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Abstract—While initially devised for image categorization,
convolutional neural networks (CNNs) are being increasingly
used for the pixelwise semantic labeling of images. However, the
proper nature of the most common CNN architectures makes
them good at recognizing but poor at localizing objects precisely.
This problem is magnified in the context of aerial and satellite
image labeling, where a spatially fine object outlining is of
paramount importance.

Different iterative enhancement algorithms have been pre-
sented in the literature to progressively improve the coarse
CNN outputs, seeking to sharpen object boundaries around real
image edges. However, one must carefully design, choose and
tune such algorithms. Instead, our goal is to directly learn the
iterative process itself. For this, we formulate a generic iterative
enhancement process inspired from partial differential equations,
and observe that it can be expressed as a recurrent neural
network (RNN). Consequently, we train such a network from
manually labeled data for our enhancement task. In a series of
experiments we show that our RNN effectively learns an iterative
process that significantly improves the quality of satellite image
classification maps.

I. INTRODUCTION

One of the most explored problems in remote sensing is
the pixelwise labeling of satellite imagery. Such a labeling
is used in a wide range of practical applications, such as
precision agriculture and urban planning. Recent technolog-
ical developments have substantially increased the availability
and resolution of satellite data. Besides the computational
complexity issues that arise, these advances are posing new
challenges in the processing of the images. Notably, the
fact that large surfaces are covered introduces a significant
variability in the appearance of the objects. In addition, the fine
details in high-resolution images make it difficult to classify
the pixels from elementary cues. For example, the different
parts of an object often contrast more with each other than
with other objects [1]. Using high-level contextual features
thus plays a crucial role at distinguishing object classes.

Convolutional neural networks (CNNs) [2] are receiving
an increasing attention, due to their ability to automatically
discover relevant contextual features in image categorization
problems. CNNs have already been used in the context of
remote sensing [3], [4], featuring powerful recognition capa-
bilities. However, when the goal is to label images at the
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(a) OpenStreetMap (b) Manual labeling

Fig. 1: Samples of reference data for the building class.
Imprecise OpenStreetMap data vs manually labeled data.

pixel level, the output classification maps are too coarse.
For example, buildings are successfully detected but their
boundaries in the classification map rarely coincide with the
real object boundaries. We can identify two main reasons for
this coarseness in the classification:

a) There is a structural limitation of CNNs to carry out
fine-grained classification. If we wish to keep a low number of
learnable parameters, the ability to learn long-range contextual
features comes at the cost of losing spatial accuracy, i.e., a
trade-off between detection and localization. This is a well-
known issue and still a scientific challenge [5], [6].

b) In the specific context of remote sensing imagery, there is
a significant lack of spatially accurate reference data for train-
ing. For example, the OpenStreetMap collaborative database
provides large amounts of free-access maps over the earth, but
irregular misregistrations and omissions are frequent all over
the dataset. In such circumstances, CNNs cannot do better than
learning rough estimates of the objects’ locations, given that
the boundaries are hardly located on real edges in the training
set.

Let us remark that in the particular context of high-
resolution satellite imagery, the spatial precision of the classifi-
cation maps is of paramount importance. Objects are small and
a boundary misplaced by a few pixels significantly hampers
the overall classification quality. In other application domains,
such as semantic segmentation of natural scenes, while there
have been recent efforts to better shape the output objects,
a high resolution output seems to be less of a priority. For
example, in the popular Pascal VOC semantic segmentation
dataset, there is a band of several unlabeled pixels around
the objects, where accuracy is not computed to assess the
performance of the methods.
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There are two recent approaches to overcome the structural
issues that lead to coarse classification maps. One of them is to
use new types of CNN architectures, specifically designed for
pixel labeling, that seek to address the detection/localization
trade-off. For example, Noh et al. [7] duplicate a base classifi-
cation CNN by attaching a reflected “deconvolution” network,
which learns to upsample the coarse classification maps. An-
other tendency is to use first the base CNN as a rough classifier
of the objects’ locations, and then process this classification
using the original image as guidance, so that the output objects
better align to real image edges. For example, Zheng et al. [8]
use a fully connected CRF in this manner, and Chen et al. [9]
diffuse the classification probabilities with an edge-stopping
function based on image features. Both approaches have also
been adopted by the remote sensing community, mostly in the
context of the ISPRS Semantic Labeling Contest, to produce
fine-grained labelings of high-resolution aerial images [10],
[11], [12]. While all these works have certainly pushed the
boundaries of CNN capabilities for pixel labeling, they assume
the availability of large amounts of precisely labeled training
data. This paper targets the task of dealing with more realistic
datasets, seeking to provide a means to refine classification
maps that are too coarse due to poor reference data.

