
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Enhancing and Optimizing the Render Cache

Bruce Walter† and George Drettakis‡ and Donald P. Greenberg†

† Program of Computer Graphics, Cornell University, USA
‡ REVES/INRIA Sophia-Antipolis, France, http://www-sop.inria.fr/reves

Abstract
Interactive rendering often requires the use of simplified shading algorithms with reduced illumination fidelity.
Higher quality rendering algorithms are usually too slow for interactive use. The render cache is a technique
to bridge this performance gap and allow ray-based renderers to be used in interactive contexts by providing
automatic sample interpolation, frame-to-frame sample reuse, and prioritized sampling.
In this paper we present several extensions to the original render cache including predictive sampling, reorganized
computation for better memory coherence, an additional interpolation filter to handle sparser data, and SIMD
acceleration. These optimizations allow the render cache to scale to larger resolutions, reduce its visual artifacts,
and provide better handling of low sample rates. We also provide a downloadable binary to allow researchers to
evaluate and use the render cache.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

There has been a divergence between the rendering algo-
rithms and illumination models used for interactive use and
those used for high quality realistic image generation. For
users this has often required them to switch between two
different rendering modes. Lower quality renderers are used
for interactive tasks such as modelling, viewpoint selection,
and walkthroughs. Computationally expensive illumination
effects such as shadows, reflections, refraction, and global
illumination are provided at low fidelity or omitted entirely.
To see their work under the full illumination model, the user
must switch to a higher quality non-interactive renderer that
often takes minutes or longer to produce a single image.
Such mode switches disrupt the user’s concentration, and
can make fine-tuning their work a very tedious process.

We proposed the render cache10 to bridge this gap and al-
low slower renderers to be used in interactive contexts. It re-
lies on an underlying renderer to perform all shading compu-
tations, but communicates with the renderer asynchronously
allowing the frame rate to be independent of the speed of the
underlying renderer. The renderer’s speed does still affect on
image quality and visual convergence rate.

The render cache stores recent shading results from the
underlying renderer as colored 3D points in a fixed size

cache. For each frame, these points are projected onto the
current image plane and filtered to reduce visibility errors
and fill small gaps in the data. This allows us to quickly ap-
proximate the current image even if only a small fraction
of the pixels are being rendered each frame. In addition,
the render cache prioritizes where new rendering results are
most needed and guides the image plane sampling of the un-
derlying renderer.

In this paper we discuss a number of optimizations and
extensions beyond the original render cache algorithm to in-
crease performance at larger image resolutions, and improve
image quality during rapid camera motions and when us-
ing lower sampling rates. Among the enhancements that we
introduce are: a split projection and tiled z-buffer approach
for better memory coherence, predictive sampling to request
data for new regions before they become visible, a prefilter
stage with a larger kernel footprint to fill in larger gaps be-
tween the point data when necessary, and a highly optimized
implementation including use of SIMD instructions.

With these improvements, we believe that the render
cache is now ready to become a widely used tool in software-
based interactive rendering. Although the basic techniques
are not difficult, creating a highly optimized implementa-
tion takes a considerable amount of work. Thus we have
decided to release a binary version of our implementation at

c© The Eurographics Association 2002.



Walter et. al. / Enhancing the Render Cache

http://www.graphics.cornell.edu/research/interactive/rendercache
to help other researchers evaluate and use the render cache.
The provided library and application are free for educational
non-commercial use, and we encourage other researchers to
integrate the render cache into their own rendering systems.

1.1. Related Work

We will only include a quick survey of recent related tech-
niques here. See the references for more comprehensive sur-
veys of older related work. In this paper we are specifically
building on the render cache approach10, but researchers
have also proposed a number of related techniques. Indeed
the idea of layering interactive display processes over high
quality but slow renderers is becoming increasingly popular.

