through the same concepts as half edges. Besiddwlf edges are stored implicitly
(the vertex which is pointer to by the edge).

3. The third layer creates an additional acceleration siredo grant access to the face connec-
tivity. With this structure, vertices can have access tgleoring faces, and edges also.

The structure of the first layer is the following: given thewher of vertices and the number of
faces, we create two tables: one of floating point valuedieicbordinates (three times the number
of vertices - meshes in 3D), and another for face indicegro@ntry-points for faces in another table
(vertices of the faces). This structure is the regular wastdoe indexed face sets in modeling files.

The structure of the second layer is the following: we cre@atuble-entry array for vertices
connectivity (the same way we did for faces). The sub-arfaglements for each vertex is the set
of connected vertices. Each entry of the big table corredptman actual half edge, but the infor-
mation is not immediately available. Besides, given thtose table, we do not have access to face
connectivity information. The main benefit of this approésithat we have a unique id for each
half-edge: its index in the table.

The final layer is the face connectivity for vertices. It isretd exactly the same way edges are.
Each entry in the first table gives access to the set of facesemted to each vertex. To get the
faces connected to an edge, we need to get the face connethedine vertex of the edge, which is
also connected to the other. There are two faces, with diftandices in the table, which helps us
differentiate them. Note that besides this apparent coxitplo retrieve the faces connected to an
edge, it is still a local computation and is bound by the veyesf the vertices.

The cost of this structure for the example of the bunny is 8ygts):
1. vertices418, 020 bytes, faces 1,111, 572 bytes.
2. index-table139, 344 bytes, data-table334, 480 bytes.

3. index-table139, 344 bytes, data-table333, 676 bytes.

INRIA

Robust Epsilon Visibility 93

The overall cost id, 529,592 + 973,834 + 973,020 = 3,476, 446 bytes. This result is better
than all the previous one if we consider the local-time aséasface connectivity. The main benefit
of this structure is of course its multi-layer aspect. Onomputations are done, face connectivity
might not be needed and the structure with edge connectigiyld be less costly than previous
ones.

RR n° 5167

94 Duguet

Basic Geometric Algorithms

We present here two basic algorithms we extensively use:intieesection between a ray and a
sphere, and the intersection between a ray and a cylindesngst all tutorials web pages and other
publications, we viewed a lot of various algorithms with &ach of them benefits and drawbacks.
We present here two algorithms which satisfy our needs:gsiniess and precision.

A ray is defined by an origi®, and a directiorii. The points of the ray are given M (\) =
O + A, with A > 0.

A sphere is defined by its cent€rand its radius.

A cylinder is defined by its two extremal points (centers dfemal discsy, B, and its radius.

We need the precisions to be much greater (so error muchesintilan the epsilon we mean to
use. A precision of 0~° will certainly be not satisfactory !!

Intersection of a ray and a sphere

The intersection points are given by the points on the ray warameters, the solutions of the
equationC'M - CM = 2, that is with substitution of th@/ point by its expression on the ray:

@i+ 2iCO+CO-CO—-r2=0

This second degree equation is easy to solve. Besides, gdbendinant of this polynomial is not
robustly computed, especially when O is far from C. We thuestbe following technique illustrated
figure 7.5.

We compute the closest points in homogeneous coordinate®id divisions:

oC - i

——-
Uu-u

I=0+

Then we compute the distance between this point and therafritee sphere:
&?=.C1-CI

in an homogeneous manner (that is we multiply @ - @, and obtaind? % - ©). We compare to
the square radius to do our hit test (yet, only multiplies additions, which are almost free on the
ix86 family). Finally, we get the two intersection paranmrstiley increasing and decreasing this value
by the square root of this square distance (once-again irmarogeneous manner). We thus avoid
divisions.

The performances are the following: on a PIV Xeon 2GHz, aersgction requires on average
96 vs.

The precision is of order0—° on the distance between the sphere and the ray (for commngati
using double precision arithmetic).

INRIA

Robust Epsilon Visibility 95

Figure 7.5: The ray intersect sphere algorithm

Intersection of a ray and a cylinder

This algorithm is subdivided into two parts: the intersectbetween a ray and an infinite cylinder,
and the clamp of the result between the two planes. The claagfined by the intersection between
the ray and the planes orthogonal to the axis of the cylireléhe vertices positions. This clamp can
be made in homogeneous coordinates without any divisions.

