Image Statistics Based on Diffeomorphic Matching

Guillaume CHARPIAT¹, Olivier FAUGERAS², Renaud KERIVEN³

¹ Projet Odyssée, École Normale Supérieure, France

² Projet Odyssée, INRIA Sophia Antipolis, France

³ Projet Odyssée, École Nationale des Ponts et Chaussées, France

Introduction

- Goal: non-supervised object recognition, image classification
- \hookrightarrow automatic description of shape and colour variations ?
- Method: compute a *mean* object and *characteristic modes of variation*
- **Basic Tool** : non-supervised diffeomorphic image matching

Modes of Shape Variation

- **Data:** n images I_i , n warping fields h_i
- Method: warping field statistics
- Correlation between 2 fields: $\langle h_i | h_j \rangle = \int h_i(y) \cdot h_j(y) \, dy$
- Modes: diagonalization of correlation matrix, extraction of eigenmodes P_k and their eigenvalues σ_k

- \hookrightarrow natural definition of mean and modes
- Advantages: non-supervised, non-specific to a particular dataset
- Example: Yale face image dataset
- Classification Application: face expression recognition task

Diffeomorphic Image Matching h^{-1} • Initial Image: A • Target Image: B • Method: search for a diffeomorphism h such that $A \circ h \simeq B$ Image $A \circ h$ Image A

• Image Similarity Criterion: Local Cross-Correlation (LCC)

 $LCC(A,B) = \int_{y\in\Omega} \frac{v_{AB}(y)^2}{v_A(y) v_B(y)} dy$

• Example: application of the modes to the mean image M with different amplitudes

Modes of Shape and Intensity Variation

• Intensity Variations: $v_i = I_i \circ h_i - M$

- with $v_A(y)$ local variance of image A in a gaussian neighborhood of point y, and $v_{AB}(y)$ the local covariance
- Smoothing Term: for example $R(h) = ||h \mathrm{Id}||_{H^1}$
- Image Matching: multiscale gradient descent with respect to warping field h of

 $E(A, B, h) = R(h) - LCC(A \circ h, B)$

Some initial images I_i from the dataset

Computation of the Mean Image

Together warped images $I_i \circ h_i$

Mean image M(sum of the warped images) • Intensity Variation Correlation: $\langle v_i | v_j \rangle = \int_{\Omega} v_i(y) v_j(y) dy$ • Combined Shape-Intensity Correlation: $\langle h_i, v_i | h_j, v_j \rangle = \langle h_i | h_j \rangle + \langle v_i | v_j \rangle$

• New Modes: with 2 parts (deformation field and intensity modification field)

Classification Task: Face Expression Recognition

• Goal: associate, to any new face, its expression (among 5 given expressions) • **Data:** a training set, a new face with and without expression

• Method: compare the warping field between the 2 new images to known labeled fields (after alignment to the mean face). Result: 53/65. Incorrect labels are marked.

- **Data:** set of n images I_i
- Goal: computation of a mean image M
- **Problem:** gradient descent involving M intensity leads to local minima \hookrightarrow creation of new contours instead of moving existing ones
- Solution: use diffeomorphisms
- \hookrightarrow associate to each image I_i a diffeomorphism h_i

 \hookrightarrow minimize with respect to the *n* fields h_i the similarity between all warped images

$$\sum_{i} R(h_i) - \frac{1}{n-1} \sum_{i \neq j} LCC(I_i \circ h_i, I_j \circ h_j)$$

• Mean Image: $M = \frac{1}{n} \sum_{i} I_i \circ h_i$

• Algorithm Comparison: SVM on images leads to 17 errors instead of 12. • Without Normal Face: use warping field from the mean face to the new face. Result: 41/65 (SVM on images: 38).