
'

&

$

%

Image Statistics based on
Diffeomorphic Matching

Jean-Yves Audibert
Guillaume Charpiat

Olivier Faugeras
Renaud Keriven

Research Report05-00
February 2005

CERTIS, ENPC,
77455 Marne la Vallee, France,

http://www.enpc.fr/certis/

http://www.enpc.fr/certis/




Image Statistics based on
Diffeomorphic Matching

Statistiques d’images baśees sur la
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Abstract

We propose a new approach to deal with the first and second order statistics of
a set of images. These statistics take into account the images characteristic de-
formations and their variations in intensity. The central algorithm is based on
non-supervised diffeomorphic image matching (without landmarks or human in-
tervention). Such statistics of sets of images may be relevant in the context of
object recognition. The proposed approach has been tested on a small database of
face images to compute a mean face and second order statistics. The results are
encouraging. As a step further toward the evaluation of the approach, we present
facial expression recognition experiments. We test the recognition of the facial
expression of someone with and without the knowledge of his/her face with no
expression.





Résuḿe

Nous proposons une nouvelle approche des statistiques de premier et second ordre
d’un ensemble d’images. Ces statistiques prennent en compte les déformations ca-
ract́eristiques des images, ainsi que les variations de leur intensité. L’algorithme
central est baśe sur la mise en correspondance non-supervisée d’images via des
diff éomorphismes (sans ajout manuel de points de correspondance ou autre inter-
vention humaine). De telles statistiques d’ensembles d’images peuvent se montrer
pertinentes dans le contexte de la reconnaissance d’objets. L’approche proposée
a ét́e test́ee sur une petite base de photographies de visages, et aboutit au calcul
d’un visage moyen et de statistiques de second ordre. Les résultats sont encoura-
geants. Afin d’́evaluer l’approche, nous présentons des tâches de reconnaissance
d’expressions, òu nous testons la reconnaissance de l’expression faciale d’une
personne avec ou sans la connaissance de son visage sans expression.
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1. Introduction

How to find or recognize an object in an image? This is one of the most out-
standing open problems in computer vision. Its solution will require a better un-
derstanding of the various possible visual aspects of a given object or a class of
objects. For example, in the case of faces the description should include varia-
tions due to viewpoint, illumination, expression (happiness, surprise, . . . ), or the
identity of the person. Like [3, 4] we think that statistics on images are necessary
in order to tackle this problem. What we propose in this article is in a sense an ex-
tension to the set of images of an object of the work done on the statistics of 2D or
3D shapes [7, 1, 6]: by computing, from a set of images of a class of objects, the
various ways these images can be warped onto one another we define and compute
a mean image for that class and its second order statistics. Note that unlike pre-
vious approaches, e.g., [4] our approach does not require any manual intervention
to identify landmarks or regions of interest. We work directly on the deformation
fields which establish the correspondences between the whole images, since these
fields are the fundamental elements of the problem. In order to do this we build
upon previous work on non-supervised algorithms that build such correspondence
fields between images, e.g., [7, 8, 5, 2]

In Section2we model the matching problem between two images and describe
a variation of a matching algorithm proposed in [5] and analyzed in [2]. In Section
3 we use it to define and compute the mean image of a set of images and in Section
4 to define and compute its second order statistics. Then in Section5 we show how
to use the mean image in an expression recognition task.

2. Image matching

The main difficulty when defining the mean of several images is that this mean is
supposed tolook likeeach one of the images. This implies that the images have
been registered and this is why we consider now the matching problem.

2.1. Basic framework

Let A andB be two images. We think of them as positive real functions functions
defined in a rectangular subsetΩ of the planeR2. We search for a deformation
field f such that the warped imageA ◦ f resemblesB. More precisely, we would
like the fieldf to be smooth enough and invertible, i.e. it should be a diffeomor-
phism from the rectangular subsetΩ to itself, which leads us to assume that the
diffeomorphismf equals the identity on the image boundary∂Ω. Other possibili-
ties are offered by extending the images to a larger subsetΩ1.