The first scheme, i.e., the use of novel CNN architectures,
seems unfeasible in the context of large-scale satellite imagery,
due to the nature of the available training data. Even if an
advanced architecture could eventually learn to conduct a more
precise labeling, this is not useful when the training data
itself is inaccurate. We thus here adopt the second strategy,
reinjecting image information to an enhancement module that
sharpens the coarse classification maps around the objects. To
train or set the parameters of this enhancement module, as
well as to validate the algorithms, we assume we can afford to
manually label small amounts of data. In Fig. 1(a) we show an
example of imprecise data to which we have access in large
quantities, and in Fig. 1(b) we show a portion of manually
labeled data. In our approach, the first type of data is used
to train a large CNN to learn the generalities of the object
classes, and the second to tune and validate the algorithm that
enhances the coarse classification maps outputted by the CNN.

An algorithm to enhance coarse classification maps would
require, on the one hand, to define the image features to which
the objects must be attached. This is data-dependent, not every
image edge being necessarily an object boundary. On the other
hand, we must also decide which enhancement algorithm to
use, and tune it. Besides the efforts that this requires, we could
also imagine that the optimal approach would go beyond the
algorithms presented in the literature. For example we could
perform different types of corrections on the different classes,
based on the type of errors that are often present in each of
them.

Our goal is to create a system that learns the appropriate
enhancement algorithm itself, instead of designing it by hand.
This involves learning not only the relevant features but
also the rationale behind the enhancement technique, thus
intensively leveraging the power of machine learning.

To achieve this, we first formulate a generic partial dif-
ferential equation governing a broad family of iterative en-

hancement algorithms. This generic equation conveys the idea
of progressively refining a classification map based on local
cues, yet it does not provide the specifics of the algorithm.
We then observe that such an equation can be expressed as a
combination of common neural network layers, whose learn-
able parameters define the specific behavior of the algorithm.
We then see the whole iterative enhancement process as a
recurrent neural network (RNN).

The RNN is provided with a small piece of manually
labeled image, and trained end to end to improve coarse
classification maps. It automatically discovers relevant data-
dependent features to enhance the classification as well as the
equations that govern every enhancement iteration.

A. Related work

A common way to tackle the aerial image labeling problem
is to use classifiers such as support vector machines [13] or
neural networks [14] on the individual pixel spectral signatures
(i.e., a pixel’s “color” but not limited to RGB bands). In
some cases, a few neighboring pixels are analyzed jointly to
enhance the prediction and enforce the spatial smoothness of
the output classification maps [15]. Hand-designed features
such as textural features have also been used [16]. The use
of an iterative classification enhancement process on top of
hand-designed features has also been explored in the context
of image labeling [17].

Following the recent advent of deep learning and to address
the new challenges posed by large-scale aerial imagery, Penatti
et al. [18] used CNNs to assign aerial image patches to
categories (e.g., ‘residential’, ‘harbor’) and Vakalopoulou et
al. [4] addressed building detection using CNNs. Mnih [3]
and Maggiori et al. [19], [20] used CNNs to learn long-
range contextual features to produce classification maps. These
networks require some degree of downsampling in order to
consider large contexts with a reduced number of parameters.
They perform well at detecting the presence of objects but do
not outline them accurately.

