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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT

We propose a convolutional neural network (CNN) model
for remote sensing image classification. Using CNNs pro-
vides us with a means of learning contextual features for
large-scale image labeling. Our network consists of four
stacked convolutional layers that downsample the image and
extract relevant features. On top of these, a deconvolutional
layer upsamples the data back to the initial resolution, pro-
ducing a final dense image labeling. Contrary to previous
frameworks, our network contains only convolution and de-
convolution operations. Experiments on aerial images show
that our network produces more accurate classifications in
lower computational time.

Index Terms— Remote sensing images, classification,
deep learning, convolutional neural networks.

1. INTRODUCTION

Image classification is a recurrent problem in remote sens-
ing, aimed at assigning a label to every pixel of an image.
Contrary to the image categorization problem (i.e., assigning
an entire image to a category such as ‘residential’ or ‘agri-
cultural’ area), we conduct a dense pixel-wise labeling. A
challenging aspect of the dense classification problem is the
design of algorithms that can deal with the large scale of re-
mote sensing data. Besides the execution time constraints,
obtaining an accurate classification is substantially more dif-
ficult when dealing with large amounts of heterogeneous data.

Most state-of-the-art dense classification approaches label
every pixel individually by taking into account its spectrum
and possibly some constraints with respect to its close neigh-
bors [1]. In this work we are dealing with large-scale satellite
images that do not have a large spectral resolution, making it
difficult to distinguish object classes just by their spectrum.
We must thus infer the class of a pixel from its context and
from the shape of the surrounding objects.

Convolutional neural networks (CNNs) learn contextual
features at different scales. While initially devised for im-
age categorization [2], we show that they are also effective at
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dealing with the dense classification of satellite imagery.
In remote sensing, CNNs have been used to classify the

pixels of hyperspectral images. Instead of convolving in the
spatial domain, convolutions are performed in the 1D domain
of the spectrum of each pixel [3], or in the 1D flattened spec-
trum vector of a group of adjacent pixels [4]. We convolve in
the 2D spatial domain instead, in order to automatically infer
the contextual spatial features required to classify satellite im-
agery. Penatti et al. [5] show that the CNNs used to recognize
everyday objects generalize well to categorize remote sens-
ing scenes. One of the biggest challenges however is to turn
the categorization networks, that generate a single category
for the whole scene, into dense labeling networks. In remote
sensing, Mnih [6] performs dense labeling through CNNs.
The typical single-output final layer was replaced by a fully-
connected layer that outputs entire classification patches.

We discuss Mnih’s approach next, and point out some lim-
itations that hamper its accuracy and efficiency (Sec. 2-3). We
then propose a new CNN architecture that carries out dense
labeling by relying solely upon convolutional layers (Sec. 4).
We show in various experiments (Sec. 5) that it outperforms
the previous approaches and offers a solid framework for re-
mote sensing image classification.

2. PATCH-BASED NETWORK

State-of-the-art CNNs for image categorization tend to follow
a similar pattern: a series of convolution and subsampling op-
erations to extract features of the image, followed by a fully
connected layer to carry out the final labeling into categories.
Typical CNNs produce as many outputs as number of cate-
gories, or a single output for binary labeling. For details on
image categorization with CNNs we refer the reader to [7].

In our problem we must generate as output a dense classi-
fication, i.e., not just one categorization for the entire image,
but a full pixel-wise labeling into the different categories.

To this end, Mnih proposed a patch-based convolutional
neural network [6]. Given the sheer size of remote sensing
images, training and inference are performed patch-wise. The
network takes as input a patch of an aerial image, and gener-
ates as output a classified patch. The output patch is smaller,
and centered in the input patch, to take into account the sur-
rounding context for more accurate predictions. The way to



(a) Patch-based (b) Fully convolutional (c) Fully convolutional (16× 16 output)

Fig. 1: Convolutional neural network architectures (e.g., “64@14× 14” means 64 feature maps of size 14× 14).

create dense predictions is to increase the number of outputs
of the fully connected classification layer, in order to match
the size of the target patch. Fig. 1(a) illustrates such patch-
based architecture. The network takes 64 × 64 patches (on
color pansharpened images of 1m2 spatial resolution) and
predicts 16 × 16 centered patches of the same resolution.
Three convolutional layers learn 64, 112 and 80 convolution
kernels, of 12×12, 4×4 and 3×3 spatial dimensions, respec-
tively. The convolution kernels are three-dimensional, i.e.,
the two spatial dimensions plus a third dimension that goes
through all the feature maps convolved.

The first convolution is not applied to every pixel of the
input, but at every other forth pixel, feature referred to as a
stride. Without strides (or other sort of subsampling) the num-
ber of parameters becomes too large for a network to learn
effectively. After the three convolutional layers, a fully con-
nected layer transforms the features into a classification map
of 256 elements, matching the required 16× 16 output patch.