Much of the recent work has concentrated on display rep-
resentations that can be directly displayed using standard
graphics hardware. This allows for very high frame rates
and image resolutions by taking advantage of the consid-
erable amount of specialized graphics hardware that is eas-
ily and cheaply available. For example, both the Holodeck11

and Tapestry4 systems construct a display mesh by project-
ing rendering results onto the sphere of directions surround-
ing the current viewpoint. These points are then triangulated
to create a Gouraud-shaded mesh for hardware display.

Corrective texturing6 starts with a conventional hardware
rendering of the scene and then constructs view-dependent
projective textures to "correct" the appearance of objects
when the hardware does not match that produced by the un-
derlying renderer (e.g., on reflective or refractive objects).

Another approach7 constructs a Gouraud-shaded display
mesh by refining the input geometry mesh in a prioritized,
view-dependent, and lazy manner as rendering results be-
come available. It also provides automatic de-refinement of
the mesh when shading changes are detected.

Each of these approaches has its strengths. Using a
Gouraud-shaded display mesh allows the output image to be
generated at any resolution and provides better interpolation
when the samples are very sparse. However inserting new re-
sults into such meshes is expensive compared to the render
cache, thus they work best at very low sampling rates (e.g.,
when the underlying renderer would take several minutes or
longer to produce an image on its own). Corrective textur-
ing works best when the hardware shading matches the true
shading for most surfaces.

Another approach to achieve interactivity is to create a
highly optimized ray tracing engine9, but while this cer-
tainly helps, it is not currently sufficient for interactive per-
formance on complex models with complex shading models.
The optimized ray engine can accelerate the underlying ren-
derer while still using a separate interactive display process
such as the render cache.

Next Image

Prior Image

Predicted Projection

Predicted Sampling

Update Point Cloud

Project and Tile Sort

Z-Buffer Tiles

Depth Cull

Prefilter Image

Interpolate / Smooth

Sampling

Sampling Requests

Frame Computation Inputs

OutputsNew Samples

New Stages

Figure 1: Shown here are the computational stages used by
the Render Cache in producing each frame. The new stages
introduced in this paper are indicated by stars.

2. RenderCache Overview

We will provide only a brief overview of the render cache,
so that we can concentrate on the new enhancements that
we are introducing. A more detailed description of the basic
render cache algorithms can be found in 10.

The render cache works by caching rendering results pro-
duced over many frames and using them to estimate the cur-
rent image. The results are cached as 3D points with an as-
sociated color. For each frame, any new rendering results are
integrated into the fixed size point cache, and then projected
onto the current image plane. Because there is generally not
a one-to-one mapping between points and pixels, we next
apply some filters to correct for gaps in the point data. A
depth cull heuristic is used to remove points that should not
be visible and an interpolation/smoothing filter is used to fill
small gaps in the point data. The result is an estimate of the
current image.

During image reconstruction, a priority image is also gen-
erated to encode where new rendering samples are most
needed to improve the quality of future frames. Since we
expect that only a small number of pixels can be rendered
per frame, it is very important to guide the location of those
samples for maximum benefit. An error-diffusion dither is
used to select the locations where the renderer should spend
its effort. The render cache can then immediately begin com-
puting the next frame without waiting for the renderer. The
new samples will be integrated into the point cache once they
become available.

In this paper we have added several additional stages to

c© The Eurographics Association 2002.



Walter et. al. / Enhancing the Render Cache

Figure 2: In this example, the camera is being rotated
rapidly to the right. The right image uses predictive sam-
pling while the left image does not. The images are being
cleared to black between frames to clearly show where data
is missing. Without predictive sampling, the extreme right of
the image never updates while the camera is turning, due to
the latency involved in rendering new samples.

the basic render cache algorithm indicated by the starred
entries in Figure 1. The new stages implement predictive
sampling to compensate for the latency between when sam-
ples are requested for a new region and when the ren-
dered results are actually returned, a reorganization of the
point projection/z-buffering process to improve its speed and
memory coherence, and a secondary image reconstruction
filter with a larger kernel to fill larger gaps in the point data.
In the next sections, we will describe each of these enhance-
ments in detail.