Our work can also be related to the area of natural image
semantic segmentation. Notably, fully convolutional networks
(FCN) [6] are becoming increasingly popular to conduct
pixelwise image labeling. FCN networks are made up of a
stack of convolutional and pooling layers followed by so-called
deconvolutional layers that upsample the resolution of the
classification maps, possibly combining features at different
scales. The output classification maps being too coarse, the
authors of the Deeplab network [5] added a fully connected
conditional random field (CRF) on top of both the FCN and
the input color image, in order to enhance the classification
maps. Most of the strategies developed for natural images
segmentation have been adapted to high-resolution aerial im-
age labeling and tested on the ISPRS benchmark, including
advanced FCNs [10] and CNNs coupled with CRFs [11].

Zheng et al. [8] recently reformulated the fully connected
CRF of Deeplab as an RNN, and Chen et al. [9] designed an
RNN that emulates the domain transform filter [21]. Such a
filter is used to sharpen the classification maps around image
edges, which are themselves detected with a CNN. In these
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(a) Color image (b) CNN heat map (c) Ground truth

Fig. 2: Sample classification of buildings with a CNN. The
output classification map is overly fuzzy due to the imprecision
of reference data and structural limitations of CNNs.

methods the refinement algorithm is designed beforehand and
only few parameters that rule the algorithm are learned as
part of the network’s parameters. The innovating aspect of
these approaches is that both steps (coarse classification and
enhancement) can be seen as a single end-to-end network and
optimized simultaneously.

Instead of predefining the algorithmic details as in previous
works, we formulate a general iterative refinement algorithm
through an RNN and let the network learn the specific algo-
rithm. To our knowledge, little work has explored the idea
of learning an iterative algorithm. In the context of image
restoration, the preliminary work by Liu et al. [22], [23] pro-
posed to optimize the coefficients of a linear combination of
predefined terms. Chen et al. [24] later modeled this problem
as a diffusion process and used an RNN to learn the linear
filters involved as well as the coefficients of a parametrized
nonlinear function. Our problem is however different, in that
we use the image as guidance to update a classification map,
and not to restore the image itself. Besides, while we drew
inspiration on diffusion processes, we are also interested in
imitating other iterative processes like active contours, thus
we do not restrict our system to diffusions but consider all
PDEs.

II. ENHANCING CLASSIFICATION MAPS WITH RNNS

Let us assume we are given a set of score (or “heat”) maps
uk, one for each possible class k ∈ L, in a pixelwise labeling
problem. The score of a pixel reflects the likelihood of belong-
ing to a class, according to the classifier’s predictions. The final
class assigned to every pixel is the one with maximal value uk.
Alternatively, a softmax function can be used to interpret the
results as probability scores: P (k) = euk/

∑
j∈L e

uj . Fig. 2
shows a sample of the type of fuzzy heat map outputted by
a CNN in the context of satellite image classification, for the
class ‘building’.

Our goal is to combine the score maps uk with information
derived from the input image (e.g., edge features) to sharpen
the scores near the real objects in order to enhance the
classification.

One way to perform such a task is to progressively enhance
the score maps by using partial differential equations (PDEs).
In this section we first describe different types of PDEs
we could certainly imagine to design in order to solve our
problem. Instead of discussing which one is the best, we then
propose a generic iterative process to enhance the classification

maps without specific constraints on the algorithm rationale.
Finally, we show how this equation can be expressed and
trained as a recurrent neural network (RNN).

A. Partial differential equations (PDEs)

We can formulate a variety of diffusion processes applied
to the maps uk as partial differential equations. For example,
the heat flow is described as:

∂uk(x)

∂t
= div(∇uk(x)), (1)

where div(·) denotes the divergence operator in the spatial
domain of x. Applying such a diffusion process in our context
would smooth out the heat maps. Instead, our goal is to design
an image-dependent smoothing process that aligns the heat
maps to the image features. A natural way of doing this is
to modulate the gradient in Eq. 1 by a scalar function g(x, I)
that depends on the input image I:

∂uk(x)

∂t
= div(g(I, x)∇uk(x)). (2)

Eq. 2 is similar to the Perona-Malik diffusion [25] with
the exception that Perona-Malik uses the smoothed function
itself to guide the diffusion. g(I, x) denotes an edge-stopping
function that takes low values near borders of I(x) in order
to slow down the smoothing process there.

