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Abstract. The level set representation of shapes is useful for shape
evolution and is widely used for the minimization of energies with respect
to shapes. Many algorithms consider energies depending explicitly on the
signed distance function (SDF) associated with a shape, and differentiate
these energies with respect to the SDF directly in order to make the level
set representation evolve. This framework is known as the “variational
level set method”. We show that this gradient computation is actually
mathematically incorrect, and can lead to undesirable performance in
practice. Instead, we derive the expression of the gradient with respect
to the shape, and show that it can be easily computed from the gradient
of the energy with respect to the SDF. We discuss some problematic
gradients from the literature, show how they can easily be fixed, and
provide experimental comparisons illustrating the improvement.

1 Introduction

In recent years, much work on geometric active contour models, i.e. active con-
tour models [1] implemented with the level set method [2], has been proposed
to solve many computer vision problems [3]. Any planar closed curve Γ , i.e. any
function Γ : S1 → Ω from the circle S1 to the image domain Ω ⊂ R2, can be
represented by the zero level set of a higher-dimensional embedding function
φ : Ω → R. During curve evolution, instead of directly updating the contour Γ ,
one can then update its associated embedding function φ, which is more prac-
tical for handling topological changes, like merging or splitting. The embedding
function φ is usually the signed distance function (SDF) of Γ , i.e. the function
that associates any point x ∈ Ω with the signed distance φ(x) = ±d(x, Γ ) from
x to Γ , with a minus sign if x belongs to the interior of the region delimited
by Γ .

Many computer vision problems involving shapes can be formulated as the
minimization of a certain energy functional E(Γ ). Depending on the properties of
the energy E, one is often reduced to performing gradient descents with respect
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to the shape Γ , starting from an initialization Γ0 and making Γ evolve step by
step in the opposite direction of the gradient of the energy:

Γ (0) = Γ0

∂Γ (t)
∂t

= −∇Γ E(Γ (t))
(1)

where the gradient ∇Γ E(Γ ) is defined from the derivative of E with respect to
Γ and depends on the choice of an inner product (see Section 3.1 for a proper
definition, or [4]). If one chooses to represent the contour Γ (t) by an embedding
function φ(t), then one is interested in the equation that governs the evolu-
tion of φ(t). Since by definition ∀t, ∀x ∈ Γ (t), φ(t)(x) = 0, one obtains, by
differentiation, ∂φ

∂t + ∂φ
∂x

∂Γ
∂t = 0, and thus:

φ(0) = φ0 (e.g. := SDF(Γ0) )

∂φ

∂t
(x) = |∇xφ(t)|(x) V (t)(x) ∀x ∈ Γ (t) = φ(t)−1(0)

(2)

where ∀x ∈ Γ, V (t)(x) = ∇Γ E(Γ (t))(x) · nΓ (t)(x) is the normal velocity field,
i.e. the part of the shape gradient that is normal to the contour Γ . This so-called
“level set equation” has to be properly defined for points which are not on Γ ,
e.g. by extending the velocity field V to at least a narrow band around Γ .

However, for many applications, calculating the gradient using Eq.(1) directly
is difficult and therefore an alternative derivation to obtain the level-set equation
was proposed in [5], named the “variational level set method”. The idea is that
since there is a bijection between Γ and its signed distance function φ, an energy
defined on shapes E(Γ ) can be rewritten as an energy F (φ) defined on their
level set representations and vice versa. Subsequently, one might be interested
in deriving the Euler-Lagrange equation that minimizes F (φ) directly:

∂φ

∂t
= −∇φF (φ) =: G(φ). (3)

Note that this equation is a priori not related to Eq.(2). Since the introduction
of the variational level set approach, much work has been carried out under
this framework, e.g. [6–8], to name a few. However only very few functions in
L2(Ω → R) are SDFs of a shape; for instance, they must satisfy the Eikonal
Equation |∇xφ| = 1 almost everywhere. Therefore, a new φ obtained from a
discrete step of Eq.(3) will generally not itself be a valid SDF. Various authors
[5, 9, 10] showed that if the velocity field G in Eq.(3) satisfies

∇xG · ∇xφ = 0 (4)

then the evolving level set φ will always remain a valid SDF for all time. However,
a general level set gradient G = −∇φF (φ) is unlikely to satisfy Eq.(4), and
several approaches have been proposed to maintain the SDF property of φ [11].
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The first approach is known as “velocity extension”[9, 10]. A narrow band
around Γ is first defined, and Eq.(4) is solved to extend G with the “Fast March-
ing” method [10]. A second approach is known as “reinitialization” [12]. Here,
Eq.(3) is used to update φ, but since the newly obtained φ will drift away from
a SDF, the evolution is occasionally stopped, and the SDF of the zero level set
of φ is recomputed. A third approach was proposed by Li et al. [13], in which
the deviation of |∇xφ| from 1 is incorporated into the energy function F (φ).

