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Abstract

Trichogramma wasps behaviors are studied extensively
due to their effectiveness as biological control agents
across the globe. However, to our knowledge, the field of
intra/inter-species Trichogramma behavior is yet to be ex-
plored thoroughly. To study these behaviors it is crucial
to identify and track Trichogramma individuals over a long
period in a lab setup. For this, we propose a robust track-
ing pipeline named TrichTrack. Due to the unavailability
of labeled data, we train our detector using an iterative
weakly supervised method. We also use a weakly super-
vised method to train a Re-Identification (ReID) network by
leveraging noisy tracklet sampling. This enables us to dis-
tinguish Trichogramma individuals that are indistinguish-
able from human eyes. We also develop a two-staged track-
ing module that filters out the easy association to improve
its efficiency. Our method outperforms existing insect track-
ers on most of the MOTMetrics, specifically on ID switches
and fragmentations.

1. Introduction

Multi-Object Tracking (MOT) involves detecting and
then tracking individual objects in a given video while hav-
ing no prior information of the appearance or number of
objects. The explosive progress in deep learning in the past
decade has facilitated correlated progress in MOT [5] – en-
abling the application of MOT in a wide spectrum of fields.
These can be tracking vehicles in the context of intelligent
traffic systems [22, 10], pedestrians [7], animals for space-
use studies [23] or intelligent livestock breeding [15], in-
sects for behavioural studies [25, 1], etc.

In this paper, we focus on identifying different Tri-
chogramma wasps that are indistinguishable to human
eyes via ReID methods. We also identify and track Tri-

Figure 1: Top: Dimensions of the dish apparatus that con-
tains the Trichogramma wasps during video capture. Bot-
tom: Sample frame from a video containing over 100 indi-
vidual wasps with the pixel dimensions.

chogramma wasps over a long period to facilitate the anal-
ysis of inter-species/sex behaviors. Our proposed method
is also extendable to tracking any small-scale objects in a
scene.

To achieve this, it is natural for us to use existing state-
of-the-art (SOTA) MOT trackers but we face four obstacles:
(i) fully annotated Trichogramma videos are not available at
present, preventing the use of supervised trackers [4, 2, 28];
(ii) existing works predominantly focus on tracking humans
and commonplace objects, which makes them unsuitable
for direct use in tracking Trichogramma without prior train-
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ing; (iii) wasps in our dataset do not fly (as they are con-
strained to a dish) however they have an erratic motion with
frequent, long, and random jumps, prohibiting the use of
trackers which rely on the steady motion of the objects; (iv)
wasps present in current videos are tiny when compared to
the entire frame (each occupying about 0.03% of the total
image area, see Fig 1 for dimensions), making their appear-
ance features very sparse.

To overcome these obstacles, we adopt a weakly super-
vised training procedure for the detector on a small set of
videos having noisy annotations provided by a fly tracking
software called CTRAX [1]. We further fine-tune the Trich-
Track detector on a larger set of videos with annotations
from the earlier trained detector.

Since the wasps are very small relative to the entire
frame, using end-to-end models [28, 18, 11] for tracking
is sub-optimal. Hence, we use a robust two-staged online
tracking module to associate the detections with identities.
The two-staged tracker consists of easy associations fol-
lowed by hard associations. The Easy Association Stage
(EAS) improves the speed of the pipeline by filtering out
detections that can be easily associated based on their In-
tersection over Union (IOU) with previous tracklets. The
Hard Association Stage (HAS) associates the remaining de-
tections by employing a motion and appearance model in-
spired by [27].

In the cases of jumps, the first stage, and the motion
model of the second stage fail to associate the detections
correctly. This happens because these associations are heav-
ily dependent on the proximity of current detection and ex-
isting tracklets. However, the appearance of the wasp re-
mains preserved while jumping. Hence, it is crucial to
produce discriminative appearance vectors that allow the
pipeline to track the wasps across jumps. For this, we train
a ReID network based on a weakly supervised sampling
technique, using noisy labels from CTRAX. This method
expands upon the unsupervised sampling technique used in
[14]. Since the training procedure uses triplet loss [12] to
distinguish individuals, on inference, the model can pro-
duce discriminative feature vectors, helping the tracker to
associate insects over jumps.

In summary, our contributions are as follows:

(i) We introduce a robust two-stage online tracker to han-
dle the erratic movements of generic small-scale ob-
jects, in our case, Trichogramma wasps. Our tracker
is also extendable to any scenario where objects may
enter or exit the scene.