Another possibility would be to consider a more general
variant in which g(I, x) is replaced by a matrix D(I, x), acting
as a diffusion tensor that redirects the flow based on image
properties instead of just slowing it down near edges:

∂uk(x)

∂t
= div(D(I, x)∇uk(x)). (3)

This formulation relates to the so-called anisotropic diffusion
process [26].

Alternatively, one can draw inspiration from the level set
framework. For example, the geodesic active contours tech-
nique formulated as level sets translates into:

∂uk(x)

∂t
= |∇uk(x)|div

(
g(I, x)

∇uk(x)

|∇uk(x)|

)
. (4)

Such a formulation favors the zero level set to align with
minima of g(I, x) [27]. Schemes based on Eq. 4 could then
be used to improve heat maps uk, provided they are scaled so
that segmentation boundaries match zero levels.

As shown above, many different PDE approaches can be de-
vised to enhance classification maps. However, several choices
must be made to select the appropriate PDE and tailor it to
our problem.

For example, one must choose the edge-stopping function
g(I, x) in Eqs. 2, 4. Common choices are exponential or
rational functions on the image gradient [25], which in turn
requires to set an edge-sensitivity parameter. Extensions to the
original Perona-Malik approach could also be considered, such
as a popular regularized variant that computes the gradient
on a Gaussian-smoothed version of the input image [26]. In
the case of opting for anisotropic diffusion, one must design
D(I, x).
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Instead of using trial and error to perform such design, our
goal is to let a machine learning approach discover by itself
a useful iterative process for our task.

B. A generic classification enhancement process

PDEs are usually discretized in space by using finite dif-
ferences, which represent derivatives as discrete convolution
filters. We build upon this scheme to write a generic discrete
formulation of an enhancement iterative process.

Let us consider that we take as input a score map
uk (for class k) and, in the most general case, an arbi-
trary number of feature maps {g1, ..., gp} derived from im-
age I . In order to perform differential operations, of the
type { ∂

∂x ,
∂
∂y ,

∂2

∂x∂y ,
∂2

∂x2 , ...}, we consider convolution kernels
{M1,M2, ...} and {N j

1 , N
j
2 , ...} to be applied to the heat map

uk and to the features gj derived from image I , respectively.
While we could certainly directly provide a bank of filters Mi

and N j
i in the form of Sobel operators, Laplacian operators,

etc., we may simply let the system learn the required filters.
We group all the feature maps that result from applying these
convolutions, in a single set:

Φ(uk, I) =
{
Mi ∗ uk, N j

l ∗ gj(I) ; ∀i, j, l
}
. (5)

Let us now define a generic discretized scheme as:

∂uk(x)

∂t
= fk

(
Φ(uk, I)(x)

)
, (6)

where fk is a function that takes as input the values of all the
features in Φ(uk, I) at an image point x, and combines them.
While convolutions Mi and N j

i convey the “spatial” reasoning,
e.g., gradients, fk captures the combination of these elements,
such as the products in Eqs. 2 and 4.

Instead of deriving an arbitrary number of possibly complex
features N j

i ∗gj(I) from image I , we can think of a simplified
scheme in which we directly operate on I , by considering only
convolutions: Ni∗I . The list of functionals considered in Eq. 6
is then

Φ(uk, I) =
{
Mi ∗ uk, Nj ∗ I ; ∀i, j

}
(7)

and consists only of convolutional kernels directly applied to
the heat maps uk and to the image I . From now on, we
here stick to this simpler formulation, yet we acknowledge
that it might be eventually useful to work on a higher-level
representation rather than on the input image itself. Note that
if one restricts functions fk in Eq. 6 to be linear, we still
obtain the set of all linear PDEs. We consider any function
fk, introducing non-linearities.

