ITERATIVE DESIGN OF USER INTERFACES
FOR AN OFFICE SYSTEM USING A UIMS

P. Constantopoulos, G. Drettakis, E. Petra,

M. Theodoridou and Y. Yeorgaroudakis

January 1988

RCC/CSI/TR/1988/010

Technical Report Series

Computer Science Institute, Research Center of Crete

P.O.Box 1385, Heraklio, Crete, 711-10 Greece
Tel.: +30.81.221171, Telex: 262389 CCI1 GR
E-mail — UUCP: mcvax!ariadne!maria

Iterative design of User Interfaces for an Office System using a
UIMS.

P. Constantopoulos, G. Drettakis, E. Petra,
M. Theodoridou, Y. Yeorgaroudakis.

Institute of Computer Science,
Research Centre of Crete,

ABSTRACT

The design of the user interface for an office application using a UIMS is
described. In particular we report on the iterative development and improvement of
the user interface of MUSE, a multimedia document filing system, using ACHILLES,
a UIMS designed to produce interfaces for office applications.

1. Introduction.

It is commonly accepled that, to the eyes of the user, a computer-based office system is its user
interface. It is also a fact that a user interface should be tailored not only to the specific application but
also to a particular environment or even individual user. Furthermore, producing a satisfactory user
interface (UT) is really an iterative task including prototyping, testing and redesign stages [LeLo85].
The perfection and even feasibility of implementation is restricted by economic considerations.
Indeed, each iteration is a tedious, time-consuming process, requiring high programming talent, let
alone the initial design and implementation [Hull86].

An attempt 1o relieve this problem comes in the form of User Interface Management Systems
(UIMS) which are recently the subject of several intensive research and development efforts (e.g. Sas-
safras [Hill87], MIKE [Olse87], Menulay [Buxt83]). UIMSs are meant to be productivity tools for the
Ul designer, by supporting the interactive specification and generation of user interfaces. The expected
benefit from their use is not as much a cut in the initial effort for designing and implementing a user
interface, but rather a drastic reduction in the effort involved in the subsequent iterations, in other words
the "variable cost” of the process.

Very little has been attempted in using UIMSs for real world sysiems production. Applications 1o
date are wsually in specialised areas such as cartography [Wong82] or CAD/CAM [KasiB7]. Collecting
experience from the use of UIMSs in real systems, especially in an office environment, is important first
to establish that the UIMS approach is viable, and then 1o assess the effectiveness of a UIMS and w
improve it.

In this paper we present a very first experiment in using a UIMS to generate and then refine the
user interface of an advanced, existing system, The UIMS, called ACHILLES (A Computer-Human
Interface Lexical Library and Extensible Syntax), has been developed, though not fully yet, at the Insti-
tute of Computer Science, Research Centre of Crete, in the context of ESPRIT project no. 82 (Intelli-
gent Workstation - TWS) [Espr84, Espr86). The puinea pig, on the other hand, is the user interface of
MUSE [Gibb87, Yeor87], a prototype multimedia document filing system, also developed at the Insti-
twie of Computer Science in close connection with ESPRIT project no. 28 (Multimedia Office Server -
MULTOS) [Mult86] and in conformance with requirements identified by the GR-Offices project of the
Science for Stability Programme. This specific choice was made for two main reasons:

(a) The user interface of MUSE was developed locally, thus enabling the comparison of the original
development process with that using the UIMS.

o

(b) By its very nature, MUSE is very demanding on the user interface which should further be
tailored to particular applications. Therefore the design of a good user interface for MUSE actu-
ally involves several iterations.

In the next section we present the ACHILLES UIMS, while in section 3 we discuss its use for
building user interfaces. In section 4 we briefly describe the MUSE system and its user interface. In
section 5 we describe how ACHILLES was used to replicate and then to improve the user interface of

MUSE, demonstrating the feasibility as well as some of the benefits of the approach. Conclusions are
drawn in section 6,

2. The UIMS "ACHILLES".

A User Inierface Management System (UIMS) is a system for specifying and producing User
Interfaces. It serves o separate the design and specification of the user-application interaction from the
design and specification of the application software itself [Kasi82].

