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ABSTRACT

We address the pixelwise classification of high-resolution
aerial imagery. While convolutional neural networks (CNNs)
are gaining increasing attention in image analysis, it is still
challenging to adapt them to produce fine-grained classifi-
cation maps. This is due to a well-known trade-off between
recognition and localization: the impressive capability of
CNNs to recognize meaningful objects comes at the price
of losing spatial precision. We here propose an architecture
that addresses this issue. It learns features at different levels
of detail and also learns a function to combine them. By
integrating local and global information in an efficient and
flexible manner, it outperforms previous techniques.

Index Terms— High-resolution aerial images, classifica-
tion, deep learning, convolutional neural networks.

1. INTRODUCTION

Dense image classification, or semantic labeling, is the prob-
lem of assigning a semantic class to every pixel in an image.
In certain application domains, such as urban mapping, it is
important to provide fine-grained classification maps where
object boundaries are precisely located. Over the last few
years, deep learning and more specifically convolutional
neural networks (CNNs) have gained significant attention in
the community. In particular, fully convolutional networks
(FCNs) [1, 2] have become the standard for dense labeling.

To successfully classify a high-resolution aerial image, in-
stead of only considering spectral reflectance values for each
individual pixel, we must derive complex features that take
into account a large amount of spatial context around each
pixel. In CNNs this translates to a network with a large re-
ceptive field, defined as the spatial extent of the input image
on which the network relies to classify a pixel (how far an
output neuron can “see” in the image).

Instead of using huge convolution kernels, CNNs progres-
sively downsample the feature maps through the network to
enlarge the overall receptive field and add robustness to spa-
tial deformations, without increasing the number of param-
eters. This is often done by pooling features together in a
window. However, spatial precision is lost in the process:
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Fig. 1: Context taken to classify the central pixel. High-
resolution everywhere (a). Higher resolution near the clas-
sified pixel (b).

the increased receptive field (and thus recognition capability)
comes at the price of losing localization capability, leading to
overly coarse outputs [1]. We propose a novel CNN architec-
ture that addresses this trade-off to generate high-resolution
classification maps.

2. HIGH-RESOLUTION LABELING CNNS

While it is clearly important to take large amounts of context
into account, let us remark that we do not need this context
at the same spatial resolution everywhere. For example, let
us suppose we want to classify the central pixel of the patch
in Fig. la. Such a gray pixel, taken out of context, could be
easily confused with an asphalt road. Considering the whole
patch at once helps to infer that the pixel belongs indeed to a
gray rooftop. However, two significant issues arise if we take
a full-resolution large patch as context: a) it requires many
computational resources that are actually not needed for an
effective labeling, and b) it does not provide robustness to
spatial variation (the exact location of certain features might
not be relevant). It is indeed not necessary to observe all sur-
rounding pixels at full resolution: the farther we go from the
pixel we want to label, the lower the requirement to know the
exact location of the objects. Therefore, we argue that a com-
bination of reasoning at different resolutions is necessary to
conduct fine labeling if we wish to take a large context into
account in an efficient manner. We consider this to be the cor-
nerstone principle to derive efficient high-resolution semantic
labeling architectures.

There have been recent research efforts to adapt FCNs to
provide detailed high-resolution outputs. We can group the
state-of-the-art methods into three categories. The family of
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Fig. 2: MLP network: intermediate CNN features are con-
catenated, to create a pool of features. Another network learns
how to combine them to produce the final classification.

dilation networks [3] uses dilated convolutions (i.e., connect-
ing the elements of a convolution kernel to non-contiguous
locations of the previous layer) to improve the receptive field
size without adding trainable parameters. While this indeed
increases the receptive field, it does not provide robustness to
spatial variation per se and is computationally demanding.

The category of deconvolution networks [4, 5, 6] adds a
series of layers to learn to interpolate and upsample the out-
put of an otherwise coarse FCN. This is usually formulated as
an encoder/decoder architecture, where a base network is first
designed (the encoder) and then a reflected version of itself
is attached to it (the decoder, with corresponding “deconvo-
lution” and “unpooling” layers). The depth of the network is
doubled, making it slower and more difficult to optimize. In
addition, it can only recover the lost resolution when the in-
dices of the maximal activation of the max-pooling layers are
transmitted to the corresponding decoder unpooling layers.

Finally, skip networks [1, 7] create multiple classification
maps from different CNN layers (at different resolutions), in-
terpolate them to match the highest resolution and add the
results to create a final classification map. While the idea
of extracting different resolutions is certainly relevant to the
principle of Fig. 1, the skip model is arbitrary and insuffi-
ciently flexible in how to combine them. We propose next
an alternative scheme for high-resolution labeling, leveraging
the benefits of the skip network while addressing its potential
limitations.