PDEs are usually discretized in time, taking the form:

uk,t+1(x) = uk,t(x) + δuk,t(x), (8)

where δuk,t denotes the overall update of uk,t at time t.
Note that the convolution filters in Eqs. 5 and 7 are class-

agnostic: Mi, Nj and N j
l do not depend on k, while fk may

be a different function for each class k. Function fk thus
determines the contribution of each feature to the equation,
contemplating the case in which a different evolution might
be optimal for each of the classes, even if just in terms of a

time-step factor. In the next section we detail a way to learn
the update functions δuk,t from training data.

C. Iterative processes as RNNs
We now show that the generic iterative process can be

implemented as an RNN, and thus trained from labeled data.
This stage requires to provide the system with a piece of
accurately labeled ground truth (see e.g., Fig. 1b).

Let us first show that one iteration, as defined in Eqs. 6-8,
can be expressed in terms of common neural network layers.
Let us focus on a single pixel for a specific class, simplifying
the notation from uk,t(x) to ut. Fig. 3 illustrates the proposed
network architecture. Each iteration takes as input the image
I and a given heat map ut to enhance at time t. In the first
iteration, ut is the initial coarse heat map to be improved,
outputted by another pre-trained neural network in our case.
From the heat map ut we derive a series of filter responses,
which correspond to Mi ∗ ut in Eq. 7. These responses are
found by computing the dot product between a set of filters Mi

and the values of uk,t(·) in a spatial neighborhood of a given
point. Analogously, a set of filter responses are computed at
the same spatial location on the input image, corresponding to
the different Nj ∗I of Eq. 7. These operations are convolutions
when performed densely in space, Nj ∗ I and Mi ∗ ut being
feature maps of the filter responses.

These filters are then “concatenated”, forming a pool of
features Φ coming from both the input image and the heat
map, as in Eq. 7, and inputted to fk in Eq. 6. We must now
learn the function δut that describes how the heat map ut is
updated at iteration t (cf. Eq. 8), based on these features.

Eq. 6 does not introduce specifics about function fk. In (1)-
(4), for example, it includes products between different terms,
but we could certainly imagine other functions. We therefore
model δut through a multilayer perceptron (MLP), because
it can approximate any function within a bounded error. We
include one hidden layer with nonlinear activation functions
followed by an output neuron with a linear activation (a typical
configuration for regression problems), although other MLP
architectures could be used. Applying this MLP densely is
equivalent to performing convolutions with 1 × 1 kernels at
every layer. The implementation to densely label entire images
is then straightforward.

The value of δut is then added to ut in order to generate the
updated map ut+1. This addition is performed pixel by pixel
in the case of a dense input. Note that although we could
have removed this addition and let the MLP directly output
the updated map ut+1, we opted for this architecture since
it is more closely related to the equations and better conveys
the intention of a progressive refinement of the classification
map. Moreover, learning δut instead of ut+1 has a significant
advantage at training time: a random initialization of the
networks’ parameters centered around zero means that the
initial RNN represents an iterative process close to the identity
(with some noise). Training uses the asymmetry induced by
this noise to progressively move from the identity to a more
useful iterative process.

The overall iterative process is implemented by unrolling a
finite number of iterations, as illustrated in Fig. 4, under the
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Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t

Fig. 3: One enhancement iteration represented as common neural network layers. Features are extracted both from the input
image I and the heat map of the previous iteration ut. These are then concatenated and inputted to an MLP, which computes
the update δut. The heat map ut is added to the update δut to yield the modified map ut+1.

constraint that the parameters are shared among all iterations.
Such sharing is enforced at training time by a simple modi-
fication to the back-propagation training algorithm where the
derivatives of every instance of a weight at different iterations
are averaged [28]. Note that issues with vanishing or exploding
gradients may arise when too many iterations are unrolled, an
issue inherent to deep network architectures. Note also that the
spatial features are shared across the classes, while a different
MLP is learned for each of them, following Eq. 6. As depicted
by Fig. 4 and conveyed in the equations, the features extracted
from the input image are independent of the iteration.

The RNN of Fig. 4 represents then a dynamical system
that iteratively improves the class heat maps. Training such
an RNN amounts to finding the optimal dynamical system for
our enhancement task.