In order to keepf continuous, we have to consider a regularizing termR(f)
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on f , for exampleR(f) = ‖f − Id‖H1

Ω whereId is the identity function onΩ and
‖a‖H1

Ω =
∫

x∈Ω
‖a(x)‖2 + ‖Da(x)‖2 dx, or even, if we prefer to be suref remains

invertible,‖f − Id‖H1

Ω + ‖f−1 − Id‖H1

Ω , wheref−1 is the inverse off .
Now we have to choose a criterionC(A,B) which expresses the similarity

between the two imagesA andB. The simplest one isC(A,B) = ‖A− B‖L2

Ω =∫
x∈Ω

(A(x)−B(x))2 dx, but we prefer the following one, which has the advan-
tage of being based on intensity variations and consequently the one of being
contrast-invariant.

2.2. Local Cross-Correlation
Given a scaleσ, the cross-correlation of two imagesA andB at pointx is defined
by:

CC(A,B, x) =
vAB(x)2

vA(x) vB(x)

wherevA(x) is the local spatial variance ofA in a gaussian neighborhood of size
σ centered onx, andvAB(x) the local covariance ofA andB on the same neigh-
borhood, i.e. we define:

g(x, y) = e
‖x−y‖2

2σ2

µ(x) =

∫

y∈Ω

g(x, y) dy

Ā(x) =
1

µ(x)

∫

y∈Ω

A(y) g(x, y) dy

vA(x) = ε +
1

µ(x)

∫

y∈Ω

(A(y)− Ā(x))2 g(x, y) dy

vAB(x) =
1

µ(x)

∫

Ω

(A(y)− Ā(x))(B(y)− B̄(x)) g(x, y) dy

The positive constantε is added only not to have a null divider in the expres-
sion ofCC(A,B, x). Given this, the local cross-correlation on the whole images
are defined by [5]:

LCC(A,B) =

∫

x∈Ω

CC(A,B, x) dx

2.3. The Image Matching Algorithm
The matching algorithm consists in minimizing with respect to the deformation
field f (initialized to the identity) through a multi-scale gradient descent the fol-
lowing energy (see [2] for details)

E(A,B, f) = LCC(A ◦ f , B) + R(f)
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3. The mean of a set of images
Now that we know how to compute a diffeomorphic matching between two im-
ages, we can try to infer from this a new algorithm for the computation of the
mean ofn imagesAi indexed byi ∈ {1, . . . , n}. This is not as easy as one could
guess.

3.1. An intuitive algorithm: find the mean
We can first define the mean as the imageM which looks the most like all the
warped images, i.e., if we introducen diffeomorphismsfi in order to warp an
imageAi on the meanM , we could minimize

∑
i

E(Ai ◦ fi,M, fi)

with respect toM and the fieldsfi. But how do we choose the initial image
M? Besides, here is the main problem: we should not minimize the energyE
with respect to an image. Indeed, if we consider the case wheren = 2 and the
two images are the same one translated by a few pixels, the gradient term due
to the diffeomorphisms should move them so as to find the translation, but this
is prevented by the minimization with respect to the mean imageM , which, by
averaging the intensities, introduces new contours induced by those in the two
images. Consequently, each of the two images ”sees” its contours appear inM at
the same location, and the diffeomorphisms will not evolve from the identity.

3.2. Another intuitive algorithm
We can then try to substitute inE an expression forM as a function of the diffeo-
morphisms, effectively eliminating the unknownM . For example, we can choose
M = 1

n

∑
i Ai ◦ fi and minimize with respect to thefi the following criterium:

∑
i

E(Ai ◦ fi,
1

n

∑

k

Ak ◦ fk, fi)

We then encounter another problem: we try to match for eachi Ai ◦ fi and
1
n

∑
i Ai ◦ fi; however, as1

n

∑
i Ai ◦ fi is the sum of the warped images, it contains

in particular all the contours ofAi ◦ fi, which means that we still have the same
problem as before: the diffeomorphisms are immediatly stuck in a local minimum.