Figure 7.6: The ray intersect cylinder algorithm

RR n° 5167

96 Duguet

The intersection is illustrated figure 7.6. In order to cotepthe distance between the ray and
the infinite cylinder, we compute the distance between atpwithe ray (say = O + ui), and the
nearest point on the cylinder:

(OA + pit) - AB

I=A+ = AB
AB - AB

The square distance between the two points is give/tly: VI, with

VI ={OA- w[B} + i — - AB
AB-AB AB-AB

Which we can rewrite using the double cross product exprassi

e AB L AB
VIzo_—i—uu_o_:ABxOAxEu_:ABxuxAB2

The square distane# is finally given by:
AB%d? = 1i?(ii x AB)? +2u(it x AB) - (OA x AB) + (OA x AB)?

We can then use a trinomial resolution to extract the twosraot return the values pffor which
the distance is equal to the radius. These operations dopdt any subdivisions and clamping the
results can be done with homogeneous values.

The performances are the following: on a PIV Xeon 2GHz, aerg#gction requires on average
256vs.

The precision is of ordei0 =" on the distance between the cylinder and the ray (for contiputa
using double precision arithmetic).

INRIA

Robust Epsilon Visibility 97

Chapter 8

Conclusion

In this thesis, we have presented a novel framework for @icalisibility based on epsilons. This
epsilon visibility provides algorithms, techniques anbesttools to perform robust visibility com-
putations in large 3D environments. We provided severaootnsolutions to problems specific to
our needs such as robust and efficient intersection of raysg@inders, or static and very fast ac-
celeration structures for ray tracing.

This project is not fully finished, and we expect new resubisrs The main algorithms related
to strict visibility computations will soon be used in a ghdlilumination algorithm to bridge the
gap between geometry and lighting. Extensions of this woekadso expected in other fields such
as occlusion culling.

The most promising part of this work is its potential regagdhierarchical visibility. Indeed,
since visibility algorithms are of complexity at least quait, increasing geometric complexity is
not yet possible. An extension to our epsilon approach usivery large value compared to the size
of the objects could be a first approach to hierarchical iigib

RR n° 5167

98

Duguet

INRIA

Robust Epsilon Visibility 99

Appendix A

Line Space and Plucker Coordinates

This section is a short introduction to line space and Puaclkoordinates [PIU65].

We present here geometrical tools useful for lines handéegecially in an Euclidean 3D space
(world space, within which the scene is described). Thesks tmainly originate from Euclidean
geometry, and linear algebra. By the way, for Pliicker cowmtis, some notions on varieties might
be useful even though not needed.

In this part, we make the assumption that between two pdeghe and only one unoriented
line, or two oriented lines.

We introduce line space issues with 2D lines representptianlems, then we introduce Plucker
coordinates with some algorithms.

Introduction

In 2D space, lines can be represented in different manrtésdift is not exhaustive):
* by its intersection with th€®y axis and its angle with th@z axis: (yo, 0)
* by an equation of the kindiz + by + ¢ = 0 (no orientation)
* by a point and a direction vectoh, @

Note that each representation has a different number ofrpeas: two for the first one, three
for the second one and four for the last one.

The first representation has a continuity problem sincegifitie is parallel to th&y axis, such
parametrisation is not possible. In order to avoid specaifiattnent, we leave this line representation
for another.

In the two following representations, we can note redunganche second one, the parametri-
sation is done in a projective space, that is if we multiplgteparameter by a non null constant, the
line represented is the same. In the last one, the point mafdsen anywhere on the line, and the

RR n° 5167

100 Duguet

direction vector can be scaled. Besides, The second paiaatien does not allow orientation of
lines, since itis a set definition (points on the line haverdotates which satisfy the given equation).
The other benefits of the last representation is that its itiefiris also valid in 3D, whereas the
second needs two equations to be described, raising thearwohparameters to 8.
Plucker coordinates are a parametrisation of 3D lines d¢to#ee last one. We will present in the
following section, the Pliicker coordinates, and some ttwise them.

