Shape Statistics

Aim : object classification or recognition, by building priors on the shape of the object, considering the information given by a sample set of different examples of this object.

Technical considerations

We use the Level-Set technique, ie we represent a curve by the zero-level of a function defined on the whole plane, and not by a list of points.

Curve Warping

Let A and B be two planar curves. We would like to warp continuously A to B.

Shape space, derivatives, Hausdorff distance

We consider the space \mathcal{X} of all curves A in $\mathcal{C}^2(\mathbb{S}_1, \mathbb{R}^2)$ such that $\|\partial_p A(p)\|$ does not vary with p.

Deformation fields for a given curve A : elementary deformations which one can apply to A.

 \hookrightarrow fields δA in $\mathcal{C}^1(\mathbb{S}_1, \mathbb{R}^2)$, with the intuitive warping

 $A(p) \mapsto A(p) + \delta A(p)$

 \hookrightarrow normal fields β in $\mathcal{C}^1(\mathbb{S}_1,\mathbb{R})$, with the warping

$$A(p) \mapsto A(p) + \beta(p) \ \vec{n}(p)$$

 \hookrightarrow scalar product in the tangent space :

$$\langle \beta_1 | \beta_2 \rangle = \int_A \beta_1 \beta_2 d\sigma$$

Natural distances

Natural "geodesic distance" :

$$d_G(A,B) = \inf_{\Gamma \in \mathcal{F}(A,B)} \int_{\Gamma} \|\Gamma'(t)\| dt$$

where $\mathcal{F}(A, B)$ is the set of all paths in \mathcal{C}^1 going from A to B.

Hausdorff distance :

$$d_H(A,B) = \sup_{x \in A} d(x,B) + \sup_{y \in B} d(y,A)$$

Not derivable...

Derivative of a function E with respect to a curve : linear function L such that, for all deformation field v :

$$Lv = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (E(A + \varepsilon v) - E(A))$$

 \hookrightarrow gradient : deformation field $\nabla E(A)$ satisfying, for all v,

$$Lv = \langle \nabla E(A) | v \rangle$$

 \hookrightarrow gradient descent on E :

$$\partial_t \mathcal{C} = \nabla E(\mathcal{C}(t))$$

or

$$\partial_t \mathcal{C} = \frac{\nabla E(\mathcal{C}(t))}{\|\nabla E(\mathcal{C}(t))\|}$$

Smoothing Hausdorff, Notations

We need a smooth function for a gradient descent, near from the Hausdorff distance.

Main idea : if f is a positive continuous function :

$$\lim_{\alpha \to \infty} \left(\int_A \left(f(y) \right)^{\alpha} dy \right)^{1/\alpha} = \sup_{y \in A} f(y)$$

 \hookrightarrow smooth approximation of \sup_A :

$$\left(\int_A \left(f(y)\right)^{lpha} dy\right)^{1/lpha}$$

for any real α .

Notation for a mean quantity :

$$\langle f \rangle_A = \frac{1}{|A|} \int_A f$$

 \hookrightarrow For a suitable mesurable injective function φ :

$$\langle f \rangle_A^{\varphi} = \varphi^{-1} \left(\frac{1}{|A|} \int_A \varphi \circ f \right)$$

 \hookrightarrow if Ψ grows quickly :

$$\langle f \rangle^{\Psi}_A \simeq \sup f$$

 \hookrightarrow if φ decreases quickly :

$$\langle f\rangle^{\varphi}_A\simeq \inf f$$

 \hookrightarrow approximation of the Hausdorff distance :

$$\max\left(\left.\left\langle \langle d(\cdot,\cdot)\rangle^{\varphi}_{B}\right\rangle^{\Psi}_{A}, \left.\left\langle \langle d(\cdot,\cdot)\rangle^{\varphi}_{A}\right\rangle^{\Psi}_{B}\right\rangle\right.$$

