Learning Shape Metrics based on Deformations and Transport

Pulsar Team, INRIA, Sophia-Antipolis, France

Introduction

Motivation : shape metrics : needed for shape evolutions, shape matchings, shape priors...; how to choose **the right metric** ?

<u>Aim</u>: estimate a suitable metric automatically from a training set of shapes Difficulties :

- sets of shapes : **high-dimensional** and **sparse** (human silhouettes ≥ 30 dim.)
- much **variability** : no meaningful *mean* shape
- probable deformations differ depending on the shape of interest
- no reliable matching between very different shapes; topological changes
- kernel methods : no explicit deformation priors + unaffordable density (high dim.)

Method : search for the **optimal metrics**, based on:

- matchings between close shapes, possibly topologically different
- transport, from matchings, with reliability weights
- increased density with transported deformations
- inner products fit empirical distributions of deformations (local PCAs)
- regularizer : $shape \mapsto metric$ is **smooth** for Kullback-Leibler div.
- result is global optimum of a criterion on metrics

Matching close shapes

- Possible matching to \emptyset (vanishing points)
- Oversampling of targets
- Convergence proof in the simple case when sampling rates get finer

Link between Kullback-Leibler and PCA

In the tangent space of one shape : Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_{j} \delta_{\mathbf{f}_{i}}$ possibly smoothed by a kernel : $\mathcal{D}_{emp}^{\mathcal{K}}(\mathbf{f}) = \sum_{j} w_{j} \mathcal{K}(\mathbf{f}_{j} - \mathbf{f})$

Given a inner product of reference P_0 (here H^1_{α}), Inner product $P(\mathcal{C}^0 \text{ wrt. } P_0) = \text{Gaussian distribution} : \mathcal{D}_P(\mathbf{f}) \propto e^{-\|\mathbf{f}\|_P^2}$ $\inf KL(\mathcal{D}_P | \mathcal{D}_{emp}^{(\mathcal{K})}) \implies P_0, \text{ weighted } PCA(\mathbf{f}_j, w_j)$ In case of \mathcal{K} , add second moment matrix of \mathcal{K} to correlation matrix

Discussion	require a mean	handle high variability	global coherency	handle sparse sets	explicit defor- mation prior	criterion on metrics	
mean + modes (PCA)	yes	no	-	-	yes	yes	
kNN + local PCAs	no	yes	no	no	yes	no	
kernels on distances	no	yes	yes	no	no	yes	
transport + KL reg.	no	yes	yes	yes	yes	yes	
 Conclusions : Transport = density more representative Particular suitability Link Kullback-Leible 			5NN and 10NN mean				