3.3. The final word: eliminating the mean
The problem comes mostly from the fact that we are trying to work directly on
the mean of the images, whereas we should work only with the fieldsfi, which
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carry all the information about the problem. Indeed, the meanM contains much
less information than the diffeomorphismsfi: for example the mean of a white
disk on a black background and a black disk on a white background is uniformly
grey and consequently has not a largeLCC-correlation with the initial images.
Therefore we should rather deal with pairs of warped images than with pairs of a
warped image and the mean. The mean then becomes an auxiliary quantity, just
computed at the end when the diffeomorphisms are known.

The algorithm proceeds as follows: initialize all deformation fieldsfi to the
identity, and let them evolve in a multiscale framework in order to minimize

1

n− 1

∑

i6=j

LCC(Ai ◦ fi, Aj ◦ fj) +
∑

k

R(fk)

Thus, at the end of the evolution, eachAi ◦ fi is supposed to look like each of the
others, and the mean is naturally computed asM = 1

n

∑
i Ai ◦ fi. The regularizing

term
∑

i R(fi) implies that if several sets of fieldsfi conduct to approximatively
the same energy

∑
i6=j LCC(Ai ◦ fi, Aj ◦ fj) (for example by adding a common

diffeomorphismfc to every field and replacingfi with fi◦fc), then the most intuitive
one is chosen (the one of least regularizing cost). We also impose the condition∑

i fi = 0 at each time step by substracting the mean of the fields1
n

∑
i fi to each

of them. This may be questionable but leads to good results in practice.

3.4. Example

We have tested this algorithm on a face database from Yale2. More precisely, we
have computed the mean face out of photographs of ten different people with sim-
ilar expressions, approximatively the same illumination and position conditions,
and the same size (195 * 231 pixels). The ten imageAi are shown in figure1, the
ten warped imagesAi ◦ fi in figure2, and their mean in figure3.

Note the accuracy of the mean: it looks like a real face, its features are not
blurred at all (except the ears). The strange white curved line below the eyes
comes from the reflects of the light into the eighth man’s glasses. The computation
takes about 10 minutes on a standard workstation. Also note the good job done
by the diffeomorphismsfi, see figure2.

4. Second order statistics of a set of images

As the information about the shape variations in the set of imagesAi lies in the
diffeomorphismshi, we compute statistics on these warping fields.

2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 1: The ten face images.

Figure 2: The ten warped imagesAi ◦ fi.

Figure 3: The mean of the previous ten faces.
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4.1. Definition and computation

These fields are functions from a subsetΩ of the planeR2 to itself, therefore the
natural way to express correlation between two fieldsa andb is to compute their
scalar product for the usual normL2(Ω → R2):

〈a |b〉L2(Ω→R2) =
1

|Ω|
∫

Ω

a(x) · b(x) dx

Since the mean̄f of the fieldsfi is 0 (see above), the (shape-)correlation ma-
trix SCM defined bySCMi,j =

〈
fi − f̄

∣∣fj − f̄
〉

L2(Ω→R2)
can be simplified in

SCMi,j = 〈fi |fj 〉L2(Ω→R2). Then we diagonalize the correlation matrixSCM (
its size is the number of images, not the number of pixels), and extract its eigen-
valuesσk and normalized eigenvectorsvk. The modes of deformation are then
defined bymk =

∑
i (vk)i fi.

As statistics were made in the linear spaceL2(R2 → R2), we can continu-
ously apply a modemk to the mean imageM with an amplitudeα (∈ R) by
computing the imageM ◦ (Id + α(mk − Id)), and then produce animations of
the deformations.

4.2. Example

These modes are illustrated in figure4. Each column represents a mode, starting
from the main one (leftmost column) to the one with the smallest eigenvalue,
which is actually 0 because of the constraint on the mean field (rightmost column).
Each column is divided in five images: in the central image, we represent the
mean we computed before; in the images just above and underneath the mean,
we represent the mode applied to the mean with amplitude+σk andσk; and then
with amplitude+2σk and−2σk in first and last image of each column, in order to
exaggerate and better visualize the deformations.

4.3. Intensity variations

In order to take all the face variations into account, we should not only consider
the shape variations (i.e. the diffeomorphisms) but also the intensity variations.
As before, we can define an intensity-correlation matrixICM on the intensity
variationsIi = Ai ◦ fi − M for theL2(R2 → R) scalar product. Thus, we can
compute the principal modes of intensity variations, which correspond to skin or
hair changes for a shape-fixed head.