However, previous works neglect one important issue. Although the desired
energy E(Γ ) can be rewritten as F (φ), the meaning of the gradient ∇φF (φ)
is fundamentally different from ∇Γ E(Γ ) because the computation ∇φF (φ) is
performed without the constraint that the gradient should belong to the very
particular subset of variations of φ that maintain its property of being a SDF.
Thus the effect of the gradient ∇φF (φ) on the zero level Γ may be completely
different from ∇Γ E(Γ ) and entirely incorrect. Updating the level set function
to maintain the SDF property (e.g. by recomputing it from its zero level) does
not change the fact that the newly obtained Γ associated with φ is wrong.

In this work, we show that with a simple “velocity projection” step, the
level set gradient can be made to exactly match the true gradient of E(Γ ) with
respect to Γ , which we call the “shape gradient”. Therefore, with our approach,
one can still take the derivative ∇φF (φ) of an energy F (φ) with respect to φ,
and transform it to obtain the correct shape gradient to deform φ. To motivate
the discussion, Fig.1 compares our result with the standard variational level
set method, where E(Γ ) is defined as the L2 distance from φ to the SDF φT

corresponding to a target curve ΓT , i.e. F (φ) = ||φ − φT ||2L2 . We can see that
using the standard (incorrect) level set gradient, the initial curve would shrink
to a point, while with our corrected gradient, the initial curve is correctly drawn
to ΓT . For more detailed discussion, please refer to Section 4.

(a)

(b)

Fig. 1: Curve evolution of the red circle Γ , where the black circle ΓT is the target. The
cost function is the L2 distance between the two SDFs. (a) standard variational level
set method, (b) our result.
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This paper is organized as follows. In Section 2, we describe the family of
admissible SDF variations δφ so that φ + δφ remains a valid SDF. In Section 3,
we use this family to draw the connection between the level set gradient obtained
from Eq.(3) and the shape gradient from Eq.(1). We show that by projecting
the level set gradient onto the family of admissible SDF variations, we exactly
recover the shape gradient. Therefore, with only a simple “velocity projection”
step, we can convert any level set gradient to the correct shape gradient and
thus deform φ by extending the shape gradient with the usual velocity extension
approach. We also show how to directly compute the correct deformation of φ by
integrating the level set gradient over parts of the image Ω, without explicitly
computing the shape gradient. In Section 4, we review some often-used level
set gradients from the literature that need the “velocity projection” step to
make them correct deformations of Γ . We also show experimental results that
compare the corrected shape gradient with problematic level set gradients. We
then conclude and discuss future directions.

2 The family of admissible SDF variations

Let us consider a closed planar curve Γ ∈ L2(S1 → Ω), an infinitesimal defor-
mation field δΓ ∈ L2(Γ → R2), which can be seen as a function in L2(S1 → R2)
using Γ ’s parameterization, and let φ ∈ L2(Ω → R) be the SDF associated
with Γ . If we consider an infinitesimal variation δφ of φ, which is any function
in L2(Ω → R), in the general case φ + δφ would not be a valid SDF of some
corresponding shape. Thus we should only consider variations δφ so that there
exists a shape Γ ′ so that φ + δφ is the SDF of it, i.e. φ + δφ = Φ(Γ ′).

Let us call F the family of all such infinitesimal deformations δφ. There is
a bijection between SDF variations δφ in F and shape deformations δΓ of Γ ;
that is, for any vector field δΓ normal to Γ at each point of Γ (since tangent
displacements do not affect the shape), we can associate a corresponding SDF
variation δφ and vice versa. We show in the appendix that to match the shape
deformation δΓ , one has to update δφ according to:

∀x ∈ Ω, δφ(x) = −δΓ (sx) · nΓ (sx) (5)

where Γ (sx) is the projection of point x onto Γ , and nΓ (sx) is the unit normal
at point Γ (sx) pointing outwards. Here δφ can be understood as dφ

dΓ (δΓ ). Note
however that dφ

dΓ is not defined when a topological change occurs, so that φ will
have to be recomputed from its 0-level after topological changes.