By simplifying the initial design and modification processes, and by automating the implementa-
tion phase, a UIMS supports consistency in interface design, produces high guality and reliable inter-
faces, and reduces the cost of design and implementation significantly [Hull85, Huoll86, Sigr87].

ACHILLES is a UIMS developed with the following goals: isolation of the design of the user
interface from the development of the application, integration of a variety of media in the interface
(graphics, text, voice); concurrent operaton of I/O devices with the Ul and provision for easy
maodification of the environment in terms of [/O devices and communication media [Espr86, BrowB6].

ACHILLES is an external control UIMS, in which the implementation of the user interface as
developed with the UIMS, calls application functions in response to user commands.

The interaction dialogue between the user and the application is viewed as a language. The
moedel, as in most User Interface Management Systems, consists of three primary levels [GreeB5]:

» The semantic level, embedding the semantic interpretation of the interface in the application code.
» The syntactic level, enabling the Ul designer to define the human-computer dialogue. At this level
response to user actions is defined.

* The lexical level, consisting of the input recognized by the Ul and the output. The run-time support
of ACHILLES provides the lexical component of the UL

2.1. The lexical level

The lexical level is responsible for handling the input and output for all the available [/O devices.
These are separaied into channels that accept a specified set of input events. Conceptually, a channel is
a collection of lexical objects that are related by sharing a common 1/O device or virtual device such as
a window. In ACHILLES four channels are available [Espr86].

The first channel is the window. The window channel is a window on a bitmapped screen in
which graphical objects including boxes, circles, lines, menus and boxes containing text may be
displayed. The window channel supports two types of input events. Those related to objects with a

screen image (such as menu selection), and those related to other input devices such as keyboard and
mouse.

The other channels that ACHILLES will provide are the voice input and voice output channels,
and a separate channel for high quality electronic document presentation.

2.2. The syntactic level

The syntactic level of the Ul is written as a sel of rules, where each rule has the form:
<EVENl> => <responses
The Ul description is written at this level as a set of rules. Each rule is a statement of how the UI will
respond to some evenl. Therefore the effect of a rule is called its response. When the designer decides
how he wants the Ul o respond to some event, he wriles a rule for that response, which is a set of

sequentially executed statements, and adds it w the syntactic level. The Ul description is made entirely
with such rules.

. 1

A simple example of a response rule would look as follows:

mousebutton]:-
! # pop_up [object : #first_menu]

The first step in writing such rules is to declare what event this rule will respond to. This is done by
writing the event/message name followed by the two characters ":-". The event "mouscbutton1” invokes
the response in the example above.

Four types of activities may be contained in a response 0 an event

(a) Ourtpul evenis may be sent as requesis to the lexical level, such as the ‘! # pop_up’ message in the
example above.

(b) Application function calls may be inseried in a response. Parameters and return values implement
the communication between the syntactic level and the application.

(c) Local operations can be performed on variables adding flexibility to the language.

(d) Artificial messages can be sent to rule groups providing a method to overcome the limitations of
the event based syntax. The statement ‘@ # art’ will cause the response o the rule *art:-’ 1o be
executed, as if the event art had come from the input.

Furthermore, the response grammar allows the user to activate and deactivate rules at run-time by
collecting them into rule groups. When a rule group is deactivated, it is ignored by the Ul. Once
activated, the rules belonging to a rule group will respond normally.

2.3. The user interface of ACHILLES.

The ACHILLES User Interface has been written in the ACHILLES UI specification language
itself. Some functions, such as file or directory reading, have been implemented in Lisp or C.

The interface provides a control window (sec Figure 1.). This window automatically loads the Ul
description files and the Lisp application files representing them as icons. The user may select the
icons and either edit them with a window running an editor on the file, or load them into the Lisp
environment. To make a change in the Ul description all that is needed is to modify the Ul description
file and then load it into the environment.

ACHILLES also allows the designer to view the rule groups that are currently active and follow
the flow of control through rule groups. This is done using the tree window shown in Figure 1.

One of the enhancements planned for the immediate future is to allow the Ul designer to select
groups and rules in the tree window facilitating separate editing and loading of the rules and groups.
This will speed up the process of Ul definition significantly.