Plicker Coordinates

Parametrisation

Let P and@ be two points in the 3D space, with coordinates, y,, z,) for P and (z4, yq, 24)
for . The six Plicker coordinates are the six determinants ctadpiutom two columns of the

following matrix:
< Ty Yp zp 1 >
Tq Yq Z¢ 1

That is:
m0 TpYq — YpTq
ml TpZqg — ZpTq
™2 T, — T
(Q) ™3 YpZq — ZqYp
m4 Zp — Zq
m5 Yq — Yp

This parametrisation is strictly equivalent to the follogione (permutations and sign change):
(PQ) = (@.9) = (PQ,OP x 0Q)

From now one, we will keep the last representation of thewheh is more intuitive, and easy
to write / handle. Note that th@ vector is in fact the direction vector of the line. Also ndtatwith
this constructioni - ¥ = 0. See figure A.1 for illustration.

Redundancies

This six parameters representation is redundant in two widagsfirst is that this representation is
invariant with a strictly positive scaling. We are in a pidjee space. We call the unit cylinder,

the five dimension algebraic variety defineddyu = 1, that is the set of lines with unit direction

vector. We call this cylinder the normalisation variety ¢ytinder), despite the non unit value of
the six dimension vector's norm. The second one has beesdraishe construction step. Indeed
all sextuple of parameters do not represent lines througtptirametrisation since we shall always
havei - ¥ = 0. Any line which does not satisfy this equation is said to beeahor imaginary, in

INRIA

Robust Epsilon Visibility 101

Figure A.1: The Plicker line

contrast with real lines which satisfy this equation. Thgeakaic variety associated with the last
equation is called the reality variety (or cone).

The intersection of the two varieties define a four dimensamety, which we consider to be our
line space. From now on, we will only consider lines as patasaions of this space. Any other
element of the 6D space will be temporary, in the context ofijgotations.

The Plicker Bilinear Form

Letd, = (i1, 71) anddy = (i, v2) be two lines. The Plicker bilinear form, noted of these two
lines is given by:

01 ©0 =1 -To+ Uz 1

Note that for any (real) liné, 6 ® 6 = 0.

This bilinear form is symmetric and gives the orientatioradine with respect to the other, see
figure A.2 for illustration. Note that this bilinear form i®ha dot product since its eigen values are
1 and—1, triple times.

Two lines have a null Pliicker form if they are parallel or thetersect. Indeed, in these cases
the orientation cannot be defined.

Intrinsic Line Parametrisation

One of the main benefits of such a representation is that iahastrinsic line parametrisation, that
is given these coordinates, a point of the line is uniquefindd by a single real value. The origin
of this intrinsic parametrisation is given by the followieguation (we suppose once again the line
to have a unit vector):

RR n° 5167

102 Duguet

©®>0 ®<o

Figure A.2: lllustration of the Plicker form

Q=ux7v
The points on the line are then given by the following equatfor A an arbitrary real value:
My =Q+ M

Also, an immediate projection algorithm is available: tle@gmeter of the nearest point on the
line from pointP is given by:

A=0P- -4

Some Algorithms using Plucker coordinates

Intersection With a Plane

Let 7 be a plane of normaf and distance to the origith. The intrinsic parameter of the point is
given by:

N = A=l

TR
u,v,n = (Ux7) -7
[)y Uy] (

Line From Two Planes

Let w be a plane of normatand distance to the origin andp with £, andf. The Plicker parametri-
sation of the line intersection of the two planes is given by:

INRIA

Robust Epsilon Visibility 103

g=éex f

= _fe—ef

N EEER

Proof: I1s2 on the planes ?
QO = Ux7v)
. Q = (é’xﬁf)xﬁ% N

L-(erle = r[f-(-07 -c[@ Ni-d
1= (f-ep|a-e = f(fe-fa-elE -1
1=(fep|e-f = fli-(e?] -e@ f-a)

Parameters of Nearest Points

Let 5, = (u1,71) andds = (2, 02) be two lines. The aim of this algorithm is to compute the
parameters of the nearest point on a line of the other. Thgiparameter of;, point of; nearest
from 4o, (and vice versa).