Fig. 2 illustrates the admissible variations of an SDF. Intuitively, Eq.(5)
implies that a valid deformation δφ at any point x in Ω depends only on its
projection onto Γ : if two points share the same projection point Γ (sx), then
their variation will be the same. This is a known result [5, 9, 10]. Consequently,
all points on a projection line vary the same way, i.e. δφ is a constant along
projection lines to Γ . Conversely, if δφ is constant along all projection lines to
Γ , then there exists a deformation δΓ associated with it. Note that the projection
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(a) (b)

Fig. 2: Illustration of the admissible variations of a SDF. (a) The projection line (in
blue) is the line going through x that orthogonally intersects Γ at Γ (sx) and stops at
the skeleton B. (b) The admissible variation δφ is a constant along the projection lines.

Γ (sx) is well-defined for all points in Ω except for those on the skeleton of Γ .
Since we will later integrate bounded variations over regions of Ω in which the
Lebesgue measure of the skeleton is 0, this will pose no problem in our work.

As a consequence, the family F of all admissible variations of a SDF φ is
the set of all L2(Ω → R) functions that are constant along projection lines to
Γ . This means that, when performing a shape evolution based on a level set
representation, one should ensure that the level set variation belongs to this
family F . Numerical algorithms such as the Fast Marching method [10] can be
used to obtain such a level set variation based on the deformation of Γ .

3 Velocity projection

In the previous section, we defined the family of all admissible variations of an
SDF as the set of all functions that are constant along projection lines to Γ . We
will now use this result to draw a connection between ∇φF (φ), which we call the
“level set gradient” and ∇Γ E(Γ ), which we call the “shape gradient”. We will
show that projecting ∇φF (φ) onto the family F will exactly produce ∇Γ E(Γ ).

3.1 Gradients and inner products

The gradient definition depends on the choice of the inner product in the tangent
space of shapes [14, 15]. In this work, we use the standard L2 inner product:

〈δΓ1|δΓ2〉L2(S1→R) =
∫

Γ

δΓ1(s) · δΓ2(s) dΓ (s) (6)

where δΓ1 and δΓ2 are two deformations of Γ , where s denotes a parameteriza-
tion of Γ , and where dΓ (s) =

∥∥dΓ
ds

∥∥
R2 ds is the associated differential element

(i.e. its parameterization-independent length). The gradient associated with this
inner product is then defined as the unique deformation ∇Γ E(Γ ) that satisfies

∀ δΓ, DE(Γ )(δΓ ) = 〈∇Γ E(Γ )|δΓ 〉L2(S1→R) (7)
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where DE(Γ )(δΓ ) is the usual directional derivative of E at Γ along the direction
δΓ . One of our goals for future work (discussed in the last section) is to extend
our current framework to other inner products.

3.2 Relating the two gradients

Since φ is a function of Γ (its SDF), and since E(Γ ) = F (φ(Γ )) ∀Γ , we have
DE(Γ )(δΓ ) = DF (φ)( dφ

dΓ (δΓ )), i.e. DE(Γ )(δΓ ) = DF (φ)(δφ). On the one side:

DE(Γ )(δΓ ) = 〈∇Γ E(Γ )|δΓ 〉L2(S1→R)

while on the other side, Eq.(5) and the definition of the gradient in Eq.(7) give :

DF (φ)(δφ) = 〈∇φF (φ)|δφ〉L2(Ω→R) =
〈
∇φF (φ)

∣∣−δΓ (sx) · nΓ (sx)

〉
L2(Ω→R)

so that combining both sides gives:

−
∫

Ω

∇φF (φ)(x) (δΓ (sx) · nΓ (sx)) dx =
∫

Γ

∇Γ E(Γ )(s) · δΓ (s) dΓ (s) (8)