3. Building interfaces with the use of ACHILLES.

ACHILLES provides the UI designer with a set of tools that support the design process of human
computer dialogues. ACHILLES in its present state produces interfaces easily adaptable and extendible,
simplifying the use of direct manipulation methods and iconic interfaces. The high level lexical library
relieves the Ul designer from device dependent details, and the code reusability facilitates the use of the
same Ul description across applications. With the use of the LeLisp environment and the suspended
time editing technique described below, iterative Ul design becomes an attractive process.

3.1. Adaptability and extensibility,

The ACHILLES environment allows tailoring of the Ul to meet specific needs. The UI of the
same application may have to be different depending on the end uwser. Traditional methods would
require recompilation of the whole application and, quite possibly, modifications to the application code
itself, as the limit between Ul code and application routines is ofien hazy. By contrast, the adaptation
of the Ul to meet differences in end user needs is simple to implement with ACHILLES. All that is
required is to modify the Ul description file pertaining to the specific portion of the UL This allows
easy modifications, as well as fast testing and evaluation of various aliematives. Equally imporiant is
the capability of the sysiem 1o adapt as user expertise grows with time. A larger selection of choices

30BJI23UI I9Sn STTIIHOV °| 2InbTg

domd_main;

. mousebuttonl: - documents
| # pick_up [channel : mousebuttonl.channel algorithm : IMSIDE flag : B

UTTONS

d t
xpos 1 mousebuttonl.xpos upos : mousebuttonl.ypos] o dlbsetianins

plcked:-
tmp = picked.object
' » display [mode : IMVERT object : plcked,objectl
| ® report [object : picked.object 1

location:- ent nane [Bel] grep.2
B location.str
ACTIVATE command_group

command_group: :

IHELFI ;-
| # display [object : #list_box text : "Mo Help avallable, Buttonl to c
ontinue™]

Group Tree

mousebuttonl ;=
| # display [mode : COPY object : tmpl
| ® move [object : #list_box xpos : -1]
DEACTIVATE command_group
ACTIVATE cmd_main
1EXITI :=
(setg high_queus “(()}))
(setg low_queue “(()))
lappl-zap-all ®:uims:channel_list}

[T " | o o ™ N R P = o AILd: CO=in
line found is copied to the standard output, Grep patterns
are limited regular expressions in the style of ed{l),

Egrep patterns are full regular expressions including alter—

nation. Ferep searches for lines that contain one of the
{newline-separated} strings, Fgrep patterns are Fixed
strings - no regular expression metacharacters are sup-

create_lind [ondmain | [comnanaerd | atspiouerd

ported,
In ge -
achilles options toola i ix
uims interface
.
I TILE

===

! [T — T readf, 11 dirent.11 " mu..n.!.u..dnl mltmﬁ.ﬂq

]ﬂ

7

should be provided to the expert user [Fole84]. Incorporating Ul description code to support such a
capability is simple with the use of ACHILLES,

The demand for modifications to the interface as the system is used is also comprehensively sup-
ported. Traditional methods make modifications to a graphical interface for a high resolution worksta-
tion a tedious task. In many cases the modifications required by end users are simple matters of syntac-
tic nature as far as the Ul is concerned. Such symtactic changes are the modification of responses
depending on events, feedback, reporting facilities etc. These changes do not affect the semantic level,
ie. the meaning of a dialogue defined by the application itself, and can be made without modifying the
application code.

3.2. High level lexical support and code reusability.

A lexical library is provided that handles all input and output, in conjunction with the runtime
support module, Interaction technigues such as menus, scroll-bars and picking are provided at this
level. This shields the Ul designer from machine, device or system specific details such as interrupt
handling or complicated graphics library invocations. The Ul designer simply sends requests to the lex-
ical level of ACHILLES to perform one of the complex interactions. The response to the
messages/events returned from the lexical level must then be prescribed.

The system allows code, which implements a specific interaction, to be used in various applica-
tions. This convenience has the additional benefit of producing interfaces that look the same across
different programs, enhancing consistency and relieving the user from the frustration due the prolifera-
tion of incompatible interfaces.

3.3. Direct manipulation, suspended time editing and iterative design.

The wide range of graphical objects supported by ACHILLES, and the fact that dragging and
picking are supporied orthogonally for all objects, allow extensive use of direct manipulation. The

importance of direct manipulation interfaces is today generally accepted and has already been noted in
many cases [Schng3].