(ii) For training the ReID model, we use a weakly su-
pervised sampling technique due to the unavailability
of ground truth (GT) tracking annotations. Since the
training on triplet loss, we can get distinguishable ap-
pearance vectors for the wasps.

(iii) By overcoming the problems posed by erratic move-
ment and sparse features, our tracking pipeline out-
performs SOTA insect and animal tracking softwares
on MOT metrics [20, 7], specifically, MOTA, Identity
(ID) switches, and fragmentations.

2. Related Work
2.1. Training ReID Networks

The unavailability of proper GT annotations necessitates
the use of unsupervised or weakly supervised methods to
train our ReID network. Fan et al. [9] propose an unsu-
pervised progressive learning approach to transfer the pre-
trained representation to new domains. But it is sensitive to
the initial clusters produced from the pre-trained represen-
tations.

Meng et al. [19] formulate weakly supervised ReID as a
multi-instance multi-label learning (MIML) problem. Fur-
ther, Wang et al. [26] use a differentiable graphical model
to tackle the problem of weakly supervised ReID. However,
these formulations do not take advantage of noisy tracklets
annotations in a MOT setting.

In this paper, we expand upon the unsupervised sampling
technique used in [14]. Our contributions include the use of
triplet loss with semi-hard and hard mining [12] to train the
ReID model in a weakly supervised fashion. We also add a
constraint that each sampled ID must exist in every frame of
the sampling period. We discuss this in detail in Sec. 3.4.1.

2.2. Multi-Object Tracking

Multi-Object Offline Trackers [6, 29, 2, 21] give an opti-
mal solution to the ID association problem since they have
access to the entire video. However, the association prob-
lem being a minimum cost flow problem scales quadrati-
cally with the number of vertices. In our case, the num-
ber of Trichogramma individuals in one frame can exceed
120, making it infeasible to use such trackers. Instead, we
look into Online Trackers which do not have access to future
frames. These are usually faster than their offline counter-
parts. However, they may suffer in accuracy. Despite this,
there has been significant progress in these trackers over the
years. From using ReID networks to extract discrimina-
tive features [27, 24], to using transformers to track objects
[18, 28, 3], to using differentiable renderers to predict the
next frame [11], the literature in this topic is very rich. We
use ReID networks since we have to extract features from
small-scale objects that have sparse features.

2.3. Multi-Object Trackers for Insects

Over the years, trackers have been developed that focus
solely on tracking insects. Of these, we find two of partic-
ular interest. Ctrax [1] uses the position and orientation of



Figure 2: Overview of the Pipeline, From Left to Right: The input frame Xt is passed through the Detector D which
generates a set of detected bounding boxes Bt. Bt is then fed into the tracker Tr which outputs Yt containing the .csv output
Y ct and video output Y vt .

Figure 3: IOU based association: Only the cells with green
borders are associated. Note, b2,t is not assigned to tl2,t−1

because it overlaps with tl3,t−1 too, therefore, violating the
2nd condition.

insects to track them. However, it does not perform well in
terms of accuracy and speed. Trex [25] uses a novel tree-
based method for tracking along with the Hungarian algo-
rithm. It is designed to focus on the speed of inference. But,
there is scope to increase its accuracy.

3. Proposed Method

In this paper, we propose TrichTrack (TT). Since we
follow the paradigm of tracking-by-detection, the pipeline
comprises of two main modules: the detector and the
tracker, see Fig. 2. The input to the detector is a video
containing F number of frames represented by Xυ =
{X1, X2, ..., XF }. The detector takes in the current RGB
frame and outputs a set of detected bounding boxes. The
tracker takes in the detected bounding box data and asso-
ciates the current detections to the existing tracklet IDs. We
provide more details of the modules in the next sections.

Our primary contributions, which are the weakly supervised
training procedure for the detector and the Re-ID network,
are described in Sec. 3.3 - 3.4.

3.1. Detector

For a given time step t we have the input RGB frame
Xt. Xt is passed through the Detector D (having learn-
able parameters θD) to get an array of detected bounding
box coordinates Bt. The array of detected bounding boxes,
Bt = {b1,t, b2,t, ..., bN,t}, contains N individual bound-
ing boxes, bi,t, where i ∈ {1, 2, ..., N}. Each bounding
box bi,t contains the x and y coordinates of the top-left
and bottom-right vertices of the bounding box given by
bi,t = [xli,t, y

t
i,t, x

r
i,t, y

b
i,t]. Where xli,t, x

r
i,t are the left and

right x coordinates respectively, and yti,t, y
b
i,t are the top and

bottom y coordinates respectively. It must be noted that the
origin of the input Xt is the top-left corner.