We are now ready to derive a more explicit relation between these two gradients.
As we pointed out, the Lebesgue measure of the skeleton is 0, and under

smoothness assumptions about F , the integrand is bounded and consequently
the integral over Ω is the same as the integral over Ω\Skeleton(Γ ). We also note
that any point x ∈ Ω\Skeleton(Γ ) not on the skeleton can be written as:

x = Γ (sx) + φ(x)nΓ (sx) = Γ (s) + r nΓ (s)

where s(x) = sx and r(x) = φ(x), which is illustrated in Fig. 3. Note that r
can be negative. We will define a new coordinate system using s and r such
that the mapping that associates x ∈ Ω\Skeleton(Γ ) with (s, r) is injective. The
infinitesimal (vector) elements of the two coordinate systems are related by:

dx =
∥∥∥∥dΓ

ds

∥∥∥∥
R2

tΓ (s) ds + nΓ (s) dr − r κΓ (s)

∥∥∥∥dΓ

ds

∥∥∥∥
R2

tΓ (s) ds

= (1− κΓ (s)r)
∥∥∥∥dΓ

ds

∥∥∥∥
R2

tΓ (s) ds + nΓ (s) dr

where tΓ (s) is the unit tangent of Γ (s), and κΓ (s) is the curvature of Γ (s), which
means by definition d

dsΓ (s) =
∥∥dΓ

ds

∥∥
R2 tΓ (s) and d

dsnΓ (s) = −κΓ (s)

∥∥dΓ
ds

∥∥
R2 tΓ (s).

The determinant of the Jacobian
∣∣dx

ds , dx
dr

∣∣, which is the ratio between the in-
finitesimal area elements, is then |1 − κΓ (s)r|

∥∥dΓ
ds

∥∥
R2 . Therefore, the right side

of Eq.(8) can be rewritten as:

−
∫

Ω

∇φF (φ)(x) (δΓ (sx) · nΓ (sx)) dx

= −
∫

Ω

∇φF (φ)(x(s,r)) (δΓ (s) · nΓ (s)) |1− κΓ (s)r|
∥∥∥∥dΓ

ds

∥∥∥∥
R2

dr ds

= −
∫

Γ

∫
l(s)

∇φF (φ)(x(s,r)) |1− κΓ (s)r| dr nΓ (s) · δΓ (s) dΓ (s)
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Fig. 3: Illustration of the change of coordinates. See text for explanations.

where l(s) is the projection line that goes through Γ (s) as illustrated in Fig. 3.
It is the set of all points of Ω whose projection on Γ is Γ (s). It is thus a part of
a line, which stops at the skeleton of Γ and is also delimited by the boundary of
Ω. Therefore, a projection line l(s) is a segment and the integral is well-defined.
Since the equality Eq.(8) holds for all possible shape deformations δΓ , we obtain:

∇Γ E(Γ )(s) = −
∫

l(s)

∇φF (φ)(x(s,r))
∣∣1− κΓ (s) φ(x(s,r))

∣∣ dr nΓ (s) (9)

with φ(x(s,r)) being just r by definition. This is the key contribution of our work,
since it draws the connection between the shape gradient ∇Γ E(Γ ) and the level
set gradient ∇φF (φ) frequently used in the literature. The intuitive explanation
of Eq.(9) is that the shape gradient ∇Γ E(Γ ) at Γ (s) is a weighted integral of
the level set gradient ∇φF (φ) along the projection line going through Γ (s). We
will shortly introduce a natural interpretation of these weights.

3.3 The correct way to evolve the level sets

Eq.(9) shows how to calculate the shape gradient ∇Γ E(Γ ) from the level set
gradient ∇φF (φ). However, to actually update the level sets, we need to find
the corresponding variation of φ, that is δφ. One possibility for this is to use the
classical “velocity extension” approach [9, 10] where the velocity defined on Γ
is extended to Ω. This involves the computation of the zero level set, which is
sometimes undesirable. Another way is to directly express δφ using Eq.(5):

δφ(x) = −δΓ (sx) · nΓ (sx)

= −
∫

l(sx)

∣∣∣1− κ(sx) φ(x′(sx,r))
∣∣∣ ∇φF (φ)(x′(sx,r)) dr (10)

To compute the variation δφ(x) at point x, it is thus sufficient to integrate
the level set gradient, weighted by the area element ratio, along the projection
line l(sx) that shares the same projection point as x. We will now give a natural
geometrical interpretation of Eq.(9) and Eq.(10) which will lead to our numerical
implementation algorithm.
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3.4 Implementation