Each convolutional layers is followed by a (ReLU) activa-
tion function [7] to add non-linearities and increase the space
of functions that the network can learn. The final classifica-
tion probabilities are computed by applying a sigmoid func-
tion to the output of the last layer. The loss function used for
training is the cross-entropy on the sigmoid values [8].

Training is carried out by an stochastic gradient descent
applied to random patches of a dataset. In every iteration, the
patches are grouped into mini-batches to estimate the gradient
of the loss function with respect to the network’s parameters,
and the parameters are updated accordingly.

3. LIMITATIONS OF THE PATCH-BASED SCHEME

We now point out some limitations of the patch-based ap-
proach discussed above, that motivate the design of an im-
proved architecture. We first discuss the role of the fully con-
nected layer. The size of the feature maps of its previous layer
is 9 × 9 and have 1/4 of the resolution of the input, given
the stride in the first convolution. The fully connected layer
outputs a 16× 16 map instead. This means that the fully con-
nected layer does not only carry out a classification, but it also
learns how to upsample the feature maps from the previous
layer to the initial image resolution. In addition, the fully-
connected layer allows every output to have different weights
with respect to the previous feature map. For example, the
activation of an output pixel at the top-left corner of the patch

might not be the same as the one at the bottom-right. This
makes it possible for the network to learn priors on the posi-
tion inside a patch, in order to carry out the final classifica-
tion. In our context, the partition of an image into patches is
arbitrary, hence the “in-patch location” prior is not necessary.
Otherwise, e.g., two patches that are similar but rotated by 90
degrees might yield different classification maps.

When training the patch-based network of Fig. 1a we ex-
pect that, after processing many training cases, the fully con-
nected layer will learn a location-invariant function to classify
and upsample the features of the previous layer. The experi-
ments carried out on patch-based networks presented by Mnih
[6] show the existence of discontinuities at the border of the
patches in the output probability maps (see Fig. 4). This im-
plies that the networks do not succeed in learning to classify
pixels independently of their location inside the patch.

4. FULLY CONVOLUTIONAL APPROACH

We propose a fully convolutional neural network architec-
ture (FCN) to produce dense predictions. This architecture
explicitly restricts the outputs of the patches to be location-
independent, which means that they should be the result of a
series of convolutions only.

A classification network can be “convolutionalized” [9]
as follows. First, we rewrite the fully connected layer that
carries out the classification as a convolutional layer. If we
choose a convolution kernel whose dimensions coincide with
the previous layer, the connections are equivalent to a fully
connected layer. The difference now is that if we enlarge the
input image, the output size is also increased, but the num-
ber of parameters remains constant. This can be seen as con-
volving the whole original network around a larger image to
evaluate the output at different locations.

To increase the resolution of the output map, we then add
a “deconvolutional” layer [9] that learns filters to upsample
the resolution. A deconvolutional layer takes a single in-
put and multiplies it by a learned filter, to produce an output
patch. If these patches overlap in the output, they are simply
added to create the final result. This can be seen as a convo-
lutional layer with backward and forward passes inverted.

As compared to a patch-based approach, our fully convo-
lutional network exhibits the following advantages:

• Elimination of discontinuities due to patch borders;
• Improved accuracy due to a simplified learning process,

with a smaller number of parameters;



(a) Color image (b) Reference data (c) Patch-based fuzzy map (d) FCN fuzzy map (e) SVM fuzzy map

Fig. 2: Experimental results on a fragment of the Boston dataset.

• Lower execution time at inference, given that convolu-
tions can enjoy the benefits of GPU processing.

We convolutionalize the patch-based network depicted by
Fig. 1. We choose an existing framework to benefit from a
mature architecture and to carry out a rigorous comparison.

Fig. 1b depicts such conversion into a FCN. In the patch-
based network, every output inside the output patch is located
at a different position with respect to its so-called receptive
field (the portion of the input to which it is connected). This
behavior is hard to justify, so we will here pretend that the
output patch is of size 1 × 1 instead of 16 × 16, thus just
concentrating on a single centered output. We then rewrite
the fully connected layer as a convolutional layer with one
feature map and with the spatial dimensions of the previous
layer (9 × 9). Finally, we add a deconvolutional layer that
upsamples its input by a factor of 4, in order to recover the
input resolution. Notice that the tasks of classification and
upsampling are now separated.

This new network takes as input images of different sizes,
with the output size varying accordingly. During the training
stage, we emulate the learning as performed by the patch-
based networks by taking an input of size 80 × 80 in order
to produce maps of size 16 × 16 as before (see Fig. 1c). The
input patch is larger than the one of patch-based networks, not
because we are dealing with more context, but because every
output is now centered in its context. At inference time we
take inputs of arbitrary sizes to construct classification maps.
For arbitrary size of input the FCN structure is always similar,
with the same number of parameters.