3.2. Tracker

The tracker takes as input the detected array of bounding
boxes Bt at given time step t and outputs a .csv file contain-
ing the positional details of the Trichogramma individuals
and also a video displaying the tracked individuals along
with their corresponding bounding boxes and identities. To
understand the tracker we need to look deeper into its sub-
modules, which are, Tracklet Array, EAS, ReID Network,
and HAS; see Fig. 2 for reference.

3.2.1 Tracklet Array

The Tracker Array at a given time step t, Tt =
{tl1,t, tl2,t, ..., tlM,t} holds updated states of M identified
tracklets. A tracklet state of identity i at a given time step t
is represented by, tli,t = [x̂li,t, ŷ

t
i,t, x̂

r
i,t, ŷ

b
i,t,

˙̂xi,t, ˙̂yi,t, f̂i,t].
Where the first four values represent the top-left and
bottom-right vertices of the bounding box, ˙̂xi,t, ˙̂yi,t are the
updated velocities in the x and y direction respectively, and



finally f̂i,t is the updated feature vector of individual pro-
duced by the ReID network.

At time t = 0, for tli,1:

(x̂li,1, ŷ
t
i,1, x̂

r
i,1, ŷ

b
i,1) = bi,1 (1)

˙̂xi,1 = ˙̂yi,1 = 0 (2)

f̂i,1 = RN(PrReID(Xt[x
l
i,1 : xri,1, y

t
i,1 : ybi,1]); θReID)

(3)

At time t = 0, the coordinates of the bounding box for
tracklet i are set to the detected bounding box coordinates
indexed at i. The velocities are set as 0. Also the feature
vector is produced by the ReID network. Details regarding
the ReID Network, RN , and the preprocessing stage, Pr,
will be discussed in section 3.2.3.

Also, we follow an exponential moving average scheme
to update the velocity and feature vector of the tracklet be-
yond t = 0. We set exponential coefficient as 0.5 in all
of our experiments. Whenever N > M , we add the new
detections to the tracklet array as mentioned in eqs. 1 - 3.

At any time step t we can get updated states of identity i
by indexing into the tracklet array Tt at i to get tli,t.

3.2.2 Easy Association Stage

The EAS increases the efficiency of the tracker module
and filtering out the easy matches between the detection
of the current frame with the existing tracklets. We use
intersection-over-union (IOU) based association to achieve
this iff :

(i) The IOU of a detection, bj,t, with a tracklet bounding
box, tli,t, is more than a fixed threshold, γ.

(ii) The detection is not overlapping with any other tracklet
bounding box, tlk,t, where k ∈ {1, 2, ...,M} and k 6=
i.

Refer Fig. 3 for an illustrative representation of the process.
Therefore, the EAS takes as input Tt−1, and Bt. It outputs
the updated states of easily associated tracklets T et and fil-
ters out the detected bounding boxes and tracklets for hard
association, Bht and Tht−1 respectively. This is given by:

3.2.3 ReID Network

The ReID Network (RN ) is used in the HAS and is es-
sential for handling jumps, as we can not use positional
information for such cases. The details about the training
of the ReID Network are mentioned in Section 3.4. Since
the ReID handles square RGB crops, the rectangular crops
of each detected bounding box in Bht must be transformed
into square ones by padding with 0. Also, we apply image
transformations such as sharpening and contrast correction

(CLAHE) before inputting it to the RN . This preprocess-
ing stage is represented by PrReID. To increase efficiency,
we actually input all of the preprocessed crops from Bht as
a batch to the ReID model to get an array of feature vectors
Fht = {fh1,t, fh2,t, ..., fhNh,t}.