3. Enhancements and Optimizations

3.1. Predictive Sampling

The basic sampling algorithm in the render cache is purely
reactive. Sample locations are chosen based on where in the
current image, more data was needed. While this helps to
concentrate scarce rendering resources where they are most
needed, it does not work well when large regions are becom-
ing newly visible each frame (e.g., see Figure 2).

There is always at least one frame of latency between
when a new rendering request is generated and when the re-
sult can be computed and integrated into the point cache.
This latency may be even longer when running the under-
lying renderer in a parallel distributed configuration, due to
network latencies.

The solution is to predict several frames ahead of time
when regions without data are likely to become visible.
We project the points onto a predicted image plane using
predicted camera parameters and then look for large re-
gions without data. This projection can be done much more
cheaply than the non-predicted projection for several rea-
sons. Because we do not need to resolve the depth ordering
of the points, there is no need to use a z-buffer with this pro-
jection. Also since we are only interested in larger regions

without data, we can project the points onto a lower resolu-
tion image.

We use an image with one quarter resolution in each di-
mension (or 1/16 as many pixels) and store each pixel in
one byte (1 if at least one point maps to it, 0 otherwise). This
allows the entire predicted occupancy image to fit in the pro-
cessor’s cache. This avoids the need for a two pass projection
(as discussed below).

Once we have computed the occupancy image, we gen-
erate a rendering sample request for each pixel which did
not have a point map to it. If there are more empty pixels
than allowed requests, we use a simple decimation scheme
which takes roughly every nth sample in scanline order. For
each frame, the render cache is given a target number of ren-
dering sample requests to generate. By default, we allocate
up to half these requests to the predicted sampling, with the
remainder generated by the normal sampling stage.

This prediction scheme fills predicted empty regions with
point data that is just dense enough to allow the prefilter and
interpolation stages to fill in the gaps, but sparse enough
to avoid wasting too much effort on regions that might
never become visible. Prediction significantly improves im-
age quality during camera motions at an acceptably small
cost. It consumes roughly 13% of the total render cache exe-
cution time for one frame. We rely on the application to pro-
vide the predicted camera since it has the most up-to-date
information about what the user is currently doing.

3.2. Tiled Z-Buffer for Memory Coherence

Computational speeds continue to advance at a much faster
rate than memory speeds, making memory latency an in-
creasingly important bottleneck. Thus making sure that algo-
rithms have good memory coherence and predictable mem-
ory access patterns is important. While most of the ren-
der cache exhibits nice linear memory access, the combined
projection/z-buffer as done in the original render cache does
not. Because the points in the cache are unordered, directly
projecting them onto the image plane results in a nearly ran-
dom access pattern to the image plane data structures.

This was not a major issue in the original render cache
implementation because it used smaller images, and ran on
a processor with relatively large caches. However when we
compared an earlier implementation on a 1GHz Pentium
III and a 1.7GHz Pentium 4, we found that all the stages
were accelerated on the Pentium 4 except for the combined
projection/z-buffer. The memory latency on the Pentium 4
was slightly worse due to its use of RDRAM memory, and
that stage was almost entirely memory latency-bound be-
cause at 512x512 the image plane data structures occupy 3
megabytes and are too large to fit in cache.

One way to make the algorithm more cache friendly is to
divide the image into regions, or tiles, that are small enough

c© The Eurographics Association 2002.



Walter et. al. / Enhancing the Render Cache

4 2

2

2

2

11

11

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Figure 3: The 7x7 uniform filter and 3x3 weighted filters
used in the prefilter and interpolation/smoothing stages re-
spectively.

to fit in cache and bucket sort the points into the tiles before
applying z-buffering. This is similar to sort-first2 graphics
architectures (e.g., 8).

Although it requires extra work to tile sort the points and
requires each point to be written twice before reaching its
final destination, this approach produces much more coher-
ent memory accesses. In our implementation, using the tiled
z-buffer approach reduced the total time for projection and
z-buffering from 42 milliseconds to 25 for a 512x512 im-
age. Since this is the most expensive part of the render cache
computations, this is a significant savings.