The time spent on the initial design and implementation phase of a User Interface with
ACHILLES may not actually be less than that using traditional methods. This feature has shown to be
typical of UIMSs [Hill87]. On the other hand the repeated modification, evaluation and testing of a
User Interface becomes much less tedious than with other approaches. Major changes 1o screen layout
and object positioning can be made in short periods of time, by changing a few commands. Syniactic
specification is equally easy to change, by modifying the active rule groups in a context or the
Tesponses o appropriate events.

Another important feature of ACHILLES is that it allows the UI designer to suspend the applica-
tion, make a modification to the Ul description and resume the execution of the process at the point of
suspension. This method of UI construction is known as suspended time editing [Tann84, Hill87).

The overall time period consumed to implement, test, evaluate and modify a UI is greatly
reduced, making the development of such interfaces cheaper, The cumulative effect is that iterative
design, previously prohibitively expensive, now becomes feasible resulting in better interfaces.

4. The user interface of MUSE,

In this section we briefly describe the multimedia filing system MUSE, its user interface and
related design issues. In the next section we shall see how ACHILLES has been used to reproduce and
then improve the existing user interface design.

4.1. MUSE overview.

MUSE is an experimental multimedia document filing system based on an open and distributed
architecture [Gibb87]. MUSE documents are structured collections of atiribute data (integers or fixed-
length character strings), text data (arbitrary length character strings from extended ASCII character set
with embedded font control sequences), image data (raster bitmaps, either color or black/white), graphic
data (sequences of graphic primitives, such as vectors or circles), or audio data.

E

Documents in MUSE are souctured according to a hierarchy of docwment rypes. A document
type is described by a number of atiributes. Subtypes inherit the atiribules of their ancestors. The root
type is called GENERIC and contains only the auribute BODY.

MUSE comprises three main modules. a) A number of independent document servers which store
documents and process document queries. Server processes may run on one or more sysiems. b) A
number of clients which issue document queries and display documents. Client processes may also run
on more than one sysiems. c)A special module called Name Server which runs on one sysiem only.
The Name server offers to the user an abstract, uniform view of the data base, which in reality is distri-
buted over several servers,

4.2. MUSE functions

A detailed description of MUSE can be found in [Gibb87, Yeor87]. The functions supporied by
MUSE can be grouped into four sets,

Status Commands These commands are used only for testing the nerwork’s behavior and observ-
ing the operational status of the servers. They are not expected to be used by
the average user.

* Local Commands These commands handle local documents i.e. documents that are stored in the
private local workspace of the user and are always available o him. Every
user has his own disk area and he is the only one that has all the rights on the
information kept there,

s Query Commands This mode includes the set of operations that are necessary to interface with
the document server. It also includes commands for query formulation and
browsing query replies.

e Utilities Commands The latest version of MUSE interfaces centain independent systems which are
necessary for work in the office. Such systems are a) the mail subsystem b)
the memo subsystem that helps the user to edit, modify and display short notes
and c) the Mikrotek-300A digital scanner.

4.3. Initial design of the user interface of MUSE.

The user interface is unquestionably one of the most important components of an office system.
As such, it cannot be considered apart from the rest of the system but should be designed in conjunc-
tion with it. However, it is quite difficult to ensure the suitability and effectiveness of a user interface
unless it has been prototyped and tested. Successful user interfaces have gone through the design,
implementation, testing and evaluation phases iteratively [Olse84].

The MUSE user interface has been developed on SUN-2 workstations. Each machine included a
high resolution (1152 x %00) bitmapped black and white monitor and a three-button mouse. One works-
tation is also equipped with a color monitor of medium resolution (640 x 480 x 8). The user interface
software was entirely written in C and extensive use of the wools provided by the SunWindows operat-
ing environment and the Sun window system was made.

The display screen in MUSE is divided into six subwindows (Figure 2), each one assigned o a
specific task:

. The attribute subwindow, used 10 enter queries and to display document aitributes. The atiribute

window can be enlarged or reduced by selecting the icon appearing in the lower right hand
COImET,

. The exit subwindow, used for a small set of commands which are always available. The help
command is relative to the command mode.