3.2.4 Hard Association Stage

In the HAS we use the Hungarian matching algorithm [16]
to associate the remaining Bht with the remaining Tht−1.
First we create a cost matrix Cp ∈ [0, 1]M×N based on the
euclidean distance between the positions of every bhi,t with
every b̂hj,t−1. Then we create a cost matrix Ca ∈ [0, 1]M×N

based on the cosine distance between the features vectors of
every fhi,t with every f̂hj,t−1 named. Therefore, a cell (m, n)
in Cp is denoted as:

cm,np =

√
(xn,t − x̂m,t−1)2 + (yn,t − ŷm,t−1)2

√
2

(4)

Where,

xn,t =
xln,t + xrn,t

2
, x̂m,t−1 =

x̂lm,t−1 + x̂rm,t−1

2
(5)

A cell (m, n) in Ca is denoted as:

cm,na =
||fhn,t||2 · ||f̂hm,t−1||2 − fhn,t · f̂hm,t−1

2 · ||fhn,t||2 · ||f̂hm,t−1||2
(6)

We create the final cost matrix Ct, and use the Hun-
garian matching algorithm to associate detections indices,
IN = { ˆidx1,t, ˆidx2,t, ..., ˆidxN1,t}, with tracklet indices,
IM = {idx1,t, idx2,t, ..., idxN2,t}. Where N1 = N2 = M ,
if M < N , else if M > N , N1 = N2 = N . These final
steps are given by these equations:

Ct = β · Cp + (1− β) · Ca (7)
(Im, In) = Hungarian(Ct) (8)

For our experiments, β = 0.7 since jumps happen fre-
quently but sporadically throughout the video. Finally,
idx1,t is associated to ˆidx1,t, idx2,t to ˆidx2,t and so on.

3.3. Training the Detector

Due to the availability of noisy GT as CTRAX annota-
tions, we had to employ a weakly supervised method to train
the detector. This process takes two iterations described be-
low.

3.3.1 1st Iteration

Initially, the dataset contained only CTRAX annotations
with lots of false negatives. Providing these false negatives



Figure 4: Red Bounding Boxes: Detection results with 1st
iteration of training. Green Bounding Boxes: Detection
results with 2nd iteration of training. The green bounding
boxes are much tighter than red bounding boxes.

would have hampered the learning of the detector. So we
masked them using OTSU masking algorithm [17]. This
produces masked inputs which only contain true positives
that help the detector to learn properly.

3.3.2 2nd Iteration

Since CTRAX annotations do not contain sides of the
bounding boxes, the detector trained on the 1st iteration
could only produce loose bounding boxes. Loose bounding
boxes are not desirable as they hamper the feature vectors
produced by the ReID Network. To fix this, we trained the
detector for a second time using annotations from the ini-
tially trained detector instead of CTRAX. We follow a data
preprocessing scheme where we find out the contours of the
insects and use them to filter only the center-most insect
using OTSU algorithm to generate tight bounding box an-
notations. This helps the detector to produce tighter boxes.
Refer Fig. 4 for results of the detector after 2nd iteration of
training.

3.4. Training the ReID Network

Our pipeline relies on the ReID Network for handling
the cases of jumping and erratic movements. Therefore, it
is essential to train the ReID Network properly. Due to the
unavailability of GT tracking annotations, we use a weakly
supervised method to train our ReID network via metric
learning. To understand this more deeply we need to look
closer into the sampling method for batches while training
and the loss function. We discuss these in detail in the fol-
lowing subsections.

3.4.1 Sampling Method

First, we generate noisy tracklets from the CTRAX anno-
tations. The sampling goal is to supply the ReID network

with a proper batch during a training iteration. Since we
use triplet loss for training, we must determine the posi-
tive and negative pairs too. Further, constraint the sampling
to a continuous time period. We do so because jumps in
the noisy annotations always result in ID switches. Hence,
sampling over a discontinuous time period may result in in-
correct pairing. Also, sampling in this manner simulates
jumps when choosing positive pairs which are not consecu-
tive to each other. Therefore, for frames at time period t to
t+ ∆, we follow two criteria:

(i) Anchor bi,t forms a positive pair with bj,t+δ , iff , i =
j and ∃ bi,t+δ ∀ δ ∈ {1, 2, ...,∆}.

(ii) Anchor bi,t forms a negative pair with bj,t+δ , iff , i 6=
j and ∃ bj,t+δ ∀ δ ∈ {1, 2, ...,∆}.

Now to decide the size of the batch we choose the num-
ber of different Trichogramma per batch, C, where C < M
and number of instances to be randomly sampled from each
Trichogramma individual, S, where S < ∆. Finally, batch
size bs, is the product of C and S. The entire sampling
process is visualized in Fig. 5.