III. IMPLEMENTATION DETAILS

We first describe the CNN used to produce the coarse
predictions, then detail our RNN. The network architecture
was implemented using Caffe deep learning library [29].

Our coarse prediction CNN is based on a previous remote
sensing network presented by Mnih [3]. We create a fully
convolutional [6] version of Mnih’s network, since recent
remote sensing work has shown the theoretical and practical
advantages of this type of architecture [30], [19]. The CNN
takes 3-band color image patches at 1m2 resolution and pro-
duces as many heat maps as classes considered. The resulting
four-layer architecture is as follows: 64 conv. filters (12× 12,
stride 4) → 128 conv. filters (3 × 3) → 128 conv. filters
(3× 3) → 3 conv. filters (9× 9). Since the first convolution is
performed with a stride of 4, the resulting feature maps have
a quarter of the input resolution. Therefore, a deconvolutional
layer [6] is added on top to upsample the classification maps
to the original resolution. The activation functions used in the
hidden layers are rectified linear units. This network is trained
on patches randomly selected from the training dataset. We
group 64 patches with classification maps of size 64 × 64
into mini-batches (following [3]) to estimate the gradient of
the network’s parameters and back-propagate them. Our loss
function is the cross-entropy between the target and predicted

class probabilities. Stochastic gradient descent is used for
optimization, with learning rate 0.01, momentum 0.9 and
an L2 weight regularization of 0.0002. We did not however
optimized these parameters nor the networks’ architectures.

We now detail the implementation of the RNN described
in Sec. II-C. Let us remark that at this stage we fix the
weights of the initial coarse CNN and the manually labeled
tile is used to train the RNN only. Our RNN learns 32
Mi and 32 Nj filters, both of spatial dimensions 5 × 5.
An independent MLP is learned for every class, using 32
hidden neurons each and with rectified linear activations, while
Mi and Nj filters are shared across the different classes (in
accordance to Equations 6 and 7). This highlights the fact
that Mi and Nj capture low-level features while the MLPs
convey class-specific behavior. We unroll five RNN iterations,
which enables us to significantly improve the classification
maps without exhausting our GPU’s memory. Training is
performed on random patches and with the cross-entropy
loss function, as done with the coarse CNN. The employed
gradient descent algorithm is AdaGrad [31], which exhibits
a faster convergence in our case, using a base learning rate
of 0.01 (higher values make the loss diverge). All weights
are initialized randomly by sampling from a distribution that
depends on the number of neuron inputs [32]. We trained the
RNN for 50,000 iterations, until observing convergence of the
training loss, which took around four hours on a single GPU.

IV. EXPERIMENTS

We perform our experiments on images acquired by a
Pléiades satellite over the area of Forez, France. An RGB color
image is used, obtained by pansharpening [33] the satellite
data, which provides a spatial resolution of 0.5 m2. Since the
networks described in Sec. III are specifically designed for
1 m2 resolution images, we downsample the Pléiades images
before feeding them to our networks and bilinearly upsample
the outputs.

From this image we selected an area with OpenStreetMap
(OSM) [34] coverage to create a 22.5 km2 training dataset for
the classes building, road and background. The reference data
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N j∗I

ut=0
ut=1 ut=2 ut=3

Fig. 4: The modules of Fig. 3 are stacked (while sharing parameters) to implement the iterative process as an RNN.

Fig. 5: Manually labeled tile used to train the RNN for the
classification enhancement task.

was obtained by rasterizing the raw OSM maps. Misregis-
trations and omissions are present all over the dataset (see,
e.g., Fig. 1a). Buildings tend to be misaligned or omitted,
while many roads in the ground truth are not visible in the
image (or the other way around). Moreover, since OSM’s roads
are represented by polylines, we set a fixed road width of 7
m to rasterize this class (following [3]), which makes their
classification particularly challenging. This dataset is used to
train the initial coarse CNNs.

We manually labeled two 2.25 km2 tiles to train and test
the RNN at enhancing the predictions of the coarse network.
We denote them by enhancement and test sets, respectively.
Note that our RNN system must discover an algorithm to
refine an existing classification map, and not to conduct the
classification itself, hence a smaller training set should be
sufficient for this stage. The enhancement set is depicted in
Fig. 5 while the test set is shown in Figs. 9(a)/(f).