. The command subwindow, used for command selection and parameter specification. Command

selection is done with the use of the left mouse button while parameter specification is keyboard
driven,

. The display subwindow, used for document display. Values which cannot be presented on the
screen, are presented by small icons (e.g. voice). Users can operate on them by selecting the icon

-7 a2anbtg

"usaios Aerdstp IASOW

(EXLI),

(HELP)

Nacimont Typn: MANIIAL 'I:I'HEEET]
.:. E
- || coMmMamD: rsh i
| =y T
| er—— k3 E—rer
|| e— -
Neswcn USER COMMANDS CSH(1)
i
i T
 [[name

csh - a shell (command interpreter) with C-1{ke syntau

- lsynopsts

csh [-cofinstuVud] [arg ...]

DESCRIPTIONM

Csh 15 a first implementation af a command language inter-
prater incorporating a history mechanism (sea History Sub-
stitutions) job control facilities (see Jobs) and a C-like
syntax. 50 as to be able to use its Job contral facilities,
usars of csh must (and automatically) use tha new tty driver
fully described in tty(4). This new Lty driver allows gen-
eration of interrupt characters from the keyhoard to tell
jobs to stop. See stty(1) for details on setting options in
the new tty driver.

An instance of csh hagins by executing commands from the
file ".cshrc’ in 1he home directory of the invoker. If this
15 a login shell then 1t also esecutes commands from the
file ‘.login” therae. It is typical for users on crt’s to
put the command **stiy crt’’ in their .legin file, and to
also fnvake tset(l) there.

In the normal case, the shell will then begin reading com-
mands from the terminal, prompting with *¥% ‘. Processing of
arguments and the use of the shell to process filas contain-
ing command scripts will be described later.

Jun Releaze 1.1 Last change: 18 July 1983 1

{List)

(Drop)

(Display)

[Caraful |

Pocumont Namo: Jesh

sh

Local Documente
1.d 4.d d4g.d

9.d

with the mouse.
. The scroll subwindow, used for browsing through the pages of a document.

. The message subwindow, used for printing system responses, error messages, help messages and
other information resulting from user actions.

The design and implementation of the user interface depends on the overall MUSE functionality.
Although we wanted to separate the user interface from the implementation of the MUSE functions, this
was not fully achieved. For example, the user interface routine that handles document presentation
depends on the MUSE document structure.

4.4, Improving the user interface of MUSE.

The implementation of the MUSE user interface was compleied by the end of 1986. The system
was tested and a number of drawbacks regarding its user interface were identified. The most important
enhancements that were pointed out as essential are the following:

. extension of the functionality of the display subwindow so as to support document editing as well
as document presentation.

. adaptability of the user interface to the expertise of the user.

. minimization of the required keyboard input by allowing selections in windows other than the
command subwindow (e.g. the message subwindow).

. extension of the browsing capabilities inside the pages of a document.
. display of help facilities and error messages where the user expects to see them.

The implementation of such enhancements is a difficult and time consuming task. For instance,
porting the user interface on the SUN-3 workstation required one full week of implementation, just to
adapt the Ul to the SunView package used on the SUN-3s, without altering its functionality.

It is obvious that there is a need for an environment in which we could easily specify, design,
implement, test and then iteratively redesign the MUSE user interface.

5. Designing the local mode interface of MUSE with ACHILLES: an iterative approach.

This section outlines one of the first applications of ACHILLES to a real interface other than its
own. We describe the implementation of the local commands interface for MUSE using the
ACHILLES UIMS. The initial interface of the MUSE local mode includes three commands: a) the List
command which lists the names of the documents filed in the local workspace, b) the Display command
which presents a document from the local workspace and c) the Drop command which deletes a docu-
ment from the local workspace. The user specifies the document name by typing in the field Document
Name, MUSE operating in local mode is shown in Fig. 2.