3.4.2 Loss Function

After determining a proper batch to feed into the training
step of the ReID network, we first train the network with
online semi-hard for some epochs to get a competent ReID
nentwork. And then finetune it by training again with on-
line hard triplet mining. Online hard triplet loss is given as
follows:

LBH(bs; θRN ) =

all anchors︷ ︸︸ ︷
P∑
i=1

K∑
a=1

[m−

hardest negative︷ ︸︸ ︷
min

j=1...P
n=1...i

j 6=i

D
(
f ia;θRN

, f jn;θRN

)

+

hardest positive︷ ︸︸ ︷
max
p=1...K

D
(
f ia;θRN

, f ip;θRN

)
]+

(9)
Where, m is the margin defined during training, we use
m = 1 in all of our experiments. For online semi-hard
mining we first find out the pairs which satisfy the follow-
ing conditions and use the above equation without find the
minimum negative pair and maximum positive pair:

||f ia;θRN
− f ip;θRN

||2 +m < ||f ia;θRN
− f jn;θRN

||2 (10)

Here, f ia is of the anchor insect with identity i, f ip is the
positive pair to f ia and f jn is the negative pair with identity
j.

We use a pre-trained ResNet-18 for the ReID Network.
We remove the last classification layer and add a fully con-
nected layer with 128 nodes. Therefore, for every patch we
get a feature vector, fθRN

∈ R128×1.



Figure 5: Sampling Process for ReID Network, Left to
Right: Here we have C = 3, S = 3, ∆ = 4. The detec-
tions with green borders are sampled, whereas the ones with
red borders are rejected. Examples of positive and nega-
tive pairs are also shown. The selected batch contains 9
trichogramma crops.

4. Dataset
The data was collected by culturing the strains of Tri-

chogramma and recording them in a dish-like appara-
tus by biologists, as shown in the top of Fig 1. We
work with two species: Cacoeciae, and Brassicae. Each
species contain three strains. The recorded videos and
CTRAX annotations are from density experiments. High-
density experiments contain more than 100 individuals in
a given frame, whereas low-density experiments contain
as few as 12 individuals per frame. Also, each video
is about 8 minutes long and has 25 fps. Therefore, for
each video, we have about 12,000 frames. We use 1
GT video of each strain, having an average of 15 indi-
viduals per frame, produced by manual annotation. They
are named (format: strain density num), ISA3080 Low 13,
E1.3 Low 7, ACJY Low 14, PMbio1 Low 11, PJ Low 8,
and PR002 Low 12.

5. Results and Analysis
Before the results and analysis, we first discuss the im-

plementation details and the algorithms used to draw com-
parisons in the results and analysis.

5.1. Implementation Details

For this work, we aim to run the pipeline on a previ-
ous generation gaming computer. Therefore, we restrict
the training and inference of the pipeline to a GTX 1080ti
graphics card: with 11 GBs for VRAM, and an Intel Xeon

Figure 6: Comparison of Saliency Maps. Middle: Gen-
erated by ImageNet pre-trained network. Right: Generated
by our ReID network.

Processor E5-2630 v3 CPU node: providing a processor fre-
quency of 2.40 GHz. In this paper, we use YOLOv5 as our
detector as it has one of the highest accuracy to speed ratios
amongst state-of-the-art detectors [13].

5.2. Algorithms

Throughout the Experiments sections, we will draw
comparisons between the following algorithms:

(i) CTRAX: This is an insect tracking algorithm that uses
the position and orientation of insects to track.

(ii) TREX: This is an animal tracking algorithm that uses
a tree-based method for tracking along with the Hun-
garian algorithm.

(iii) Baseline: The baseline algorithm uses YOLOv5 as the
detector and DeepSORT as the tracker to track the Tri-
chogramma individuals.

(iv) TrichTrack: The proposed algorithm uses YOLOv5
and a modified tracker to track the Trichogramma in-
dividuals.

5.3. Experiments

5.3.1 Saliency Maps by ReID Network

To plot the saliency maps generated by the ReID Networks,
we take the channel-wise average of the output feature
map of the sixth intermediate block of ResNet-18. We use
PMbio1 Low 11 for this experiment.