Fig. 1c depicts the role of deconvolution: The output value
of each neuron from the previous layer is multiplied by a
learned filter, which is “pasted” in the output with a stride
of 4. Overlapping occurs due to the size 8 × 8 of the filter.
The overlapping areas are added (gray) while the excess ar-
eas beyond border are excluded (white).

5. EXPERIMENTAL RESULTS

The CNNs were implemented using the Caffe deep learning
framework [10]. In a first experiment we apply our approach
to the Massachusetts Buildings Dataset [6]. The dataset con-
sists of color images over Boston with 1m2 spatial resolution,

covering an area of 340km2 for training and 22.5km2 for test-
ing. The images are labeled into two-classes: building and
non-building. A portion of an image with its corresponding
reference is depicted in Figs. 2a-b.

We train the patch-based and fully convolutional net-
works (Figs. 1a and 1c respectively) for 30k stochastic gra-
dient descent iterations on randomly sampled patches, with
mini-batches of size 64, a learning rate of 0.0001, momentum
0.9 and a weight regularization of 0.0002. The parameters
and rationale for selecting them are detailed by Mnih [6].

To evaluate the accuracy of the classification we used two
different measures: pixel-wise accuracy (proportion of cor-
rectly classified pixels, obtained though binary classification
of the output probabilities with threshold 0.5) and the area un-
der the receiver operating characteristics (ROC) curve [11].
The latter measures the overall quality of the fuzzy maps, be-
ing 1 the area value corresponding to an ideal classifier.

Fig. 3a plots the evolution of area under ROC curve and
pixel-wise accuracy, through the iterations. The FCN consis-
tently outperforms the patch-based network. Fig. 3b shows
ROC curves for the final networks after training, the FCN ex-
hibiting a better relation between true and false positive rates
(areas under ROC curves are 0.9922 for FCN and 0.9899 for
the patch-based network). Fig. 2c-d depicts visual fragments.

To further evaluate the benefits of neural networks over
other previous learning approaches we trained a support vec-
tor machine (SVM) with Gaussian kernel on 1k randomly
selected pixels of each class. Such SVM-based approach is
common for remote sensing image classification [1].

As shown by Fig. 2e, such pixel-wise SVM classification
often confuses roads with buildings as their colors are similar,
while neural networks better infer and separate the classes by
taking into account the geometry of the context. The accuracy
on the Boston test dataset is 0.6229 and its area under ROC
curve is 0.5193 (lower than with CNNs, as shown in Fig.3).

In terms of efficiency the FCN also outperforms the patch-
based CNN. Instead of carrying out the prediction in a small
patch basis, the input of the FCN is simply increased to output
larger predictions, better benefiting from the GPU paralleliza-
tion of convolutions. The execution time to classify the whole
Boston 22.5km2 dataset (run on an Intel I7 CPU @ 2.7Ghz
with a Quadro K3100M GPU) is 82.21s with the patch-based
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Fig. 3: Evaluation on the Boston test set.

Color Patch-based FCN

Fig. 4: Border discontinuities are removed
through the FCN (top: Boston, bottom: Forez).

(a) Color image (b) Fuzzy map (c) Binary map

Fig. 5: Classification of a Pleiades image, with an FCN.

CNN against 8.47s with the FCN, showing a 10x speed-up.
In a second experiment we visually demonstrate the ef-

fectiveness of FCNs for the classification of a Pleiades image
covering the area of Forez, France, at a 0.5m2 spatial reso-
lution. We use a pansharpened color version of the image,
which we train for 30k iterations on patches extracted from a
subset of the surface that covers 24.75km2. The classes and
the parameters used for training are the same as for the Boston
network. To preserve the amount of spatial context in this
higher resolution image, we first subsample the image and
then linearly upsample the output patches. The reference data
used for training are extracted from OpenStreetMap project.
Fig. 5 shows a test subset and its corresponding classification
map. The time to infer a tile of 2.25km2 is 10.6 seconds for
a patch-based CNN and 1.8 for the FCN.

As shown in the amplified fragments from both images
(Fig. 4), the border discontinuities present in the patch-based
scheme are absent in our fully convolutional setting.

6. CONCLUDING REMARKS

This work addresses the problem of remote sensing image
classification with convolutional neural networks. CNNs are
mostly used to categorize images, hence new architectures
must be designed for dense pixel-wise classification. To this
end, we proposed a fully convolutional neural network. By
imposing the restriction that all layers must be convolutional
or deconvolutional, the learning process is enhanced and the
execution time reduced. Our experimental results show that
such networks outperform previous approaches both in accu-
racy and in the computational time required for inference.
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