We first compute the following elements:

!

S =

SRS
[\v]

l\)lb—‘

)

2]
1]

The nearest points are so tli?fé is orthogonal to botli; andi,. We notel; = Q; + Aii; and
Is = Qs + pile. And we right the vector equation, giving:

3

=

Il
=Rl S

=
SNl

ma = ’

A — us = mg
s + 4 = m

We then invert the matrix, and obtain the result:

— matsmy
A= 1452

— M1 1+SMmMso
woo= 1452

Note that this algorithm is very useful to find the neareshpon an edge on a given ray.

RR n° 5167

104 Duguet

INRIA

Robust Epsilon Visibility 105

Bibliography

[AF86]

[ARHMO0]

[Arvo4]

[AWS7]

[BDT99]

[Cat74]

[CDP95]

[CF90]

[CF92]

[CLO9S]

[Cro77]

RR n° 5167

Kansei Iwata Akira Fujimoto, Takayuki Tanakarts : Accelerated ray-tracing system
IEEE Computer Graphics and Applications (1986), 16—26.

M. Agrawala, R. Ramamoorthi, A. Heirich, and L. MoEfficient image-based methods
for rendering soft shadow#\CM SIGGRAPH 2000, Annual Conference Series, July
2000, pp. 375-384.

J. Arvo, The irradiance Jacobian for partially occluded polyhedsaurcesACM SIG-
GRAPH '94, 1994, pp. 343-350.

John Amanatides and Andrew Wobfast voxel traversal algorithm for ray tracingu-
rographics '87, Elsevier Science Publishers, AmsterdaontiNHolland, 1987, pp. 3—
10.

K. Bala, J. Dorsey, and S. Tell®Radiance interpolants for accelerated bounded-error
ray tracing, ACM Transactions on Graphids8 (1999), no. 3, 213-256.

Edwin E. CatmullA subdivision algorithm for computer display of curved aods
Ph.D. thesis, Dept. of CS, U. of Utah, December 1974.

Frédéric Cazals, George Drettakis, and Claude R itering, clustering and hier-
archy construction: a new solution for ray tracing very cdexpenvironmentsEuro-
graphics '95, 1995.

A. T. Campbell, Il and D. S. Fusselhdaptive mesh generation for global diffuse
illumination, Computer Graphics (Proc. SIGGRAPH '3 (1990), 155-164.

N. Chin and S. FeineFast object-precision shadow generation for areal lightises
using BSP treesComputer Graphics (1992 Symposium on Interactive 3D Gcaph
vol. 25, March 1992, pp. 21-30.

David A. Cox, John B. Little, and Donal O’Shelaleals, varieties, and algorithms
Springer, 1998.

F. C. CrowShadow algorithms for computer graphi€omputer Graphics (Proc. SIG-
GRAPH 77)11(1977), no. 2, 242-248.

106

Duguet

[DDO2]

[DDP96]

[DDP97]

[DDP02]

[DF94]

[DHHO1]

[Duf92]

[Dur99]

[EK]

[GKMO93]

[Gla84]

[GM90]

[GS87]

Florent Duguet and George Drettakigbust epsilon visibilityProceedings of the 29th
annual conference on Computer graphics and interactivatgges, ACM Press, 2002,
pp. 567-575.

Frédo Durand, George Drettakis, and Claude PuBeh,3d visibility complex, a new
approach to the problems of accurate visibiliBroceedings of 7th Eurographics Work-
shop on Rendering in Porto, Portugal (Rendering TechnitfgXavier Pueyo and
Peter Schroder, eds.), Springer Verlag, June 1996, pp 2566—

., The \visibility skeleton: A powerful and multi-purpose
global visibility tool ACM SIGGRAPH 97, August 1997,
http://w3imagis.imag.fr/Membres/Fredo.Durand/PUBIidgraph97/index.htm.

Frédo Durand, George Drettakis, and Claude PuBl,3d visibility complexACM
Transactions on Graphi@4,2(2002).

George Drettakis and Eugene FiurAdast shadow algorithm for area light sources us-
ing backprojectionProceedings of SIGGRAPH '94 (Andrew Glassner, ed.), Cdetpu
Graphics Proceedings, Annual Conference Series, ACM SI&B3R ACM Press,
1994, pp. 223-230.

