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Abstract

Conversational facial expression recognition entails
challenges such as handling of facial dynamics, small avail-
able datasets, low-intensity and fine-grained emotional ex-
pressions and extreme face angle. Towards addressing
these challenges, we propose the Masking Action Units
and Reconstructing multiple Angles (MAURA) pre-training.
MAURA is an efficient self-supervised method that per-
mits the use of small datasets, while preserving end-to-
end conversational facial expression recognition with Vi-
sion Transformer. MAURA masks videos using the loca-
tion with active Action Units and reconstructs synchronized
multi-view videos, thus learning the dependencies between
muscle movements and encoding information, which might
only be visible in few frames and/or in certain views. Based
on one view (e.g., frontal), the encoder reconstructs other
views (e.g., top, down, laterals). Such masking and recon-
structing strategy provides a powerful representation, ben-
eficial in facial expression downstream tasks. Our experi-
mental analysis shows that we consistently outperform the
state-of-the-art in the challenging settings of low-intensity
and fine-grained conversational facial expression recogni-
tion on four datasets including in-the-wild DFEW, CMU-
MOSEI, MFA and multi-view MEAD. Our results suggest
that MAURA is able to learn robust and generic video rep-
resentations.

1. Introduction

Conversational Facial Expression Recognition (cFER) aims
to categorize emotional expressions in videos, where emo-
tional facial expressions occur jointly with talking-related
facial expressions. Facial Expression Recognition (FER)
aims at identifying and categorizing emotional expressions
elicited by humans [29]. In this setting, the labels pertained
to the emotional expressions are typically annotated by hu-
man evaluators. Often, emotional expressions are attributed
according to the six basic emotions introduced by Ekman
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Figure 1. Overview of the proposed Masking Action Units and
Reconstructing multiple Angles (MAURA) pre-training for vari-
ous Facial Expression Recognition (FER) downstream tasks, in-
cluding multi-view, fine-grained anger, low-intensity, and in-the-
wild FER. MAURA learns a generic facial representation from
available multi-view facial video data by utilizing dependencies
between action units and reconstructing different views.

[8], namely ‘fear’, ‘anger’, ‘joy’, ‘sadness’, ‘disgust’, and
‘surprise’. In the field of affective computing, the goal of-
ten is to identify emotions, where the associated labels have
been self-annotated by the subjects [29]. Therefore, the
goal of this work relates to FER. In the context of Con-
versational Facial Expression Recognition, open challenges
include (1) distinguish facial expressions associated to emo-
tions and speech, (2) recognise fine-grained emotional ex-
pressions, (3) insufficient visibility of the face due to pose-
changes, and (4) small available training datasets. When
humans talk, while exhibiting emotional expressions, mus-
cle activation might be due to speech, as well as due to emo-
tions, represented by challenge (1). The second challenge is
the fine-grained discrete emotional expression recognition,
where different shades of the same emotion (e.g. anger)
have to be identified (2). In addition, pose variations might
occlude part of the face hiding the emotional expression (3).
Challenge (4) is related to the limited amount of annotated
videos, fundamental in supervised learning of facial repre-
sentations for affective computing.

Pre-training is a beneficial technique to exploit large
datasets without annotations, in order to learn generic rep-
resentations. Pre-training techniques, which do not uti-
lize semantic information pertained to the data, show the



best performance on many downstream tasks including ac-
tion recognition [24, 30, 33]. Recently, MARLIN [5] is
introduced as a pre-training techniques for facial videos.
It is based on Video Masked AutoEncoder (VideoMAE)
[30] that learns video representations by randomly mask-
ing the input video and reconstructing it with an asymmet-
ric encoder-decoder model. MARLIN proposes a mask-
ing strategy based on segments of the face: one part of
the face is not masked (e.g., mouth), while other parts are
masked and reconstructed based on the visible parts. While
a masking method has been proposed, which utilizes fa-
cial information, we note that there is space for improving
the masking and reconstructing strategies for facial expres-
sion recognition tasks. For example, the MARLIN mask-
ing method does not utilize the activations in facial expres-
sions, i.e., a part of the face without movements might be
unmasked and it might not contain enough information to
reconstruct other parts of the face with muscle movements.
The idea of reconstructing multi-view to encode powerful
representations has never been exploited to overcome the
issue of pose-changes and fine-grained FER. If the pre-
training data contains a few videos taken from various an-
gles, the transferability of the pre-trained encoder for the
downstream tasks with different views might not be opti-
mal.

