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In this supplementary material we include:

• The proofs of the different properties referred to in the main manuscript.

• A video file showing the evolution of the segmentation map during the proposed op-
timization procedure for the image over New York City (k = 30). Each frame reflects
the application of one move. Different nuances of the same color have been randomly
assigned to the objects of every class.

We first generalize and develop the proofs of the energy formulation referred to in Sec-
tion 2 of the manuscript. We then elaborate the proofs of the propositions regarding the space
of moves in the optimization approach. Propositions 1-2 coincide with Propositions 1-2 in
the main manuscript. In addition, Proposition 3 proves an additional property of the moves
(referred to in Section 5.1), and Proposition 4 establishes a bound on the total number of
possible moves on a BPT (mentioned in Section 5). The proofs of the space and computa-
tional complexities of including convex hulls in Binary Partition Trees (BPTs) (mentioned
in Section 3) are here added as propositions 5 and 6, respectively.

1 Energy formulation

1.1 Total energy
Let us call P(L|I,S) the probability of observing a label L, given color and shape features (I
and S, respectively):

P(L|I,S) = P(L, I,S)
P(I,S)

=
P(I,S|L)P(L)

P(I,S)
. (1)

Assuming conditional independence of the shape and color observations with respect to
the label (P(I,S|L) = P(I|L)P(S|L)), and independence between color and shape (P(I,S) =
P(I)P(S)), we have:

P(L|I,S) = P(I|L)P(S|L)P(L)
P(I,S)

=
P(I|L)P(S|L)P(L)

P(I)P(S)
, (2)
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which in turn leads to the following formulation:

P(L|I,S) = P(L|I)P(L|S)
P(L)

. (3)

We derive our energy as the negative log-likelihood of (3), adding the contribution of all
pixels in the image. If we express the total energy in a per-pixel basis, we obtain:

E(R,L) = −
n

∑
j=1

(
logP(LR( j)|I j) + logP(LR( j)|SR( j))− logP(LR( j))

)
. (4)

Alternatively, observing that all pixels in a segmented region share the same label, we can
group them and sum in a per-region basis. This leads to the following equivalent formulation:

E(R,L) =−
|R|

∑
i=1

(
∑
j∈Ri

logP(Li|I j)+ |Ri| logP(Li|Si)− |Ri| logP(Li)
)
. (5)

Let us remark that there are three terms in (4)/(5): a color prior, a shape prior and a label like-
lihood. In the main manuscript (Equations 1 and 5) we considered equal class probabilities
and ignored the third term in the energy.

1.2 Shape prior
Let us call P(L|S) the probability of observing label L given the vector of shape features S.
Using the same derivation as to go from (1) to (3), and assuming the appropriate indepen-
dences, we can express:

P(L|S) = P(L)1−m
m

∏
k=1

P(L|sk) = P(L)1−m
m

∏
k=1

p(sk|L)P(L)
∑

L j∈L
p(sk|L j)P(L j)

. (6)

Considering equal class probabilities (P(L j) =
1
m ,∀ j), the previous equation simplifies to the

expression in the main manuscript (Equation 4).

2 Properties of prune-and-paste moves
Proposition 1. Given a tree τ , suppose a node Rm is pasted at τi < τ1 leading to a new tree
ϕ . Let us consider an alternative move that pastes Rm at τ j, with τi < τ j < τ1, producing
a tree ψ . In the cases where either C(ϕ1)−C(τ1) 6 0 or C(Rm) > C(ϕ1)−C(τ1), then
C(ψ1)>C(ϕ1).

Proof. Let us abbreviate E(τi) as eτ
i and C(τi) as cτ

i . Following (9) in the main manuscript,

cτ
1 = min(eτ

1,c
τ
2 +min(eτ

2,c
τ
3 +min(...min(eτ

i−2,c
τ
i−1 +min(eτ

i−1,c
τ
i + cτ

i ))...))), (7)

where cτ
i denotes the sibling of cτ

i (see Fig. 2b in the main manuscript). This implies:

i−1
∀

k=1

(
eτ

k > cτ
1−Σ

k
j=2cτ

j

)
︸ ︷︷ ︸

α

and
(

cτ
i > cτ

1−Σ
i
j=2cτ

j

)
. (8)
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Let us now suppose that a node Rm is pasted at τi. Then