Particular case : approximation of the max of two numbers :

$$\langle a,b\rangle^{\Psi} = \Psi^{-1}\left(\frac{1}{2}\Psi(a) + \frac{1}{2}\Psi(b)\right)$$

$$E_H(A,B) = \left\langle \left\langle \left\langle d(\cdot,\cdot) \right\rangle_B^{\varphi} \right\rangle_A^{\psi}, \left\langle \left\langle d(\cdot,\cdot) \right\rangle_A^{\varphi} \right\rangle_B^{\psi} \right\rangle^{\Psi} \right\rangle^{\Psi}$$

 \hookrightarrow Max of two lengths :

$$E_L(A,B) = \langle |A|, |B| \rangle^{\Psi}$$

 \hookrightarrow Hybrid energy :

 \hookrightarrow

$$E_M = \left\langle E_H, \eta E_L \right\rangle^{\Phi}$$

where η is the ratio of the characteristical lengths in the problem (distance between curves, length difference).

Problems with E_H :

- \hookrightarrow not a distance on the space of curves ${\mathcal X}$,
- $\hookrightarrow \forall A \in \mathcal{X}, \ E_H(A, A) \neq 0,$
- \hookrightarrow two curves A and B may satisfy $E_H(A, A) > E_H(A, B)$,
- \hookrightarrow a gradient descent with respect to C on $E_H(C,B)$ from A does not necessarily end at C = B,
- \hookrightarrow a gradient descent from *B* to *A* does not follow the same path as the one from *A* to *B*.

But : E_H is near from d_H : for a suitable choice of functions ψ , Ψ and Φ , we have, for all curves A and B in \mathcal{X} :

$$d_{H}(A,B) - \left(\alpha_{\Psi} + \alpha_{\psi} + \Delta_{\Phi} \frac{|A| + |B|}{2}\right)$$

$$\leq$$

$$E_{H}(A,B)$$

$$\leq$$

$$|A| + |B|$$

$$d_H(A,B) + \left(\alpha_{\Phi} + \Delta_{\Psi} \frac{|A| + |D|}{2}\right)$$

where $\alpha_{\Psi}\text{, }\alpha_{\psi}$ and Δ_{Φ} are constants.

Examples

We consider for increasing functions some of the kind $x \mapsto x^{\alpha}$ and for the decreasing ones $(x + \varepsilon)^{-\alpha}$.

 \hookrightarrow we choose α near 4...

Mean of Curves, Characteristical Deformations

We consider n curves A_i , and search for their mean M:

- \hookrightarrow minimize $\sum_i E(M, A_i)^{\alpha}$, where $\alpha = 1$ or 2,
- \hookrightarrow we hope there will not be two many local minima.
- \hookrightarrow in practice, it works for reasonable cases.

We consider the curves A_i and their mean, M. We would like to define and compute their « characteristical deformations », ie some kind of "standard deviation" but defined for curves.

We note $\delta_i = \nabla_M E(M, A_i)^2$

We build the correlation matrix :

$$\Delta_{i,j} = \left\langle \delta_i \left| \delta_j \right\rangle \right.$$

and in diagonalizing it, we obtain from the eigenvectors linear combinations of the deformations, hence characteristical deformations β_k .

Standard application : segmentation with priors.

 \hookrightarrow knowledge of a mean shape and of the characteristical allowed deformations

Other application : notion of similarity.

We keep the *m* first modes of deformation. For any curve *Y*, its distance to the set (curve M + deformations β_k) can be :

$$\sum_{k \leq m} \frac{\left\langle \nabla_M E(M,Y)^2 \left| \beta_k \right\rangle^2}{\sigma_k^2} + \frac{\left\| R(\nabla_M E(M,Y)^2) \right\|^2}{\sigma_R^2}$$

where

$$R(eta) = eta - \sum_{k \leqslant m} raket{eta|eta_k}eta_k$$

and

$$\sigma_R^2 = \frac{1}{|\mathcal{H}|} \sum_{C \in \mathcal{H}} ||R(C)||^2$$