Shape Statistics

Aim : object classification or recognition, by building priors on the shape of the object, considering the information given by a sample set of different examples of this object.

Technical considerations

We use the Level-Set technique, ie we represent a curve by the zero-level of a function defined on the whole plane, and not by a list of points.

Curve Warping

Let A and B be two planar curves. We would like to warp continuously A to B.

Shape space, derivatives, Hausdorff distance

We consider the space \mathcal{X} of all curves A in $\mathcal{C}^{2}\left(\mathbb{S}_{1}, \mathbb{R}^{2}\right)$ such that $\left\|\partial_{p} A(p)\right\|$ does not vary with p.

Deformation fields for a given curve A : elementary deformations which one can apply to A.
\hookrightarrow fields δA in $\mathcal{C}^{1}\left(\mathbb{S}_{1}, \mathbb{R}^{2}\right)$, with the intuitive warping

$$
A(p) \mapsto A(p)+\delta A(p)
$$

\hookrightarrow normal fields β in $\mathcal{C}^{1}\left(\mathbb{S}_{1}, \mathbb{R}\right)$, with the warping

$$
A(p) \mapsto A(p)+\beta(p) \vec{n}(p)
$$

\hookrightarrow scalar product in the tangent space :

$$
\left\langle\beta_{1} \mid \beta_{2}\right\rangle=\int_{A} \beta_{1} \beta_{2} d \sigma
$$

Natural distances

Natural "geodesic distance" :

$$
d_{G}(A, B)=\inf _{\Gamma \in \mathcal{F}(A, B)} \int_{\Gamma}\left\|\Gamma^{\prime}(t)\right\| d t
$$

where $\mathcal{F}(A, B)$ is the set of all paths in \mathcal{C}^{1} going from A to B.

Hausdorff distance :

$$
d_{H}(A, B)=\sup _{x \in A} d(x, B)+\sup _{y \in B} d(y, A)
$$

Not derivable...

Derivative of a function E with respect to a curve : linear function L such that, for all deformation field v :

$$
L v=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(E(A+\varepsilon v)-E(A))
$$

\hookrightarrow gradient : deformation field $\nabla E(A)$ satisfying, for all v,

$$
L v=\langle\nabla E(A) \mid v\rangle
$$

\hookrightarrow gradient descent on E :

$$
\partial_{t} \mathcal{C}=\nabla E(\mathcal{C}(t))
$$

or

$$
\partial_{t} \mathcal{C}=\frac{\nabla E(\mathcal{C}(t))}{\|\nabla E(\mathcal{C}(t))\|}
$$

Smoothing Hausdorff, Notations

We need a smooth function for a gradient descent, near from the Hausdorff distance.

Main idea : if f is a positive continuous function :

$$
\lim _{\alpha \rightarrow \infty}\left(\int_{A}(f(y))^{\alpha} d y\right)^{1 / \alpha}=\sup _{y \in A} f(y)
$$

\hookrightarrow smooth approximation of $\sup _{A}$:

$$
\left(\int_{A}(f(y))^{\alpha} d y\right)^{1 / \alpha}
$$

for any real α.

Notation for a mean quantity :

$$
\langle f\rangle_{A}=\frac{1}{|A|} \int_{A} f
$$

\hookrightarrow For a suitable mesurable injective function φ :

$$
\langle f\rangle_{A}^{\varphi}=\varphi^{-1}\left(\frac{1}{|A|} \int_{A} \varphi \circ f\right)
$$

\hookrightarrow if Ψ grows quickly:

$$
\langle f\rangle_{A}^{\Psi} \simeq \sup f
$$

\hookrightarrow if φ decreases quickly:

$$
\langle f\rangle_{A}^{\varphi} \simeq \inf f
$$

\hookrightarrow approximation of the Hausdorff distance :

$$
\max \left(\left\langle\langle d(\cdot, \cdot)\rangle_{B}^{\varphi}\right\rangle_{A}^{\Psi},\left\langle\langle d(\cdot, \cdot)\rangle_{A}^{\varphi}\right\rangle_{B}^{\Psi}\right)
$$

Particular case : approximation of the max of two numbers :

$$
\langle a, b\rangle^{\Psi}=\Psi^{-1}\left(\frac{1}{2} \Psi(a)+\frac{1}{2} \Psi(b)\right)
$$