cϕ

1 =min(eϕ

1 ,c
τ
2+min(eϕ

2 ,c
τ
3+min(...min(eϕ

i−2,c
τ
i−1+min(eϕ

i−1,c
τ
i +min(eϕ

x ,c
τ
i +cR

m)))...))),
(9)

which implies:

i−1
∀

k=1

(
eϕ

k > cϕ

1 −Σ
k
j=2cτ

j

)
︸ ︷︷ ︸

β

and
(

eϕ
x > cϕ

1 −Σ
i
j=2cτ

j

)
and
(

cR
m > cϕ

1 −Σ
i
j=2cτ

j − cτ
i

)
︸ ︷︷ ︸

γ

. (10)

Let us now paste Rm one position upper than before. We wish to check if it is possible
that this move will be better that the previous one (cψ

1 < cϕ

1 ):

cψ

1 =min(eϕ

1 ,c
τ
2 +min(eϕ

2 ,c
τ
3 +min(...min(eϕ

i−2,c
τ
i−1 +min(eψ

y ,

cR
m +min(eτ

i−1,c
τ
i + cτ

i )))...))< cϕ

1 .
(11)

This can be true if and only if:

i−2
∃

k=1

(
eϕ

k < cϕ

1 −Σ
k
j=2cτ

j

)
︸ ︷︷ ︸

I

or
(

eψ
y < cϕ

1 −Σ
i−1
j=2cτ

j

)
︸ ︷︷ ︸

II

or
(

eτ
i−1 < cϕ

1 −Σ
i−1
j=2cτ

j − cR
m

)
︸ ︷︷ ︸

III

or
(

cτ
m < cϕ

1 −Σ
i
j=2cτ

j − cτ
i

)
︸ ︷︷ ︸

IV

.

(12)

In this expression, I contradicts β . Considering that eψ
y = eϕ

i−1 (see Fig. 2b), the term II also
contradicts β . The term IV contradicts γ . We must now analyze III. By combining III and
α:

cτ
1−Σ

i−1
j=2cτ

j 6 eτ
i−1 < cϕ

1 −Σ
i−1
j=2− cR

m⇒ cR
m < cϕ

1 − cτ
1. (13)

If cϕ

1 − cτ
1 6 0, then cR

m must be non-positive, which contradicts our hypothesis. If cϕ

1 −
cτ

1 > 0: then it must be cR
m < cϕ

1 − cτ
1. As a conclusion, if the first move decreases C, III

is contradicted, hence it must be cψ

1 > cϕ

1 . For a positive gain, III is contradicted unless
cR

m < cϕ

1 − cτ
1.

Proposition 2. Let us consider a case where Prop. 1 hypotheses do not apply. There might
then exist a higher paste place τα so that C(ψ1) < C(ϕ1). Let us suppose that instead of
pasting at τα we paste at τβ , with τα < τβ < τ1, leading to a tree ρ . Then C(ρ1) would
monotonously decrease as the paste place τβ is located higher.

Proof. If Prop. 1 hypotheses do not apply, then the term III in its proof must be true. This
term implies that when pasting at τ j, the cut on the tree will be located at or below Rm. The
cost cψ

1 associated with this move will then be

cψ

1 = Σ
i
j=2cτ

j + cτ
i + cR

m, (14)

considering the location of the new cut. Analogously, the cost when pasting Rm k units up of
i is:

cρ

1 = Σ
i−k
j=2cτ

j + cτ
i−k + cR

m. (15)
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Notice in the previous expression that we consider that the cut is still as low as Rm. The cut
could not be higher, because if it were the case, then it would have already been cut there
before.

Let us now see if the cost cρ

1 could increase as k advances:

Σ
i−k
j=2cτ

j + cτ
i−k + cR

m− (Σi−k+1
j=2 cτ

j + cτ
i−k+1 + cR

m)

=− cτ
i−k+1 + cτ

i−k− cτ
i−k+1 > 0

⇔cτ
i−k > cτ

i−k+1 + cτ
i−k+1,

(16)

contradicting the algorithm to compute the cuts, hence the cost at R1 must monotonously
decrease.