Let us first examine the term |1 − r κΓ (s)| in Eq.(9). From basic differential

geometry, we have that κΓ (s) = dθ
ds

∥∥∥dΓ (s)
ds

∥∥∥−1

= 1
R , where R is the radius of

the osculating circle at Γ (s), with the same sign as the curvature, and where
dθ is the angle formed by the normals to the curve at Γ (s) and Γ (s + ds), as
illustrated in Fig. 4a. We also note that r = φ(x(s,r)) and is negative when x is
inside Γ , and positive when x is outside Γ . We can show that:

|1−φ(x)κΓ (s)| dΓ (s) =
∣∣∣1− r

R

∣∣∣ dΓ (s) =
|r −R|

R
dΓ (s) = |r−R|dθ = dL (11)

where dL is the distance x(s,r) will travel for an infinitesimal step ds, i.e. the
length of the arc formed by the projection lines through Γ (s) and Γ (s + ds),
at a distance |r − R| from their intersection, as shown in Fig. 4a. Note that
R < 0 in this figure. Since in Eq.(9) we are integrating a function of x times
dL(r) along the projection line segment bounded on one side by the skeleton, we
are interested in the region formed by the skeleton, the boundary of Ω and the
projection lines going through Γ (s) and Γ (s+ds), that is, the red dotted region
dW shown in Fig. 4b. One can indeed show that, for any smooth function f :∫

dW (ds)

f(x) dx =
∫

r∈l(s)

f(x(s,r)) dL(r) dr + o (‖∇xf‖∞ds)

(a) (b)

Fig. 4: Another look at velocity projection. (a) The osculating circle of Γ (s) is shown in
blue, where O is the center of the osculating circle. (b) The skeleton of Γ is B, shown in
red. The area of the dashed subregion dW is

R
r∈ls

dL(r) dr =
R

r∈ls
|1−r κΓ (s)|dr dΓ (s).

The above analysis shows that Eq.(9) can be written as an integral over this
subregion dW when multiplied by an infinitesimal step dΓ (s). We believe this is
a more intuitive explanation of velocity projection, i.e. that the shape gradient
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at any point Γ (s) is the average limit of the level set gradient over the region
whose projection points are between Γ (s) and Γ (s + ds):

∇Γ E(Γ )(s) = − lim
ds→0

1
dΓ (s)

∫
dW (ds)

∇φF (φ)(x) dx nΓ (s) (12)

Although both Eq.(5) and Eq.(12) are the same theoretically, we recommend
using the integral over dW for the following reason. To integrate along l(s), we
need to find the explicit range of r, whose estimation is not straightforward since
it depends on the skeleton. We can however avoid the estimation of the skeleton
if we integrate over regions W .

For any point x in Ω, we can easily locate its projection point Γ (sx) =
x − φ(x)∇xφ(x). Suppose that Γ is discretized by points Γ (si), i = 1, . . . , N ,
and there is a Wi associated with each Γ (si). Then Eq.(12) could be discretized
as:

∇Γ E(Γ )(si) = −
∑

x∈Wi

∇φF (φ)(x) nΓ (si) (13)

with its equivalent from Eq.(10) for direct level set evolutions, if x ∈ Wi:

δφ(x) =
∑

y∈Wi

∇φF (φ)(y) (14)

which means that the correct level set evolution can be computed from the
level set gradient ∇φF (φ) very easily by just integrating over regions that share
similar projection points.

However, since the projection sx of a random point x ∈ Ω is unlikely to be
exactly one of the si, a point x will typically contribute to more than one Wi. Let
us denote by hx

i the weight that x contributes to Wi. We have the constraint that
all contributions of a point sum up to 1 :

∑
i hx

i = 1. Thus Eq.(13) is replaced
by:

∇Γ E(Γ )(si) = −
∑
x∈Ω

hx
i ∇φF (φ)(x) nΓ (si) (15)

or, more practically, we obtain the level set evolution from Eq.(10):

δφ(x) =
∑

i

hx
i

∑
y∈Ω

hy
i ∇φF (φ)(y). (16)

Then the problem comes down to how to estimate the weight hx
i that x

contributes to Wi in a computationally effective manner. In practice, we assign
hx

i to a function of the distance from Γ (sx) to Γ (si) and normalize accordingly.
A better numerical implementation algorithm is also one of our future goals.