3. LEARNING TO COMBINE RESOLUTIONS

Taking multiple intermediate features at different resolu-
tions and combining them seems to be a sensible approach
to specifically address the localization/recognition trade-off,

as done with skip networks. In such a scheme, the high-
resolution features have a small receptive field, while the
low-resolution ones have a wider receptive field. Combining
them constitutes indeed an efficient use of resources, since
we do not actually need the high-resolution filters to have a
wide receptive field, following the principle of Fig. 1.

The skip network combines classification maps derived
from the different resolutions. We argue though that it is
more appropriate to combine features, not classification maps.
For example, to refine the boundaries of a coarse building,
we may use high-resolution edge detectors (and not high-
resolution building detectors).

Our proposed scheme is depicted in Fig. 2. We depart
from a common FCN with convolutional and subsampling
layers (the topmost part of Fig. 2). A subset of intermedi-
ate features maps is extracted from this network, which are
naively upsampled to match the resolution of the higher-
resolution features. These maps are concatenated to create a
pool of features, emanating from different resolutions, which
are treated with equal importance. We must now learn how to
combine these features to yield the final classification verdict.
For this, a neural network takes as input the pool of features
and predicts the final classification map (we could use other
classifiers, but this lets us train the system end to end). We
assume that all the spatial reasoning has been conveyed in the
features computed by the initial CNN, therefore this second
network operates on a pixel-by-pixel basis to combine the fea-
tures. This way we conceptually and architecturally separate
the extraction of spatial features from their combination.

We can think of the multi-layer perceptron (MLP) [8] with
one hidden layer and a non-linear activation function as a min-
imal system to learn how to combine the pool of features.
Such MLPs can learn to approximate any function and, since
we do not have any particular constraints, it seems an appro-
priate choice. In practice, this is implemented as a sequence
of convolutional layers with 1 x 1 kernels, since we want to
apply the same MLP at every individual pixel.

The proposed technique, which we refer to as MLP, learns
how to combine information at different resolutions. An ex-
ample of the type of relation we are able to convey in this
scheme is as follows: “label a pixel as building if it is red
and belongs to a larger red rectangular structure, which is sur-
rounded by areas of green vegetation and near a road”.

4. EXPERIMENTAL RESULTS

We evaluate our architecture on two benchmarks of aerial im-
age labeling: Vaihingen and Potsdam, provided by ISPRS!'.
The Vaihingen dataset is composed of 33 image tiles (of av-
erage size 2494 x 2064), out of which 16 are fully annotated
with class labels. The spatial resolution is 9 cm. The images
are split into training and validations sets following [3, 6, 9].
Potsdam dataset consists of 38 tiles of size 6000 x 6000 at

Thttp://www2.isprs.org/commissions/comm3/wg4/semantic-labeling html



Table 2: Comparison of our base FCN and derived architectures (Vaihing.)

Imp. surf.  Building Lowveg.  Tree Car | MeanFl | Acc.
Base FCN 91.46 94.83 79.19 8789  72.25 85.14 | 88.61
. . Unpooling 91.17 95.16 79.06 8778 69.49 84.54 | 8855
Table 1: Architecture of our base FCN. Skip 91.66 95.02 79.13  88.11 7796 | 8638 | 88.80
MLP 91.69 95.24 79.44 8812 7842 | 86.58 | 88.92
Layer Filter size  N. of filters  Stride  Padding
Conv-1_1 5 32 2 2 Table 3: Comparison of our base FCN and derived architectures (Potsdam)
Conv-12 3 32 1 1
Pool-1 2 2 Imp. surf. Building Low veg. Tree Car Clutter Mean F1 Acc.
Conv-2_1 3 64 1 1 Base FCN 8833 93.97 3411 3030 86.13 7535 3470 | 86.20
Conv-22 3 64 1 1 Unpooling 87.00 92.86 82.93 78.04 8485 7247 83.03 84.67
Pool-2 2 2 Skip 89.27 9421 84.73 81.23 9347  75.18 86.35 86.89
Conv-3_1 3 9% 1 1 MLP 89.31 94.37 84.83 81.10 9356  76.54 86.62 | 87.02
Conv-322 3 9% 1 1
Pool-3 2 2 . . . .
Conv-d.1 3 128 1 | Table 4: Comparison of MLP with other methods on Vaihingen val. set.
Conv-4.2 3 128 1 1 Imp. surf.  Build.  Low veg. Tree Car Fl Acc.
Pool 4 2 2 CNN+RF [9] 3358 94.23 76.58 8629 6758 | 82.65 | 86.52
Conv-Score 1 5 1 CNN+RF+CRF [9] 89.10 94.30 7736 8625 7191 | 83.78 | 86.89
Deconvolution [6] 83.58 87.83
Dilation [3] 90.19 94.49 77.69 8724 7677 | 85.28 | 87.70
Dilation + CRF [3] 90.41 94.73 78.25 8725 7557 | 85.24 | 87.90
MLP 91.69 95.24 79.44 8812 78.42 | 86.58 | 88.92