Olivier Devillers and Olaf Hall-HoltPredicates and constructions for visibility prob-
lems manuscrit, 2001.

T. Duff, Interval arithmetic and recursive subdivision for impti¢iinctions and con-
structive solid geometnyComputer Graphics (Proc. SIGGRAPH'9 (1992), no. 2,
131-138.

Frédo Durand3d visibility: analytical study and application®h.D. thesis, Université
Joseph Fourier, Grenoble I, July 1999, http://www-imagiag.fr.

Cass Everitt and Mark J. Kilgard®ractiral and robust stenciled shadow volumes for
hardware accelerated renderingt t p: / / devel oper. nvi di a. com

Ned Greene, Michael Kass, and Gavin Millétierarchical z-buffer visibility ACM
SIGGRAPH 93, 1993.

Andrew S. Glassnegpace subdivision for fast ray-tracindEEE Computer Graphics
and Applications (1984), 15-22.

Z. Gigus and J. MalikComputing the aspect graph for the line drawings of polyaédr
objects IEEE Trans. Pattern Analysis and Machine Intelligeh2¢1990), no. 2.

Jeffrey Goldsmith and John Salm@wmtomatic creation of object hierarchies for ray-
tracing, IEEE Computer Graphics and Applications (1987), 14—20.

INRIA

Robust Epsilon Visibility 107

[Hai93]

[Hec91]

[Hec92]

[JW89]

[Kaj86]

[KvD79]

[LPOO]

[LTG92]

[nvi]

[PIU65]

[PV96]

[RDO79]

[RivO5]

[RivO7]

RR n° 5167

E. A. Haines,Shaft culling for efficient ray-traced radiosjty?hotorealistic Render-
ing in Comp. Graphics, Springer Verlag, 1993, Proc. 2nd EGKéltop on Rendering
(Barcelona, 1991), pp. 122-138.

Paul S. Heckbergimulating global illumination using adaptive meshiid.D. thesis,
CS Division, UC Berkeley, June 1991, Tech. Report UCB/CSIB38.

, Discontinuity meshing for radiositfEurographics Rendering Workshop 1992,
Eurographics, May 1992, pp. 203-216.

David Jevans and Brian Wyvil\daptive voxel subdivision for ray tracingroceedings
Graphic’s Interface '89, Canadian Information ProcesSngiety, 1989, pp. 164-172.

James T. KajiyaThe rendering equatigrComputer Graphics (SIGGRAPH '86 Pro-
ceedings) (David C. Evans and Russell J. Athay, eds.), Ctan@raphics Proceed-
ings, Annual Conference Series, vol. 20,4, ACM SIGGRAPHM\Bress, Aolt 1986,
pp. 143-150.

Jan J. Koenderink and Andrea J. van Dodrhe internal representation of solid shape
with respect to visionBioCyber32 (1979), 211-216.

L. Leblanc and P. PoulirGuaranteed occlusion and visibility in cluster hierarchiic
radiosity, Proc. Eurographics Workshop on Rendering 2000, June 2@089-100.

D. Lischinski, F. Tampieri, and D. P. GreenbeRjscontinuity meshing for accurate
radiosity, IEEE CGA12(1992), no. 6, 25-39.

nvidia, webpageht t p: / / devel oper. nvi di a. conf
vi ew. asp?l O=cedec_stenci | .

PluckerOn a new geometry of spadehil. Trans. Royal Soc. London, 1865.

Michel Pocchiola and Gert Vegtdthe visibility complexnternational Journal of Com-
putational Geometry and Applicatio6$1996), no. 3, 279-308.

Ramis, Deschamps, and Odo®@qurs de mathématiques spécialesl. 2, Masson,
1979.

Stéphane RiviéreTopologically sweeping the visibility complex of polygbseenes
Proceedings of the eleventh annual symposium on Compngtgeometry, ACM
Press, 1995, pp. 436-437.

, Dynamic visibility in polygonal scenes with the visibililgmplexProceedings
of the thirteenth annual symposium on Computational gegma&CM Press, 1997,
pp. 421-423.