5.1. Replication of the existing interface,

Replicating the existing interface with the UIMS proved a comparatively simple task. The whole
exercise ook approximately one day to complete. The time necessary to implement such an interface
is expected to drop Lo a few hours as the UIMS itself reaches a more stable state,

The result of this construction is shown in Fig. 3. The subwindows described in the section on
MUSE have been implemented using channels for each subwindow. The actual ACHILLES code for
this interface, excluding the initialisation statements is less than 200 lines. This is substantially less than
that written in the original version, however one should be cautious in drawing general conclusions as
only a section of the MUSE interface was implemented with ACHILLES,

The filenames appearing in the message subwindow are essentially texi-boxes that contain the
name of the file as a string. The ‘buttons’ in the exit and command subwindows are also implemented
as selectable texi-boxes. Each text-box is associated with the action described in the string it contains.

The method in which the dialogue for these actions is writlen results in understandable Ul description
code.

"SATIIHIOY UITM 8DBJISIUT ASOW "¢ 2anbtd

MUSE: CLIENT, {ACHILLES Version}) 0.5
EXIT

Document Type: MANUAL
COUMAND : ed. 1

List documents

Display document

Drop

ED{L) USER COMMANDS ED(1}

Dooument name [Sel] ed.1

=

HAHE
ed - text editor

SYMOPSIS
ed [=1 L0 =-x 1L Filename]

DESCRIPTION
ed is the basic line editor in the UHIX system, RAlthough
superseded by ex and vi For most purposes, ed Ll still used
bu sustem utilities such as sccs.

You can tell =d to perform various operations on the lines
you specify, {see Line Addreszing, below, For a discussion
of how to fForm line-addresses For ed), You can print grep.5 clear.1
{digsplay} lines. change lines. insert new lines into the
buffer. delete existing lines. you can move or copy lines ko
a different place in the buFfer. or you can substitute char-
acter strings within lines. {(See List of Operatlons. below.
fFor & guide. Also, see Regular Expresslons For string-
matching metacharacters,)

csh,1 ed.l passwd grep.4 grep.s

ed does not operate directly on the contents of & file -
when editing a File, ed reads the contents of the file into
a buffer or scratchpad., All changes made during an editing
session are made on the contents of the bufFfer, The copy
must be “saved” or “written” = using the w {write) command =
to save changes,

achillea options toola umix general
ulms interface
)

(IENEENENEEE

['mﬁiiq.nnce H T |l readf, 1] |l dirent. 11 uJILo:Ui dfﬂ! al ko2, de4

e ||

In MUSE the buttons in the exit subwindow have the label ‘EXIT” and *HELP'. To implement
these two text-boxes marked with the flag ‘BUTTONS' are displayed in the command subwindow.
When the first mousebutton is clicked the following code is executed:

mousebuttonl:-

! # pick_up [flag : BUTTONS ; Request a picked message if inside a button
algorithm : INSIDE ...]

picked:- : The button selected responds.
! # report [; Report causes a location
object : picked.object] : message that contains the boxes' string.
location:-
@ location.str ; Send the string to the rule group
: The string will be either HELP or EXIT
HELP:-
Action for help ...
EXIT:-
Action for exit ...

The process of understanding and consequently debugging an interface described in this manner is thus
greatly simplified. Locating an action connected to a ‘button’ is straightforward, as the corresponding
rule has the name of the action itself.

5.2. Refining the interface,

The interface in its current state needs several improvements. Here we briefly discuss how these
can be effected using ACHILLES. Also a first view of how interfaces are constructed using
ACHILLES is provided.

In the original interface the ‘Drop’ command does not update the list of documents in the mes-
sage subwindow to reflect the deletion. To correct this, two lines are all that is needed in ACHILLES

Drop:-
Actions for drop...
ACTIVATE list_group ; ‘list_group’ contains the rules
; for listing the directory used as actions
; 1o the ‘List" event
@ # start_list » and is initiated with this
» artificial message

One apparent drawback of the initial UT is that the user is not permitted to select a name of a
document in the message subwindow, and then to request some action on the specified file. This again
is simple 1o do in ACHILLES. First a flag, eg *FILEBOX’, is defined that differentiates the boxes con-
taining filenames from other boxes. After this has been done a simple rule group is written that handles
mouse events for the channel MSG_SUBW.

select_file_group::
mousebutton]:-
! # pick_up [flag : FILEBOX ...] ; As above
picked:-
document_name = (get_name picked.object) : The boxes
; have the filename for their name.
! # display [object : picked.ohject ; Display the box
mode : INVERT] : In reverse video

After such a document selection is made it is desirable to see the name selected next to the box con-
taiming ‘Document name’ in the command subwindow (see Figure 3.). This only takes adding a request

1o the response o the picked message above.

picked:-
actions above ...
! # display [object : #name_box
text : document_name]

The modifications up to this point supply remedies to some very obvious pitfalls in the previous
interface. The ease with which changes can be made encourages the testing of other allematives for the
same interface.