4 Implications for common level set gradients

As mentioned earlier, much work has been carried out under the variational level
set method, without considering whether the level set gradient agrees with the
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shape gradient. In this section, we will discuss some energy models that depend
on SDFs and their gradients. We will not discuss energy models that depend
only on Γ , such as the Geodesic Active Contour [16] and the Chan-Vese models
[6], since our aim is to compare shape gradients with level set gradients.

We first consider the L2 distance between two SDFs and its gradient:

F (φ) = ||φ− φT ||2L2 , ∇φF (φ) = 2(φ− φT ) (17)

Here φT is a target SDF. This energy is important and has many applications in
shape analysis, morphing and shape prior image segmentation [17, 18]. We are
not aware of any work on computing the corresponding E(Γ ) or its shape gra-
dient ∇Γ E(Γ ). Charpiat et al. [19] showed how to calculate the shape gradient
directly with the W 1,2 norm but under a smooth approximation of infima. We
can easily compute the shape gradient with our velocity projection step.

If instead, as in other works, we let φ evolve with the level set gradient, and
rebuild it regularly from its 0-level to maintain its SDF property, we notice the
following effect. Curve segments of Γ that lie inside the region delimited by ΓT

expand, while segments of Γ that lie outside of ΓT shrink. This immediately
implies that if Γ lies completely outside of ΓT , then the evolution process will
shrink Γ until it disappears no matter how close they are. This phenomenon is
illustrated in Fig. 1a where we are trying to evolve the red circle Γ to the black
circle ΓT . With the velocity projection approach, we can calculate the shape
gradient and deform Γ accordingly. Fig. 1b illustrates the deformation process
under the correct shape gradient, which naturally morphs the initial curve to ΓT .

(a)

(b)

Fig. 5: Curve evolution of the red curve Γ , where the black curve ΓT is the target. The
cost function is the L2 distance between the two SDFs. (a) standard variational level
set method, (b) our result.

Fig. 5 illustrates the evolution of two overlapped shapes using the same L2

distance with and without velocity projection. Fig. 5a illustrates the traditional
evolution without velocity projection. As we can see, the parts that are outside
ΓT will shrink while the parts that are inside will expand. Fig. 5b illustrates the
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correct deformation with velocity projection. As we can see, the deformation is
more meaningful, leading to much better point correspondences. However, this
model suffers from the drawback that the energy and thus the gradient depend
on the domain Ω. That is, by fixing Γ and ΓT and changing Ω alone, we will
get different energies, gradients and thus different deformation processes.

As a second example, consider the following energy model:

F (φ) =
∫

Ω

(φ− φT )2H(−φ)dx (18)

which is the integration of the L2 distance between φ and φT inside Γ . Here H is
the Heaviside function. This energy model was studied by Rousson and Paragios
[7]. It can be shown that the level set gradient is:

∇φF (φ) = 2(φ− φT )H(−φ)− (φ− φT )2δ(φ) (19)

In this case, the velocity projection step is necessary to calculate the correct
shape gradient. The evolution process of the correct shape gradient is illustrated
in Fig. 6a. Since the integration is only inside Γ , it is not appropriate if Γ lies
outside ΓT . To improve the evolution, we study the following symmetric term:

F (φ) =
∫

Ω

(φ− φT )2H(−φT )dx (20)

which is the integration of the L2 distance between φ and φT inside ΓT . This
energy was studied by Cremers and Soatto [8]. The level set gradient is:

∇φF (φ) = 2(φ− φT )H(−φT ) (21)

It is only defined within ΓT and therefore if we try to make Γ evolve to ΓT under
this gradient alone, most likely it won’t move at all! We can again calculate its
shape gradient (see Fig. 6b). This evolution does not correctly draw Γ to ΓT .
The reason is that the level set gradient is non-0 inside ΓT and all the projection
points inside ΓT fall only on the blue curve segment of Γ in Fig. 6c. Therefore,
the fastest way to minimize this energy, or the gradient, is to only move the blue
curve segment to ΓT . The dissimilarity measure between Γ and ΓT can be made
symmetric by combining both Eq.(18) and Eq.(20):

F (φ) =
∫

Ω

(φ− φT )2H(−φT )dx +
∫

Ω

(φ− φT )2H(−φ)dx (22)