A tiled approach has be used previously to parallelize3 the
render cache by explicitly partitioning the point cloud to re-
duce communication. By dynamically sorting the projected
points each frame, our tiling approach has fewer visual arti-
facts and can be more flexible in its sampling and point cloud
update strategies. We hope to explore our approach as a po-
tentially better parallelization strategy if we have access to a
suitable shared memory parallel machine.

3.3. Image Prefilter

Interpolation/smoothing filters are used to reconstruct an im-
age from the frequently sparse point data. There are inherent
tradeoffs in the choice of the filter size to use. Small filters
are better at producing sharper, higher quality reconstruc-
tion when the points are dense, while larger filters are better
at filling in the gaps between points when they are sparse.

The original render cache used a single 3x3 weighted im-
age filter as shown in Figure 3. This works well except when
no valid point falls within the 3x3 neighborhood of a pixel.
In this case the pixel was either left the color it had in the
previous frame or cleared to black depending on user pref-
erence. However neither choice works very well when the
points are too sparse. This often happens when there are
large changes in the image from frame to frame or when the
rate of samples coming back from the underlying renderer is
too low.

To better handle sparse regions we introduce an additional
interpolation stage, called the prefilter, with a larger 7x7 uni-
form filter kernel. Uniform kernels have the advantage that

they are cheap to compute and their cost cost does not de-
pend on the size of the kernel (e.g., 5p. 406). Because of its
larger kernel though, the prefiltered image is unacceptably
blurry in high point density regions. We run the prefilter first
and then allow the normal interpolation stage to overwrite
any pixels where its smaller filter produces valid data. In ef-
fect, the larger prefilter is only used where the smaller 3x3
filter fails. See Figure 4.

The normal interpolation stage with its 3x3 filter also pro-
duces the priority image that is used to guide sampling and
we have left this unchanged. The use of the prefilter does not
effect the priority image of the choice of locations for new
samples. Its purpose is simply to reduce the visual artifacts
in sparse regions until the point density can be raised to a
sufficient level for the 3x3 filter to work. In our implementa-
tion the prefilter is actually less expensive than the 3x3 filter
and consumes only 10% of the render cache execution time.

3.4. Point Eviction

The render cache uses a fixed size cache of points and in the
original version, a point would remain in the cache until it
was overwritten by new sample point. Effects such as non-
diffuse shading or scene editing can cause a point’s color to
become incorrect, or stale. If the rate of new samples being
computed per frame is very low, this stale data may remain
in the point cache for a long time. We have added a new
mechanism to allow points to be evicted from the cache even
if there is no point available to overwrite it. Evicting points
can actually speed up the image convergence by clearing out
stale data more quickly.

Each point has an associated age which is stored in a byte
(0-255). At the beginning of each frame, all the existing
points are aged by some increment. This increment is chosen
based on the number of new points added to the cache such
that on average a point should reach the age of 128 before
being overwritten. But several conditions can cause points
to age at a faster rate such as if the point is not visible in
the current frame or if color changes are detected in nearby
points in the image plane. These can cause a point to reach
the maximum age of 255 at which point it is automatically
evicted from the cache. In the future, additional aging penal-
ties may further improve stale data eviction.

3.5. Other Optimizations

We have also rewritten our implementation to take advantage
of the SIMD (Single Instruction, Multiple Data) instructions
available through Intel’s MMX, SSE, and SSE 2 instruction
set extensions1. These provides 8 and 16 byte vectors that
can be used to operate on multiple data (e.g., four floats) in
a single instruction. We can thus project four points at the
same time or operate on the red, green, and blue channels of
a pixel simultaneously. However it does require some reor-

c© The Eurographics Association 2002.



Walter et. al. / Enhancing the Render Cache

Figure 4: These images where generated using only the 3x3 filter (left), only the 7x7 prefilter (center) and both filters (right).
We artificially lowered the point density on the left side of each image and cleared the image to black between frames to show
where data is missing. The 3x3 filter alone has trouble filling in the larger gaps in the points, while the 7x7 filter produces
objectionable blurring in the dense regions. Using both filters allows us to fill in larger gaps while preserving sharpness in the
dense regions.

ganization of your data structures to make maximum use of
the SIMD instructions.