In the following, we report the results obtained by using
the proposed method on the Pléiades dataset. Fig. 6 provides
closeups of results on different fragments of the test dataset.
The initial and final maps (before and after the RNN enhance-
ment) are depicted, as well as the intermediate results through
the RNN iterations. We show both a set of final classification
maps and some single-class fuzzy probability maps. We can
observe that as the RNN iterations go by, the classification
maps are refined and the objects better align to image edges.
The fuzzy probabilities become more confident, sharpening
object boundaries. To quantitatively assess this improvement
we compute two measures on the test set: the overall accuracy
(proportion of correctly classified pixels) and the intersection
over union (IoU) [6]. Mean IoU has become the standard in
semantic segmentation since it is more reliable in the presence
of imbalanced classes (such as background class, which is

included to compute the mean) [35]. As summarized in the
table of Fig. 7(a), the performance of the original coarse
CNN (denoted by CNN) is significantly improved by attaching
our RNN (CNN+RNN). Both measures increase monotonously
along the intermediate RNN iterations, as depicted in Fig. 7(b).

The initial classification of roads has an overlap of less
than 10% with the roads in the ground truth, as shown by
its individual IoU. The RNN makes them emerge from the
background class, now overlapping the ground truth roads
by over 50%. Buildings also become better aligned to the
real boundaries, going from less than 40% to over 70%
overlap with the ground truth buildings. This constitutes a
multiplication of the IoU by a factor of 5 for roads and 2
for buildings, which indicates a significant improvement at
outlining and not just detecting objects.

Additional visual fragments before and after the RNN
refinement are shown in Fig. 8. We can observe in the last row
how the iterative process learned by the RNN both thickens
and narrows the roads depending on the location.

We also compare our RNN to the approach in [5] (here
denoted by CNN+CRF), where a fully-connected CRF is cou-
pled both to the input image and the coarse CNN output,
in order to refine the predictions. This is the idea behind
the so-called Deeplab network, which constitutes one of the
most important current baselines in the semantic segmentation
community. While the CRF itself could also be implemented as
an RNN [8], we here stick to the original formulation because
the CRF as RNN idea is only interesting if we want to train
the system end to end (i.e., together with the coarse prediction
network). In our case we wish to leave the coarse network as
is, otherwise we risk overfitting it to this much smaller set.
We thus simply use the CRF as in [5] and tune the energy
parameters by performing a grid search using the enhancement
set as a reference. Five iterations of inference on the fully-
connected CRF were preformed in every case.

To further analyze our method, we also consider an alter-
native enhancement RNN in which the weights of the MLP
are shared across the different classes (which we denote by
“class-agnostic CNN+RNN”). This forces the system to learn
the same function to update all the classes, instead of a class-
specific function.

Numerical results are included in the table of Fig. 7(a) and
the classification maps are shown in in Fig. 9. Close-ups of
these maps are included in Fig. 10 to facilitate comparison.
The CNN+CRF approach does sharpen the maps but this often
occurs around the wrong edges. It also makes small objects
disappear in favor of larger objects (usually the background
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Color CNN map
(RNN input)

— Intermediate RNN iterations — RNN output Ground truth

Fig. 6: Evolution of fragments of classification maps (top rows) and single-class fuzzy scores (bottom rows) through RNN
iterations. The classification maps are progressively sharpened around object’s edges.

Overall Mean Class-specific IoU
Method accuracy IoU Build. Road Backg.
CNN 96.72 48.32 38.92 9.34 96.69

CNN+CRF 96.96 44.15 29.05 6.62 96.78
CNN+RNN= 97.78 65.30 59.12 39.03 97.74
CNN+RNN 98.24 72.90 69.16 51.32 98.20

(a) Numerical comparison (in %)
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(b) Evolution through RNN iterations

Fig. 7: Quantitative evaluation on Pléaiades images test set
over Forez, France.

class) when edges are not well marked, which explains the
mild increase in overall accuracy but the decrease in mean
IoU. While the class-agnostic CNN+RNN outperforms the
CRF, both quantitative and visual results are beaten by the
CNN+RNN, supporting the importance of learning a class-
specific enhancement function.