The evolution of this symmetric dissimilarity measure is shown in Fig. 6d. As
we can see, it correctly evolves Γ to ΓT . We note here that the traditional
variational gradient of this symmetric measure could also be used to evolve Γ .
However, since the level set gradient Eq.(21) is not defined on curve segments
of Γ that lie outside ΓT , only the gradient Eq.(19) would play a role in the
evolution and it would not correctly draw Γ to ΓT .
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(a)

(b) (c)

(d)

Fig. 6: The evolution from the red circle Γ to the black circle ΓT under the correct
shape gradient of the three different energy models. (a) energy model Eq.(18), (b)
energy model Eq.(20), (c) the blue curve segment is the region that H(−φT ) projects
onto for (b), (d) energy model Eq.(22).

As a final example, we consider the following energy model [20]:

E(Γ ) =
∫

ΓT

φ2 ds =
∫

Ω

φ2 δ(φT ) dx = F (φ) (23)

This also defines a dissimilarity between Γ and ΓT . The level set gradient is:

∇φF (φ) = 2φ δ(φT ) (24)

which is defined only along ΓT and is zero everywhere else. Therefore, it is also
problematic for the traditional variational level set method. However, if we apply
the velocity projection approach we can calculate the true deformation field:

δφ(x) = −2
∑

y∈(l(sx)∩ΓT )

|1− φ(y)κ(sx)|φ(y) (25)

where l(sx) is the projection line going through x. The deformation process
is illustrated in Fig. 7a. However, as we can see, this evolution also does not
correctly draw Γ to ΓT . The reason is the same as in Fig. 6c.

To improve the evolution process, we can add a second symmetric term:

F (φ) =
∫

ΓT

φ2 ds +
∫

Γ

φ2
T ds (26)

The evolution of this symmetric energy under the correct shape gradient is il-
lustrated in Fig. 7c and it successfully draws Γ to ΓT .
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(a) (b)

(c)

Fig. 7: The evolution from the red circle Γ to the black circle ΓT under the shape
gradient of two different energy models. (a) energy model Eq.(23), (b) the blue curve
segment is the region that δ(φT ) projects onto, (c) energy model Eq.(26).

5 Discussion and conclusions

The experiments in Section 4 show that the limitations of traditional variational
level set formulations can be fixed with our velocity projection step. In this work,
we used shape morphing as a motivating application since it is closely related to
other computer vision problems. In future work, we plan to apply our method
to shape-prior image segmentation and statistical shape analysis. Fig. 5 shows
the evolution of tubular structures under the traditional level set gradient can
be problematic and our corrected shape gradient can handle these cases nicely.

We should point out that the geometric L2(S1 → R) inner product has been
shown to suffer from serious drawbacks as a metric on the manifold of shapes
[21, 22]. Specifically, the L2 geodesic distance between two shapes is 0. Since we
consider gradient descents only, the L2 inner product will pose no theoretical
problem. However, we would like to investigate other inner products such as
the H1(S1 → R) inner product [14, 15]. We are also investigating energy models
other than F (φ), such as F (Γ, φ), as well as extending our framework to 3D.
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Appendix

Proof of Eq.(5): (φ + δφ)(x) = φΓ ′(x) implies, using the signed distance d:

δφ(x) = φΓ ′(x)− φ(x) = d(x, Γ ′)− d(x, Γ ). (27)

Since the part of an infinitesimal deformation that is tangent to Γ has no effect
on the shape (just reparameterizes), we only keep the part of the deformation
that is normal to Γ , and the following redefinition of Γ ′ describes the same shape
(as a set of points): Γ ′(s) := Γ (s) + (δΓ (s) · nΓ (s))nΓ (sx).

Then x− Γ ′(sx) = x− Γ (sx) − (δΓ (sx) · nΓ (sx))nΓ (sx)

(x− Γ ′(sx)) · nΓ (sx) = (x− Γ (sx)) · nΓ (sx) − (δΓ (sx) · nΓ (sx))(nΓ (sx) · nΓ (sx))
d(x, Γ ′) = d(x, Γ ) − δΓ (sx) · nΓ (sx)

since the projection of any point x ∈Ω on the closed subset Γ is necessarily ortho-
gonal to its boundary Γ . Hence with Eq.(27) one has δφ(x) = −δΓ (sx) · nΓ (sx).