We propose a pre-training method for conversational fa-
cial expression recognition that overcomes the four chal-
lenges aforementioned, by Masking Action Units and Re-
constructing multiple Angles (MAURA). Firstly, MAURA
chooses not just a random part of the face not to mask, but
instead, it retains the part of the face comprising active ac-
tion units. Therefore, it forces the network to learn not just a
correlation between facial parts, but the correlation between
facial muscle movements. Secondly, MAURA reconstructs
not only the input video, but videos taken simultaneously
from different views, forcing to learn a 4D spatio-temporal
information about a face. We show that MAURA learns
rich and transferable video representations by demonstrat-
ing both linear probing and end-to-end fine-tuning results
on four emotional video-based datasets. We show that our
pre-training is instrumental in achieving state-of-the-art re-
sults in several tasks including fine-grained, low-intensity,
multi-view and in-the-wild facial expression recognition.

Our contributions are summarized as follows.
1. We propose a new masking strategy based on facial mus-

cle movements and show its advantages for cFER.
2. We propose the first multi-view representation learning

for cFER and demonstrate a detailed analysis of its quan-
titative and qualitative performance.

3. Our proposed MAURA pre-training method, based on
Masking Action Units and Reconstructing multiple An-
gles, achieves the state-of-the-art results in fine-grained,
low-intensity, multi-view and in-the-wild cFER tasks.

2. Related Work

2.1. Conversational Facial Expression Recognition

Facial expression recognition from static frames exhibits
promising classification accuracy [15, 23]. However, it re-
mains challenging to detect discrete emotional expressions
in videos where people talk, while showcasing their feel-
ings. Image-based methods are not applicable to conversa-
tional videos as facial muscle movements in a frame might
be related to speech rather than to emotional expressions.
Therefore, the dynamics of an input video are taken into
account in the early cFER algorithms [19, 20] by utiliz-
ing RNNs and CNNs. More recent approaches [6, 35, 37]
extract features with other pre-trained models and feed the
frozen features to a shallow Transformer model to recognize
emotional expressions in conversational videos. Delbrouck
et at. [6] extracted visual features with R(2+1)D-152 [31]
and Zhang et al. [35] used unsupervised MAE-based [12]
and supervised IResNet-based [4] and DenseNet-based [14]
feature extractors, whereas Zhang et al. [37] extracted fea-
tures using DLN [36]. These feature extractors output task-
specific rather than generic features, so important informa-
tion may be lost. To learn more generic and robust facial
video representations, a sufficient amount of data and ade-
quate pre-training are needed.

MARLIN [5] is the current state-of-the-art in cFER on
the CMU-MOSEI dataset [34]. MARLIN is based on the
self-supervised Video Masked Autoencoder (VideoMAE)
pre-training [30] and it aims to learn universal facial video
representations. It proposes a masking strategy based on fa-
cial segmentation: one part (e.g, mouth) is unmasked while
others are masked and reconstructed based on the visible
part. The main limitation of the method is that a chosen vis-
ible segment might not contain enough active muscle move-
ments for reconstructing the dynamics of the masked parts.
We overcome these limitations by keeping a facial part vis-
ible that contains an active Action Unit.

2.2. Multi-View Facial Expression Recognition

Several works [26, 27] utilize multi-view information to
recognize facial expressions. Romero et al. [26] detected
AU from multi-view videos. However, one model for each
view is trained and each model detects AUs per frame, so
the method does not utilize time information. Roy and
Etemad [27] minimized the distance between the images
with the same emotion obtained from different angles, and
maximized the distance between the images with different
emotional expressions without using any temporal informa-
tion. Similar to [26, 27], we show the benefits of using
multi-view data for FER. In contrast to [26, 27], we uti-
lize temporal information of multi-view videos to recognize
emotional expressions.
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Figure 2. Overview of the Masking Action Units and Reconstructing multiple Angles (MAURA) autoencoder pre-training strategy. On
top, the pre-training with masking AUs and reconstructing multiple views is represented. Below, the fine-tuning process is shown. The
encoder, pre-trained with the MAURA method, takes a video as input and predicts one of the eight discrete emotional expressions: happy,
neutral, sad, disgust, fear, surprised, contempt, angry.

3. Method

3.1. Revisiting Video Masked AutoEncoder

VideoMAE uses an asymmetric encoder-decoder architec-
ture to reconstruct masked videos as a pre-training task for
action recognition. The encoder and decoder are vanilla Vi-
sion Transformers (ViT) [7] with joint space-time attention
[2, 10, 21, 22] so all pair tokens could interact with each
other in the multi-head self-attention layer. The decoder
is a narrower and shallower ViT than the encoder. Video-
MAE represents an input video of size T × 3 × W × H
as non-overlapping cube patches of size t × 3 × w × h.
VideoMAE applies cube embedding on the cube patches to
produce the video tokens and masks an extremely high pro-
portion (90%) of the tokens. Unmasked visible tokens are
used along with corresponding positional space-time repre-
sentations as input to the encoder. Then the decoder takes as
input both encoded and learnable mask tokens with the joint
space-time positional embeddings to reconstruct all normal-
ized input cube patches. VideoMAE compares three mask-
ing strategies: (1) masking spacetime-agnostic patches, (2)
masking temporally consistent tubes, and (3) masking spa-
tially consistent frames.