108

Duguet

[SD02]

[SGY4]

[SGHS98]

[SGS89]

[SK98]

[Sny92]

[SROO]

[SRO1]

[SS98]

[Tel92a]

[Tel92b]

[THO94]

Marc Stamminger and George Drettakferspective shadow mapBroceedings of
ACM SIGGRAPH 2002 (John Hughes, ed.), Annual Conferenc&SeACM Press/
ACM SIGGRAPH, July 2002.

A. James Stewart and Sherif GhRhst computation of shadow boundaries using spa-
tial coherence and backprojectior@roceedings of SIGGRAPH '94 (Andrew Glassner,
ed.), Computer Graphics Proceedings, Annual ConferendesS&CM SIGGRAPH,
ACM Press, 1994, pp. 231-238.

J. W. Shade, S. J. Gortler, L. He, and R. Szelishyered depth image€omputer
Graphics Proceedings, Jul 1998, Annual Conference S&IE&GRAPH'98, pp. 231-
242.

D. Salesin, L. Guibas, and J. Stdffgsilon geometry: Building robust algorithms from
imprecise computationgnnual Symposium on Computational Geometry, 1989, Saar-
brucken, West Germany.

A. James Stewart and Tasso Karkamiemputing the approximative visibility map,
with applications to form factor and discontinuity meshikgurographics Rendering
Workshop 1998, Eurographics, 1998.

J. M. Snydeinterval analysis for computer graphic€omputer Graphics (Proc. SIG-
GRAPH'92)26 (1992), no. 2, 121-130.

Michael M. Stark and Richard F. Riesenfdétatact radiosity reconstruction and shadow
computation using vertex tracingroceedings of 11th Eurographics Workshop on Ren-
dering, 2000.

, Reflected and transmitted irradiance from area sourcesgugertex tracing
Proceedings of 12th Eurographics Workshop on Renderir@f .20

Cyril Soler and Francois Silliofrast calculation of soft shadow textures using con-
volution, Computer Graphics Proceedings, Jul 1998, Annual Confer8eries, SIG-
GRAPH’98, pp. 321-332.

Seth J. TellerlComputing the antipenumbra of an area light soyrBeoceedings of
SIGGRAPH '92, Computer Graphics Proceedings, Annual Genfge Series, ACM
SIGGRAPH, ACM Press, 1992, pp. 139-148.

, Visibility computation in densely occluded polyhedralismvments Ph.D.
thesis, University of California, Berkeley, 1992.

Seth Teller and Pat HanrahdBlobal visibility for illumination computation$’roceed-
ings of SIGGRAPH '94, Computer Graphics Proceedings, Ah@aaference Series,
ACM SIGGRAPH, ACM Press, 1994, pp. 443-450.

INRIA

Robust Epsilon Visibility 109

[TS91]

[VG97]

[WA77]

[Wil78]

[WPF90]

[ZMHI97]

RR n° 5167

Seth J. Teller and Carlo H. Séquifisibility preprocessing for interactive walkthrough
ACM SIGGRAPH '91, july 1991, pp. 61-69.

Eric Veach and Leonidas J. Guib&getropolis light transport SIGGRAPH 1997 Pro-
ceedings, Annual Conference Series, Addison-Wesley, L0807, pp. 65—76.

K. Weiler and K. AthertonHidden surface removal using polygon area sorfiGgm-
puter Graphics (Proc. SIGGRAPH 77) (1977), no. 2, 214-222.

Lance Williams, Casting curved shadows on curved surfacesoceedings of SIG-
GRAPH '78, ACM SIGGRAPH, August 1978, pp. 270-274.

Andrew Woo, Pierre Poulin, and Alain Fourni&rsurvey of shadow algorithmiEEE
Computer Graphics and Applicatiof (1990), no. 6, 13-32.

Hanson Zhang, Dinesh Manocha, Tom Hudson, and kémniE. Hoff 1ll, Visibility
culling using hierarchical occlusion map&CM SIGGRAPH '97, 1997.

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Q€Beance)

Unité de recherche INRIA Futurs : Parc Club Orsay Universf&C des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de baBrabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les¢yaBedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitde Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Baro38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de VolueeRacquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