The new instructions also provide techniques for turning
control dependencies into data dependencies. For example,
there are instructions that set a variable to a mask of zeros
or ones based on the comparison of two values. Boolean
operations can then be used to set a pointer to one of two
values based on the mask. Viewpoint clipping can be im-
plemented by this technique without using a branch instruc-
tion. Because unpredictable branches are relatively expen-
sive on modern processors, removing them can increase per-
formance.

As mentioned earlier, memory latency is becoming more
and more of a bottleneck. We have tried to carefully orga-
nize our data structures to minimize the amount of memory
that must be accessed by any single computation stage and
to ensure that the memory is accessed in a predictable lin-
ear manner. Adding prefetch instructions can also help to
hide memory latency, though this is somewhat less impor-
tant on Pentium 4 processors because the automatic hard-
ware prefetch mechanism often works quite well for linear
access patterns.

4. Results

Timings for the render cache to generate one frame at
512x512 on a 1.7GHz Pentium 4 machine are shown in Ta-
ble 1. Despite that fact that we have added additional compu-
tation stages and are using images with four times as many
pixels, the frame time is slightly faster than original results
reported in10. We estimate that roughly half the speedup
comes from using a faster processor and half from the SIMD
and other optimizations that we have applied.

Stage Time (ms) Time (%) µ-ops / cycle

Update Points 7.7 12% 0.7
Predicted Projection 7.9 13% 0.9
Predicted Sampling 0.2 .3% 2.2
Project and Tile Sort 15.8 25% 1.2
Z-Buffer Tiles 8.9 14% 0.5
Depth Cull 3.2 5% 1.2
Prefilter 5.9 10% 1.5
Interpolate / Smooth 6.5 11% 1.9
Sampling 6.0 10% 1.2

Total 62.1

Table 1: This table shows the time required by each stage
of the render cache for a 512x512 image on a 1.7GHz Pen-
tium 4 machine where roughly 8000 new samples are be-
ing added each frame. Times are shown in both milliseconds
and as a percentage of the total time. These timings do not
include any computation by the underlying renderer or the
time to display the image after it has been computed. Thus
in practice, actual frame time may be longer depending on
the system configuration. We also show the average number
of micro-operations being executed per cycle for each stage
to indicate if it is computation or latency bound.

We have included micro-operations executed per cycle
statistics in Table 1. In a Pentium 4 processor, instructions
are broken down into micro-operations and, theoretically, up
to three micro-operations can be issued per cycle. Competi-
tion for execution units, dependency chains between opera-
tions, branch mispredictions, and cache misses mean that the
actual rate is always lower than this. In practice maintaining
a sustained rate of one micro-operation per cycle or better
means that you are doing well and that the execution is com-

c© The Eurographics Association 2002.



Walter et. al. / Enhancing the Render Cache

putation bound. Because z-buffering requires only minimal
computation, its speed is limited primarily by the latency of
the L2 cache. The total point cache data occupies around 7
megabytes and the need to access this large amount of data
slows the point update and, to a lesser extent, the predicted
projection. Nevertheless, most of the execution is computa-
tion bound which is good news because it means that per-
formance should continue to scale with increasing processor
speeds.

The render cache runs entirely on one processor, but,
when available, other processors can be used to offload other
tasks such as rendering, handling the user interface, and dis-
playing the computed images. A frame time of 62ms corre-
sponds to a potential frame rate of 16 frames per second, but
the actual frame rate will be somewhat lower depending on
what else the processor must handle. In practice, we are see-
ing frame rates up to 14 fps in a dual processor configuration
and 12 fps in a single processor configuration.