On referring to Fig. 6, we observe that the activations
of the saliency maps produced by our ReID Network are



Video: PMbio1 Low 11
Algo. GT MT PT ML FP FN IDs FM MOTA MOTP
CTR 14 5 5 4 0 72010 169 220 53.10% 40.90%
TRX 14 7 6 1 0 37956 60 1820 75.30% 12.80%
Bln 14 4 9 1 15 36801 1741 3309 75.00% 53.60%
TTr 14 14 0 0 0 43 0 7 99.80% 99.90%

Video: ISA3080 Low 13
Algo. GT MT PT ML FP FN IDs FM MOTA MOTP
CTR 18 12 5 1 65 29039 576 634 84.50% 31.20%
TRX 18 17 1 0 5307 4999 1814 1789 93.70% 12.20%
Bln 18 16 1 1 1494 12268 3787 3442 90.80% 19.99%
TTr 18 18 0 0 1742 744 324 408 98.50% 55.40%

Video: PR002 Low 12
Algo. GT MT PT ML FP FN IDs FM MOTA MOTP
CTR 12 6 6 0 51 37382 220 290 73.80% 33.50%
TRX 12 12 0 0 5145 2063 338 794 94.80% 12.70%
Bln 12 7 5 0 26 25643 909 2410 81.50% 37.70%
TTr 12 12 0 0 0 260 34 64 99.80% 78.00%
aCTR = CTRAX, Bln = Baseline, TRX = TREX, TTr = TrichTrack.
bMT ↑, PT ↓, ML ↓, FP ↓, FN ↓, IDs ↓, FM ↓, MOTA ↑, MOTP ↑ .

Table 1: Evaluation of algorithms on MOTMetrics. TrichTrack is consistently the best performing tracker.

more pronounced around the antenna, eye, thorax, and ab-
domen of the Trichogramma individual when compared to
the results by the ImageNet pre-trained network. Thereby,
verifying that our model attends to salient features of the
individual. This facilitates the production of discriminative
feature vectors of the individual. This result also indicates
a new avenue of research for insect ReID. Since now we
know the salient features of the Trichogramma individuals,
future works can exploit it to develop better ReID networks
for insects with sparse features.

5.3.2 Detection Performance

To analyze the effectiveness of our detector sub-module, we
compare its detection mean Average Precision (mAP) as per
Pascal VOC metric [8] on the three videos with CTRAX and
Trex. Based on Table 2, we see that TrichTrack outperforms
previous methods by a large margin. The other methods
produce low scores because of high False Negatives (FN)
as can be seen in Table 1.

5.3.3 Performance on MOT Metrics

Table 1 contains the MOT metrics evaluations of 3 videos
and all 4 algorithms. The most crucial metrics for our study
are: (i) Mostly Tracked (MT), (ii) False Positives (FP), (iii)
False Negatives (FN), (iv) ID Switches (IDs), (v) Fragmen-
tations (FM), (vi) MOT Accuracy (MOTA), and (vii) MOT

mAPIOU=0.5

Videos CTRAX Trex TrichTrack
ISA3080 Low 13 11.22 56.81 97.15
PMbio1 Low 11 12.19 55.79 98.97
PR002 Low 12 9.06 69.22 98.81

Table 2: Evaluation of detection performance for each algo-
rithm.

Precision (MOTP). We see that TrichTrack performs the
best consistently in most of the metrics.

We see that TrichTrack performs extremely well in elim-
inating IDs and FM. Also, it has significantly higher MOTA
and MOTP than the other methods and much lower FN. This
shows the detector detects up most of the Trichogramma in-
dividuals in a given frame. Refer 1 for a more detailed look
into the metric evaluations.

6. Conclusion

In this work, we have developed a robust two-stage on-
line tracker to handle the erratic movements of generic
small-scale objects, in our case, Trichogramma wasps. Due
to the unavailability of labeled data, we trained our detec-
tor using an iterative weakly-supervised method that pre-
processed noisy data before training the network. Based
on our training procedure, the detector successfully reduced



False Negatives. We also used a weakly supervised method
to train our ReID network that leverages conditional noisy
tracklet sampling to drive its training process. Due to this,
our ReID model attends to salient features of the feature-
sparse wasps and produces highly discriminative feature
vectors. Also, we developed a two-staged tracking mod-
ule that filters out the easy associations to improve the effi-
ciency of the tracker. Quantitatively, our tracker performed
better on detection mAP and MOTMetrics when compared
with existing trackers dedicated to insect tracking. Specif-
ically, we improved upon the ID switches, false positives,
fragmentations, and MOT precision.
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