One thing obviously wrong in this interface is that the users’ auention is continuously been
diverted from one point of the screen to another [FoleB4], When selecting a document the users’ atten-
tion is transferred to the message subwindow. After selection the user must revert his attention to the
command subwindow to issue a command. A good interface should allow the user to perform the

desired operations without ever having to leave the window in which the object to be acted on has been
selected,

A solution to this problem can now be easily provided. The first action of the Ul designer is to
define an pperation menu containing the two commands ‘Drop’ and ‘Display’. Afier this has been
accomplished the response to the rule picked is again modified, and the appropriate actions filled in.

picked:-
actions as above ...
! # pop_up [object : #op_menu ; Pop up operations meni.
xpos:cur_ x ypos:cur_y] ; Cur_x and y have been set
: by the rule mousebuttonl to
y the current position of the mouse.

selection:- : Message produced by a menu selection,
@ selection.choice . Send the selected item.

drop:-
ACTIVATE command_main ; Activate appropriate group
DEACTIVATE select_file_group
@ # Drop : Initiate drop actions

Display:-

ACTIVATE command_main
DEACTIVATE select_file_group
@ # Display

The message subwindow with its new capabilities can be seen in Fig. 4.

ceh.1 ed.l passwd grep 4 -
Dro

grep.s clear.1

Figure 4. The message subwindow with the operations menu.

9.

As a user becomes more familiar with the system, menus become tiring to use. One method
widely used in existing systems such as the Apple Macintosh, and the Sun Workstations [Sun85], is the
provision of accelerators. An accelerator dllows a task that may be done with a complex set of actions
to be cammied out in a simple, but usually less informative (user friendly), manner. For instance, the tool
manager in the SUN environment allows a window to be moved either by selecting the item MOVE in
a menu or simply by clicking the border and releasing the mousebutton when the window is moved to
the desired position. In our case an appealing accelerator could allow the two operations on documents,
Drop and Display to be associated with two mouscbuttons. This accelerator lets the user click with,
e.g., mousebution? on a document name and have it displayed, and then click with mousebutton3 to
have it dropped. The modifications to implement the accelerator should by now be obvious:

select_file group::

mousebutton:- : peneric message for all mousebuttons
| # pick_up [flag : FILEBOX ...] : As above
mousebutton1:-
cmd = nil
mousebution?:-
cmd = # Display
mousebutton3:-
cmd = # Drop
picked:-
Previously described actions...
@ cmd ; send the command
; either Display or Drop

Previously described rules for Drop, display and menu...

The process of refining the Ul may continue endlessly. For instance it would be relatively easy
to provide a Macintosh-like “trashcan” for dropping documents as dragging and selecting are fully sup-
ported in ACHILLES. The limits of these modifications are simply the imagination of the UI designers.

6. Conclusions.

From the examples of the previous section it is obvious that an iterative approach to user inter-
face design becomes feasible using ACHILLES. Some of the major advantages of the system are the
following:

. Changes to the UI can be made quickly and simply.
. Interfaces can easily be adapted to changing needs and expertise.

. User-computer dialogues are described in an understandable way, allowing easier comprehension
and maintenance of Uls,

Other capabilities of ACHILLES, such as suspended time editing, and reusability of its code
make the design of a user interface more pleasant as well.

The experience presented here shows that ACHILLES is a powerful system for producing user
interfaces. It displays promising capabilities that allow quick construction of clean and reliable inter-
faces. Future plans include the complete implementation of the entire user interface of MUSE, as well
as of other interfaces in the IWS and other projects of the Institute of Computer Science, as ACHILLES
evolves. Moreover, in what concems MUSE, once the complete user interface is successfully imple-
mented, we plan 1o take advantage of the case of modifications provided by ACHILLES to follow on

the recommendations of the evaluation of MUSE, thus demonstrating a complete, purposeful, iterative
user interface design.