The addition of the prediction stages has significantly re-
duced the visual artifacts during rapid camera motion, al-
though artifacts are still apparent if the underlying renderer
is not producing enough new samples to fill in the new re-
gions at least sparsely. In practice we find that the render
cache works well when running at frame rate 10 to 100 times
faster than the speed of the underlying renderer (i.e. 1% to
10% of the pixels are being rendered per frame).

The prefilter with its larger kernel and the point eviction
mechanism further improve performance at low sampling
rates, by allowing interpolation over large distance when
necessary and by allowing stale data to be removed from
the cache more quickly. Also the use of a tile z-buffer ap-
proach has significantly increased performance for larger
images. Our experiments indicate that the frame time scales
roughly linearly with the number of pixels for images up to
at least 1024x1024. The original render cache showed non-
linear scaling once the image plane data structures became
too large to fit in cache.

4.1. Public Availability

With the current improvements in speed, scalability, and vi-
sual quality, we believe the render cache is ready to become a
widely used tool in software interactive rendering. To further
this goal, along with this paper we are releasing a download-
able binary version of the render cache that is free for educa-
tional, non-commercial use. The binary can be downloaded
from the address below. Because it contains SSE 2 optimiza-
tions, it requires a Pentium 4 processor or better. See the web
page for more details.

http://www.graphics.cornell.edu/research/interactive/rendercache

We have found that it is almost impossible to convey in-
teractive performance using still images and difficult to do
so even in videos. The true test of any interactive system

is always to operate it yourself. We strongly encourage the
reader to download and try the render cache for themselves.
The sample application allows the user to dynamically dis-
able our enhancements such prediction and the prefilter to
better understand how they impact and improve visual qual-
ity. Moreover we further encourage readers to try using the
render cache as a front end to their own rendering systems.
The render cache can be easily connected to most ray-based
renderers. Again, more details can be found on the website.

Acknowledgements

Thanks to Hector Yee for providing the lotus model and to our
anonymous reviewers for their helpful comments. This work was
supported by Intel Corporation and the NSF Science and Tech-
nology Center for Computer Graphics and Scientific Visualization
(ASC-8920219).

References

1. Intel pentium 4 and intel xeon processor optimization refer-
ence manual. Technical Report 248966-05, Intel Corporation,
USA, 2002.

2. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting
classification of parallel rendering. IEEE Computer Graphics
and Applications, 14(4):23–32, July 1994.

3. E. Reinhard, P. Shirley, and C. Hansen. Parallel point reprojec-
tion. In Symposium on Parallel and Large Data Visualization
and Graphics, October 2001.

4. M. Simmons and C. H. Séquin. Tapestry: A dynamic mesh-
based display representation for interactive rendering. In
Eleventh Eurographics Workshop on Rendering, pages 329–
340, 2000.

5. S. W. Smith. The Scientist and Engineer’s Guide to Digi-
tal Signal Processing. California Technical Publishing, San
Diego, CA, 1997.

6. M. Stamminger, J. Haber, H. Schirmacher, and H.-P. Seidel.
Walkthroughs with corrective texturing. In Eleventh Euro-
graphics Workshop on Rendering, pages 377–388, 2000.

7. P. Tole, F. Pellacini, B. Walter, and D. P. Greenberg. Interactive
global illumination in dynamic scenes. In Computer Graphics
(SIGGRAPH ’02 Proceedings), page (to appear), 2002.

8. J. Torborg and J. T. Kajiya. Talisman: Commodity realtime 3d
graphics for the pc. In Computer Graphics (SIGGRAPH ’96
Proceedings), pages 353–363, 1996.

9. I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interac-
tive rendering with coherent raytracing. In Eurographics ’01,
pages 153–164, 2001.

10. B. Walter, G. Drettakis, and S. Parker. Interactive rendering
using the render cache. In Tenth Eurographics Workshop on
Rendering, pages 19–30, June 1999.

11. G. Ward and M. Simmons. The holodeck ray cache: An inter-
active rendering system for global illumination in nondiffuse
environments. ACM Transactions on Graphics, 18(4):361–98,
October 1999.

c© The Eurographics Association 2002.