We can also combine shape and intensity variations. If we noteσ2
S = 1

n

∑
i ‖fi‖2

andσ2
I = 1

n

∑
i ‖Ii‖2 the standard deviations of shapes and intensities, we can
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Figure 4: The shape modes of deformation of the previous set of images.
Each column represents a mode, applied to the mean image with amplitude
α = {2σk, σk, 0,−σk,−2σk}.The (relative) values of the eigenvalues are, from
left to right, 1, 0.5, 0.3, 0.1,. . . , 0.05, 0.

define a combined correlation matrixCCM = 1/σ2
SSCM + 1/σ2

IICM and pro-
ceed as before, compute and display principal modes of variations. The results are
shown on figure5. Note how these faces are realistic and diversified.

Figure 5: The eight non-zero combined modes of deformation of the same set of
images without the subject with glasses (see footnote3). Each column represents a
mode, applied to their mean image with amplitudeα = {σk,−σk}. The (relative)
values of the eigenvalues are, from left to right, 1, 0.555, 0.505, 0.424, 0.286,
0.232, 0.162, 0.135.
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5. Classification: Expression Recognition
Let us now consider the facial expression recognition task. The goal is to associate
with any new face its expression. We still use the Yale database. We remove from
this database the 2 subjects wearing glasses3 and we consider the 5 following
facial expressions: happy, sad, sleepy, surprised and winking, beside the ”normal”
one.

5.1. From the mean image
The following simulations show that deformations from a mean face can be used
to classify facial expressions. More precisely we choose as a reference face the
mean ”normal” face of the first 9 subjects of the database. Our first classification
procedure uses a Support Vector Machine with Gaussian kernel4 on the deforma-
tions from this face to expressive faces. To measure the efficiency of the method,
we cross-validate the errors by taking out one subject among the 13 subjects in
the database and consequently using 60 faces labeled by their expression to de-
duce the expression of the five remaining faces5. The cross-validation error is 24
upon 65 faces. For comparison purposes, we trained a Support Vector Machine
with Gaussian kernel6 using only the gray level intensity information. In this case
we obtained a larger cross-validation error of 27 upon 65 faces which shows the
interest of using the diffeomorphisms.

5.2. With knowledge of the face without expression
The advantage of using the deformations instead of the gray level intensities is
even larger when we know whose face it is that we want to process. More pre-
cisely, if we use the subject’s ”normal” face to compute the deformation between
the expressive one and classify this ”expression” deformation after alignment on
the mean face (using the ”subject” deformation between the mean face and the
face without expression), the cross validation error goes down to 12 (upon 65),
whereas the classification using the difference of gray level intensities between
the expressive face and the normal one leads to 17 errors.

These results, although preliminary, indicate that the mean image can be very
useful in a classifying task, considering that the database is small, that the pro-

3Glasses introduces strong intensity gradient in the middle of the face. As a consequence, it is
not relevant to try to deform a face without glasses to a face with glasses.

4The bandwidth of the kernel is equal to the median of the norms of the difference between 2
deformations of the training set.

5Thus we have no prior information on the subject to classify his facial expressions.
6The bandwidth of the kernel is the median of the norms of the intensity difference between 2

images of the training set.
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cedures were not specialized to faces, and that even a human classifier may have
problem with some of the considered faces (see figure (6) again)!

Figure 6: Expression recognition using deformations of the normal face, aligned
with the mean face. From top to bottom: normal, happy, sad, sleepy, surprised
and winking faces. 53 of the 65 expressive faces are correctly classified, 12 are
not. For these we show the incorrect label.

6. Summary and Conclusions

We have defined and computed first and second order statistics of a set of images
with a diffeomorphic matching approach (without landmarks), and shown how
to use them in a classification task. We have tested this general approach on a
face database, and the results are encouraging: the mean face looks like that of a
real human being, the modes of variations are very sensible, and the expression
recognition results are good, especially if we are also given a ”normal” image of
the face to classify. We insist on the fact that our methods are not specific to faces
and do not use any prior on the kind of images. We are in the process of including
the second order statistics in the classification algorithm.
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