Acknowledgements

‘ The ACH:ILLES UIMS owes its existence to the ideas of Ed Brown, and in part S, Hull. Sub-
stantial contribution to the implementation has been made by Dionissis Pnevmatikatos.

- 10 -

References

Brow8é.
Brown, E., ACHILLES: UIMS for an Intelligent Workstation - Development Specifications,
October 1986.

Buxt83.
Buxton W., Lamb, M.R., Sherman D., and Smith K.C.,, ““Towards A comprehensive User Inter-

face Management System,”” SIGGRAPH 83 Conference Proceedings Comp. Graphics, vol. 17, no.
3, 1983.

Espri4.
Maffah N., Kempen G., Rohmer J., Sieels L., Tsichritzis D., and White G., Intelligent Workstation
in the Office: State of the Art and future perspectives, November 1984,

Espri6.
Brown E., Overview aof a UIMS for an Intelligent Worlkstation, November 1984,

Foleg4.

Foley J., Wallace V.L., and Chan Peggy., “*The Human Factors of Computer Graphics Interaction
Techniques,”” JEEE CG&A, November 1984,

Gibb87. :
S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, and Y. Yeorgaroudakis, “*Muse: A multimedia
filing system,”” JEEE Software, vol. 4, no. 2, pp. 4-15, March 1987.

Gree&s,

Green, M., ““The Design of Graphical User Interfaces.,’” Technical Report, CSRI-170, University
of Toronto, 1985.

Hill87 .

Hill, R., “*Supporting Cuncurrency, Communication and Synchronization in Human-Computer
Interaction,”” Thesis-University of Toronto, 1987.

Hull8s.

Hull, 5., **A Study Of User Interface Management Sysiems,”” Departement of Computer Science,
University of Toronto,, 1985.

Hull86.

Hull, §., **A Survey Of User Interface Management Systems,” Insiitute of Computer Science,
Research Center of Crete,, January 1986.

Kasif2,

Kasik David J., **A User Interface Management System,”’ Computer Graphics, vol. 16, no. 3,
July 1982,

Kasig7.

Kasik David et al., “*Using a User Interface Management System.,”” User Interface Management
Systems, Siggraph '87, Course Notes, Anaheim, California, July 27-31, 1987.

]

LeLo8S.
A. Lee, and F. Lochovsky, “*User Interface Design,”” Office Automation, Springer-Verlag, 1985.

Mult86.
P, Constantopoulos, Y. Yeorgaroudakis, M. Theodoridou, D. Konstantas, K. Kreplin, H. Eirund,
A. Fitas, P. Savino, A. Convenii, L. Martino, F. Rabbiu, E. Bertino, C. Thanos, and T. Beestra,
“Office Document Retrieval In Multos,”” Procs of Esprit Technical Week '86, September 1986.

Olse84.
Olsen Dan et al., **A Context For User Interface Mangament,”” JEEE CG&A, December 1984,

Olses7.
Olsen Dan R., “‘Mike: The Menu Interaction Kontrol Environment,” User Interface Management
Systems, Siggraph '87, Course Notes, Anaheim, California, July 27-31, 1987.

Schng3.
Schneiderman Ben., “*Direct Manipulation: A Step Beyond Programming Languages,”” IEEE
Computer, , August 1983,

Sigr87,
“*User Interface Management Systems,’’ Siggraph '87, Course Notes, Anaheim, California, July
27-31, 1987.

Sun8s .
“Suntools(l) " Sun Workstation Commands Reference Manual, Sun Microsystems, May 1985.

Tann84.

Tanner Peter and Buxton William., **Some Issues in Future User Interface Managment Develop-
ment,"" Seeheim Workshop on User Interfaces Managment Systems, Springer-Verlag, 1984,

Wong82,

Wong P.C.5., and Reid ER.,, “*FLAIR-User Interface Dialog Design Tool,”” Computer Graphics,
vol. 16, no. 3, pp. 87-106, July 1982,

Yeor87.
Y. Yeorgaroudakis, P. Constantopoulos, and M. Theodoridou, *‘Muse: A an experimental system

for filing and retrieval of multimedia documents,”” Information and Software Technology, (Submit-
ted for publication)..

