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Introduction

Motivation : shape metrics : needed for shape evolutions, shape matchings, shape

priors...; how to choose the right metric ?

Aim : estimate a suitable metric automatically from a training set of shapes

Difficulties :

• sets of shapes : high-dimensional and sparse (human silhouettes > 30 dim.)

•much variability : no meaningful mean shape

• probable deformations differ depending on the shape of interest

• no reliable matching between very different shapes; topological changes

• kernel methods : no explicit deformation priors + unaffordable density (high dim.)

Method : search for the optimal metrics, based on:

•matchings between close shapes, possibly topologically different

• transport, from matchings, with reliability weights

• increased density with transported deformations

• inner products fit empirical distributions of deformations (local PCAs)

• regularizer : shape 7→ metric is smooth for Kullback-Leibler div.

• result is global optimum of a criterion on metrics

Matching close shapes
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•Optimization : dynamic time warping

•Possible matching to ∅ (vanishing points)

•Oversampling of targets

•Convergence proof in the simple case

when sampling rates get finer Why over-

sample targets.

Link between Kullback-Leibler and PCA

In the tangent space of one shape :

Empirical distribution of deformations : Demp =
∑

j wj δ fj

possibly smoothed by a kernel : DK
emp(f) =

∑

j wj K(fj − f)

Given a inner product of reference P0 (here H1
α),

Inner product P (C0 wrt. P0) = Gaussian distribution : DP (f) ∝ e−‖f‖2
P
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emp) =⇒ P0, weighted PCA(fj, wj)

In case of K, add second moment matrix of K to correlation matrix

Transport : information propagation

→

Set of shapes (Si) =⇒ weighted graph

Pairwise matching costs : Cm
ij = Ematch(mi�j)

Local transport : ∀ h : Sj → X ,

TL
Sj�Si

(h) : Si → X : s 7→ h (mi�j(s))

Reliability : wL
ij = e−αT Cm

ij

Optimal path from Si0 to Sj0
: (i0, i1, . . . , ik = j0)

CG
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=
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Possibility of individualized paths Cm
ij (h)

Optimal transport : TG
i0�j0

= TL
ik−1�j0

◦ · · · ◦ TL
i1�i2
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Reliability : wG
ij = e−αT CG

ij (series of small reliable steps)

Inner products : deformation priors

Samples from the training set (video, 9s, 24Hz)

Local deformations : fi�j = Sj ◦ mi�j − Si

Shape of interest : Sk

Transport : fk
i�j = Ti�k(fi�j), wk

i�j = wL
ij wG

ik

Modes from H1
α, weighted PCA :
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Modes (en, λn) =⇒ inner product 〈· |·〉Pk

Use of inner products as shape matching energy :
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Comparison: PCA on level-sets: mean + first modes

S1

S2

S3

Modes: 1st 2nd 3rd 4th 5th 6th

Optimum of a criterion on metrics

In general, no best smooth direction field (hairy ball theorem)

Criterion for a smooth metric:
∑

i,k wG
ik KL

(

DPk

∣

∣ Ti�k(Demp i
)
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with Demp i
=

∑

j wL
ij δ fi�j

and Ti�k(δ f) = δTi�k(f)

=
∑

k KL(DPk
|DT

empk
), sum of independent terms, where DT
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=
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i,j wk
i�j δ fk

i�j

=⇒ our inner products

Criterion for smooth probability distributions:

inf
g

∑

i

‖gi − g0
i‖

2
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+
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2
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with gi = dDPi
/dµ, g0

i = dDempi
/dµ

Inner products that best fit the optimal g =⇒ ours

Discussion require handle high global handle explicit defor- criterion
a mean variability coherency sparse sets mation prior on metrics

mean + modes (PCA) yes no - - yes yes

kNN + local PCAs no yes no no yes no

kernels on distances no yes yes no no yes

transport + KL reg. no yes yes yes yes yes

Conclusions :

•Transport = density enhancer,

more representative neighborhoods

•Particular suitability to video datasets

• Link Kullback-Leibler ⇐⇒ PCA
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