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Context In the last decade, Machine Learning, and more specifically deep neural networks, have thoroughly
renewed the research perspectives in many fields. Despite indisputable successes however, the introduction of
ML approaches in physical systems remains a challenge to overcome the lack of confidence, acceptability,
guarantees and explainability. This project aims at developing new Machine Learning techniques tailored to
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Figure 1.  Analysis of the mutual in!uence between temperature T and CO2 concentration in paleoclimate 
data. Panels (a) and (b) show the deviation from average of the two signals as a function of time (blue curves), 
normalized by the standard deviation. "e daily mean insolation at 65◦ N summer solstice, revealing the 
typical time scales of the external driving, is also reported (red curves; see “Methods” sections for details on 
the data sources). In panels (c) and (d) the response function, computed according to the Generalized FDR, is 
plotted. "e analytical formula is given by the non-diagonal elements Rxy(t) and Ryx(t) of the linear response 
matrix (4), where x and y are the normalized [CO2 ] and T signals shown in panels (a), (b) (and their high-pass 
$ltered analogues). Panel (c) refers to the e%ect of T on [CO2 ], while panel (d) shows the opposite relation. 
Red circles represent the results of a direct application of Eq. (3) on raw data, apparently suggesting that T →
[CO2 ] is stronger than [CO2]→ T . "e response on data $ltered over Tw = 3 kyr window (blue squares) instead 
indicates that the impact of [CO2 ] on T becomes larger. "e result is robust with respect of Tw variations by 
one kyr (green up/down triangles). A similar analysis, where TE are computed instead of generalised FDR, 
is shown in Panels (e) and (f). Here, we have considered the data for which the temporal resolution of the 
temperature record has been degraded to become similar to that of CO2 concentration, as discussed in the 
“Methods” section. For the undegraded temperature data, the role of CO2 driving is even larger, see Fig. S5 of 
the Supplemental Material.

Figure 1: Analysis of the mutual influence between temperatureT and CO2 concentration in paleoclimate data.
(From Nature Sci. Rep.)

the modelling and inference of physical complex systems.
Project A recurrent problem in Physics and Engineering Sciences is to try to predict the future evolution

of a physical system according to the partial information known at the current time, and possibly during a
recent past. In the absence of a model, this evolution must be learned from the available data and usually takes
the form of an optimization problem, possibly under constraints, informed by the potentially large number of
observables. This optimization problem can then be of large size and thus present all the associated problems
(many local minima of the cost function, need for a lot of data, etc.). To improve the quality (e.g., generalizabil-
ity) and the efficiency of the learning process (e.g., amount of data needed, dimension of the optimization space,
computational load, etc.), it is often essential to identify only those observations that have a causal link with
the quantity to be predicted. As an example, the modeling of closure terms in Large Scale Simulation (LSS)
in fluid mechanics is often based on a fixed support (stencil) chosen a priori whereas the cone of information
conditioning the temporal evolution of a variable varies in space and as a function of the flow regime, or even
time. In order to avoid conservative choices that have a strong impact on quality and efficiency, it is essential
to determine this cone and to restrict the learning problem to it.

More generally, to understand the causality relation between different phenomena is one of the most impor-
tant, and difficult, issue in physics as well as in philosophy. An example is given in figure concerning climate
time-series. Recent results in statistical physics suggest that in some cases the causality link could be under-
stood. It would be very interesting to develop learning strategy capable to recognise this link, and this is the
ultimate goal of the project.

The project is strongly interdisciplinary with an interplay of applied mathematics, statistical physics, fluid
mechanics and informatics. Depending on the skills of the candidate, different tracks can be explored, for
instance learning a representation space aimed at highlighting mutual information between variables from dif-
ferent times.
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