a spatial resolution of 5 cm, out of which 24 are annotated.
Training/validation set is split as in [3]. Both datasets are la-
beled into six classes (see Fig. 3). In the case of Vaihingen
we predict five classes, ignoring the clutter class, due to the
lack of training data for that class. In the case of Potsdam
we predict all six classes. In both datasets we use NIR, R, G
bands and add the DSM as an extra input channel. In the case
of Potsdam we downsample the input and linearly upsample
outputs by a factor of 2 (as in [3]), to cover a similar receptive
field in terms of meters and not pixels.

To evaluate the overall performance, overall accuracy is
used, i.e., the percentage of correctly classified pixels. To
evaluate class-specific performance, the Fl-score is used,
computed as the harmonic mean between precision and re-
call [6]. We also include the mean F1 measure among classes.

To conduct our experiments, we depart from a base fully
convolutional network (FCN) and derive other architectures
from it?>. Table 1 summarizes our base FCN. Every convolu-
tional layer (except the last one) is followed by a batch nor-
malization layer [10] and a ReLU activation. To produce a
dense pixel labeling we must add a deconvolutional layer to
upsample the predictions by a factor of 16, thus bringing them
back to the original resolution.

To implement a skip network, we extract the features of
layers Conv-*_2, i.e., produced by the last convolution in
each resolution and before max pooling. Additional layers
are added to produce classification maps from the intermedi-
ate features and combined following [1]. Our MLP network
was implemented by extracting the same set of features and
combining them as explained in Section 3. The added multi-
layer perceptron contains one hidden layer with 128 neurons.
We also created an encoder/decoder deconvolution network
that reflects the base FCN (as in [4]), which we refer to as the
unpooling network.

2Code/trained models avail. at github.com/emaggiori/CaffeRemoteSensing

The networks are trained by stochastic gradient descent.
We group five randomly sampled patches (size 256 x 256 for
Vaihingen and 512 x 512 for Potsdam), performing random
flips and rotations, to compute the gradient in every iteration.
We first train the base FCN with a base learning rate of 0.1.
We then initialize the weights of the derived unpooling, skip
and MLP networks with those of the base FCN, and fine-tune
them with a base learning rate of 0.01. Momentum is set to
0.9 and we set the L2 penalty for all parameters to 0.0005.

The classification performances on the validation sets are
recorded in Tables 2 and 3. The skip network effectively en-
hances the results compared with the base network, while the
unpooling strategy does not yield a clear improvement over
the base FCN. The MLP network is the most competitive
method in almost every case, boosting the performance by
learning how to combine features of different resolutions.

As depicted in Table 4, the MLP approach also outper-
forms other methods recently presented in the literature, as
reported by their authors using the same training/validation
sets on Vaihingen.

We submitted the result of executing MLP on the Vaihin-
gen test set to the ISPRS server (ID: ‘INR’), which can be
accessed online. Our method scored second out of 29 meth-
ods, with an overall accuracy of 89.5. Note that the MLP tech-
nique described in this paper is very simple compared to other
methods in the leaderboard, yet it scored better than them.

We include visual comparisons on closeups of classified
images of both datasets in Fig. 3. As expected, the base FCN
tends to output “blobby” objects, while the other methods
provide sharper results. The unpooling technique seems to
be prone to outputting artifacts. Boundaries tend to be more
accurate at a fine level in the case of MLP. For example, the
“staircase” shape of one of the buildings in the first row is
better outlined by the MLP network.

The inference time is 1.7 s/ha for Vaihingen and 2.0 s/ha
for Potsdam. This is, for example, 2.8 and 8.6 times faster
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Fig. 3: Classification of closeups of Vahingen (first two rows) and Potsdam (last two rows) validation sets. Classes: Impervious
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surface (white), Building (blue), Low veget. (cyan), Tree (green), Car

respectively than the dilation network proposed in [3], while
providing more accurate results (see Table 4).

5. CONCLUDING REMARKS

With the goal of semantically labeling high-resolution aerial
images, we derived a CNN model in which spatial features
are learned at multiple resolutions (and thus different levels
of detail) and a specific module learns how to combine them.
In our experiments, such a model proved to be more effec-
tive than other approaches, providing a better accuracy with
lower computational requirements. Some of the outperformed
methods are in fact significantly more complex than our ap-
proach, proving that striving for simplicity is often a relevant
approach when using CNN architectures.
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