To validate the importance of using a recurrent architecture,
and following Zheng et al. [8], we retrained our system
considering every iteration of the RNN as an independent
step with its own parameters. After training for the same
number of iterations, it yields a lower performance on the test
set compared to the RNN and a higher performance on the
training set. If we keep on training, the non-recurrent network

Color image Coarse CNN RNN output Ground truth

Fig. 8: Initial coarse classifications and the enhanced maps by
using RNNs.

still enhances its training accuracy while performing poorly on
the test set, implying a significant degree of overfitting with
this variant of the architecture. This provides evidence that
constraining our network to learn an iterative enhancement
process is crucial for its success.

A. Feature visualization

Though it is difficult to interpret the overall function learned
by the RNN, especially the part of the multi-layer perceptron,
there are some things we expect to find if we analyze the
spatial filters Mi and Nj learned by the RNN (see Eq. 7).
Carrying out this analysis is a way of validating the behavior
of the network.

The iterative process learned by the RNN should combine
information from both the heat maps and the image at every
iteration (since the heat maps constitute the prior on where the
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(a) Color image (b) Coarse CNN (c) CNN+CRF

(d) Class-agnostic CNN+RNN (e) CNN+RNN (f) Ground truth

Fig. 9: Visual comparison on a Pléiades satellite image tile of size 3000×3000 covering 2.25 km2.

Color image Coarse CNN CNN+CRF Class-agnostic
CNN+RNN

CNN+RNN Ground truth

Fig. 10: Visual comparison on closeups of the Pléiades dataset.
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Heat maps Feature responses

M1 M2

(a) Filter M1 acts like a gradient operator in the South-East direction
and M2 in the North direction (top: building, bottom: road).

Color image Feature responses

N1 N2

(b) N1 acts like a gradient operator in the North direction and N2

highlights green vegetation.

Fig. 11: Feature responses (red: high, blue: low) to selected
Mi and Nj filters, applied to the heat maps and input image
respectively (see Eq. 7).

objects are located, and the image guides the enhancement of
these heat maps). A logical way of enhancing the classification
is to align the high-gradient areas of the heat maps with the
object boundaries. We expect then to find derivative operators
among the filters Nj applied to the heat maps. Concerning
the image filters Nj , we expect to find data-dependent filters
(e.g., image edge detectors) that help identify the location of
object boundaries.

To interpret the meaning of the filters learned by the RNN
we plot the map of responses of a sample input to the different
filters. We here show some examples. Fig. 11(a) illustrates
fragments of heat maps of the building and road classes,
and the responses to two of the filters Mi learned by the
RNN. When analyzing these responses we can observe that
they act as gradients in different directions, confirming the
expected behavior. Fig. 11(b) illustrates a fragment of the
color image and its response to two filters Nj . One of them
acts as a gradient operator an the other one highlights green
vegetation, suggesting that this information is used to enhance
the classification maps.

V. CONCLUDING REMARKS

In this work we presented an RNN that learns how to
refine the coarse output of another neural network, in the

context of pixelwise image labeling. The inputs are both the
coarse classification maps to be corrected and the original
color image. The output at every RNN iteration is an update
to the classification map of the previous iteration, using the
color image for guidance.

Little human intervention is required, since the specifics
of the refinement algorithm are not provided by the user but
learned by the network itself. For this, we analyzed different
iterative alternatives and devised a general formulation that can
be interpreted as a stack of common neuron layers. At training
time, the RNN discovers the relevant features to be taken both
from the classification map and from the input image, as well
as the function that combines them.

The experiments on satellite imagery show that the classifi-
cation maps are improved significantly, increasing the overlap
of the foreground classes with the ground truth, and out-
performing other approaches by a large margin. Thus, the
proposed method not only detects but also outlines the objects.
To conclude, we demonstrated that RNNs succeed in learning
iterative processes for classification enhancement tasks.
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