Proposition 3. Let us suppose we paste Rm at or over the initial cut of tree τ , leading to tree
ϕ . Let us consider we paste higher instead, producing tree ψ . It must then be cψ

1 > cϕ

1 .

Proof. Let us resume the proof of Proposition 2 in the paper. It was shown that cψ

1 < cϕ

1
if and only if III was false. At that point we could not contradict III but show that under
certain conditions it would be contradicted. Now we will show that the fact that we know
the first cut was at or below τi will contradict III.

After III and γ we have:

eτ
i−1 + cϕ

1 −Σ
i
j=2cτ

j − cτ
i 6 eτ

i−1 + cR
m < cϕ

1 −Σ
i−1
j=2cτ

j

⇔ei−1τ− cτ
i − cτ

i 6 eτ
i−1 + cR

m < 0.
(17)

If we now add the knowledge about the cut being below τi−1, it must be eτ
i−1 > cτ

i +cτ
i , then

cτ
i + cτ

i − cτ
i − cτ

i < eτ
i−1− ci

τ − cτ
i 6 eτ

i−1 + cR
m < 0⇔ 0 < 0. (18)

Therefore, III cannot be true, which proves the proposition.

Corollary: Combining Proposition 2 in the paper, where C monotonously decreases (6)
as the paste location gets higher, and Proposition 3, where C cannot decrease (>), it becomes
evident that pasting a node anywhere between the initial cut and the lowest common ancestor
produces the same effect on the energy.

Proposition 4. The amount of spatially adjacent regions in a balanced BPT is bounded by
O(n log(n)).

Proof. Let us call NR the number of neighbors of the region R. At the lowest scale and in a
discrete environment we can suppose that the number of neighbors is equal to its boundary
length (δR). We are interested in knowing the number of neighbors at all scales. In a
balanced tree it can be assumed that the number of neighbors at every scale is half the number
at the following one. As a result:

NR = δR+
1
2

δR+
1
22 δR+

1
23 δR+ ... < 2δR. (19)

In a discrete implementation (assuming 4-connectivity):

NR < 2δR 6 2 ·4|R|= 8|R|. (20)
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The summation of the neighbors of all regions in a tree T is then

∑
Ri∈T
NRi < 8 ∑

Ri∈T
|Ri|. (21)

Following (24), the total number of neighbors (the possible cut/paste moves) is a factor of
n log(n).

3 Complexity of incorporating convex hulls
Proposition 5. The storage space required to add the convex hull to every node of a balanced
BPT in a discrete environment is bounded by O(n log(n)).

Proof. Let us call CH(R) the convex hull of a region R. In the extreme case (the most
compact region), CH(R) can be as large as the perimeter δR of R which, in a discrete imple-
mentation (assuming 4-connectivity) does not contain more points than four times the area
of the region:

CH(R)6 δR 6 4|R|. (22)

As a consequence, the points of the convex hull of all regions in a tree T must be

∑
Ri∈T
|CH(Ri)|6 4 ∑

Ri∈T
|Ri|. (23)

If we observe that in a balanced tree

∑
Ri∈T
|Ri|=

#levels

∑
l=1

∑
R j∈l∈T

|R j|=
#levels

∑
l=1

n = n
#levels

∑
l=1

1 = n ·#levels = n log(n), (24)

then (23) is bounded by a factor of n log(n).

Proposition 6. The complexity of computing the convex hull of every region represented in
a balanced BPT in a discrete environment, is bounded by O(n log(n)).

Proof. Let us call CH(R) the convex hull of a region R. In the extreme case (the most
compact region), CH(R) can be as large as the perimeter δR of R which, in a discrete imple-
mentation (assuming 4-connectivity) does not contain more points than four times the area
of the region:

CH(R)6 δR 6 4|R|. (25)

The time to compute CH(Ri) is linear on the number of points in the polygons of the children
(see [35] in the article):

O(|δLe f tChild(Ri)|+ |δRightChild(Ri)|). (26)

The time to compute the convex hull of every node in the tree is then bounded by a factor of:

∑
Ri∈T

(|δLe f tChild(Ri)|+ |δRightChild(Ri)|)6 4 ∑
Ri∈T

(|Le f tChild(Ri)|+ |RightChild(Ri)|)= 4 ∑
Ri∈T
|Ri|.

(27)
Following (24), the execution time is then a factor of n log(n).