\hookrightarrow

$$
E_{H}(A, B)=\left\langle\left\langle\langle d(\cdot, \cdot)\rangle_{B}^{\varphi}\right\rangle_{A}^{\psi},\left\langle\langle d(\cdot, \cdot)\rangle_{A}^{\varphi}\right\rangle_{B}^{\psi}\right\rangle^{\psi}
$$

\hookrightarrow Max of two lengths :

$$
E_{L}(A, B)=\langle | A|,|B|\rangle{ }^{\psi}
$$

\hookrightarrow Hybrid energy :

$$
E_{M}=\left\langle E_{H}, \eta E_{L}\right\rangle^{\Phi}
$$

where η is the ratio of the characteristical lengths in the problem (distance between curves, length difference).

Problems with E_{H} :
\hookrightarrow not a distance on the space of curves \mathcal{X},
$\hookrightarrow \forall A \in \mathcal{X}, \quad E_{H}(A, A) \neq 0$,
\hookrightarrow two curves A and B may satisfy $E_{H}(A, A)>E_{H}(A, B)$,
\hookrightarrow a gradient descent with respect to C on $E_{H}(C, B)$ from A does not necessarily end at $C=B$,
\hookrightarrow a gradient descent from B to A does not follow the same path as the one from A to B.

But : E_{H} is near from d_{H} : for a suitable choice of functions ψ, Ψ and Φ, we have, for all curves A and B in \mathcal{X} :

$$
\begin{gathered}
d_{H}(A, B)-\left(\alpha_{\psi}+\alpha_{\psi}+\Delta_{\Phi} \frac{|A|+|B|}{2}\right) \\
\leqslant \\
E_{H}(A, B) \\
\leqslant \\
d_{H}(A, B)+\left(\alpha_{\Phi}+\Delta_{\psi} \frac{|A|+|B|}{2}\right)
\end{gathered}
$$

where $\alpha_{\psi}, \alpha_{\psi}$ and Δ_{Φ} are constants.

Examples

We consider for increasing functions some of the kind $x \mapsto x^{\alpha}$ and for the decreasing ones $(x+\varepsilon)^{-\alpha}$.
\hookrightarrow we choose α near $4 \ldots$

$$
10
$$

Mean of Curves, Characteristical Deformations

We consider n curves A_{i}, and search for their mean M :
\hookrightarrow minimize $\sum_{i} E\left(M, A_{i}\right)^{\alpha}$, where $\alpha=1$ or 2 ,
\hookrightarrow we hope there will not be two many local minima.
\hookrightarrow in practice, it works for reasonable cases.

MM

We consider the curves A_{i} and their mean, M. We would like to define and compute their «characteristical deformations», ie some kind of "standard deviation" but defined for curves.

We note $\delta_{i}=\nabla_{M} E\left(M, A_{i}\right)^{2}$
We build the correlation matrix :

$$
\Delta_{i, j}=\left\langle\delta_{i} \mid \delta_{j}\right\rangle
$$

and in diagonalizing it, we obtain from the eigenvectors linear combinations of the deformations, hence characteristical deformations β_{k}.

$$
\mathbb{Z} \hat{S}
$$

Standard application : segmentation with priors.
\hookrightarrow knowledge of a mean shape and of the characteristical allowed deformations

Other application : notion of similarity.
We keep the m first modes of deformation. For any curve Y, its distance to the set (curve $M+$ deformations β_{k}) can be :

$$
\sum_{k \leqslant m} \frac{\left\langle\nabla_{M} E(M, Y)^{2} \mid \beta_{k}\right\rangle^{2}}{\sigma_{k}^{2}}+\frac{\left\|R\left(\nabla_{M} E(M, Y)^{2}\right)\right\|^{2}}{\sigma_{R}^{2}}
$$

where

$$
R(\beta)=\beta-\sum_{k \leqslant m}\left\langle\beta \mid \beta_{k}\right\rangle \beta_{k}
$$

and

$$
\sigma_{R}^{2}=\frac{1}{|\mathcal{H}|} \sum_{C \in \mathcal{H}}\|R(C)\|^{2}
$$