3.2. MAURA

Figure 2 illustrates the overview of the Masking Action
Units and Reconstructing multiple Angles (MAURA) pre-
training. MAURA has an asymmetric encoder-decoder ar-
chitecture similar to VideoMAE. The encoder and decoder
are vanilla Vision Transformers (ViT) with joint space-time
attention. The input and target videos are represented as
cube patches, each patch is transformed to a token embed-
ding. A high ratio of input tokens are masked with our pro-
posed AU-based masking strategy and the unmasked vis-
ible tokens with the corresponding joint space-time posi-
tional embeddings enter the encoder. Unmasked tokens
are mapped into latent features, which, along with joint
spatio-temporal positional embeddings, are taken as input
by the decoder to reconstruct the normalized target video
cube patches. The input and the target videos are ran-
domly sampled from seven synchronized videos from dif-
ferent views, so the input and output videos might be iden-
tical as in VideoMAE or from two different views. After
the pre-training step, the encoder is used to fine-tune on the
downstream tasks using the Cross Entropy loss for the cFER
tasks. We evaluate the pre-training quality by end-to-end
fine-tuning and linear probing the same as in [3, 11, 12].
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Figure 3. Examples of the proposed mapping of 18 Action Units
(AU) to patches.

3.3. Masking Action Units

Our proposed masking strategy is based on not masking a
randomly selected active AU and masking other parts of the
video. AUs are fine-grained facial muscle movements [9],
each AU relates to a subset of extracted facial landmarks
[25]. During each iteration, we randomly select one AU
among all active AUs detected in a video by the OpenFace
library [1, 28]. Then we do not mask patches where the
chosen active AU is located. We use the rules from [25]
to find patches corresponding to AUs, that is, each AU is
placed on a patch with facial landmarks associated with that
AU. E.g. AU26, associated with Jaw Drop, includes land-
marks 51, 53, 57, and 59, so its corresponding patches are
located at these landmarks. We track patches for unmask-
ing in each frame of the video similar to Motion Guided
Masking for VideoMAE (MGMAE) [13]. If a person turns
their head and the selected AU is located in different patches
of two frames of one video, then the locations of patches
for unmasking are different in these frames. In an ablation
study, we show that random masking of patches not asso-
ciated with the selected active AU produces better results
than tube masking. Therefore, our masking combines tube
unmasking of a random active AU and random masking of
other parts of the video.

We use the OpenFace library to detect the following 18
AUs: AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10,
AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26,
AU28, and AU45. We use all 18 AUs detected by Open-
Pose. Figures 3 and 4 show how AUs correspond to the
patches in the image depending on the facial expression
and view. Some AUs allocate less space, e.g. AU12
takes only 10 patches. Some AUs are more visible from
frontal/down/top views and can be overlapped by other parts
of the face in lateral views.

3.4. Masking Ratio

In MAURA, we identify the best masking percentage to be
70%, as detailed in Table 5, in the ablation study. This is dif-
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Figure 4. Masking Action Units (AUs) in the images from down,
right 30° and left 60° views. The same AUs allocate different patch
positions depending on the view, e.g. AU26 is masked on both
sides of the face in the down view, whereas it is masked on only
one side of the face in the right 30° and left 60° views.

ferent from the VideoMAE and MGMAE methods where
90% and 85% masking ratios are reported as the most ef-
fective. The relatively low masking ratio of MAURA is at-
tributed to shorter duration of facial expressions, as well as
to related dense spatial localization. When facial expres-
sions are present, they are usually visible in few frames and
in specific locations of the face, which can be around the
eyes or the mouth or the forehead. Also reconstructing a
video from another view is a more difficult task that requires
more visible unmasked tokens.

3.5. Reconstructing Multiple Views

The pipeline, as shown in Figure 2, is implemented in two
steps, first the autoencoder is pre-trained and then the en-
coder is fine-tuned to classify emotions. During the pre-
training step, the autoencoder performs a masking and re-
construction task (Figure 6.) Figure 2 shows that the in-
put and target videos are from two different views. This
is a more difficult pre-training that encodes information
available from other angles. We use the MEAD dataset
with seven simultaneously captured angles (i.e. frontal,
top, down, left 30°, left 60°, right 30°, right 60°). During
MAURA pre-training, the target video is randomly selected
from seven possible views. Reconstructing multiple views
enables the learning of an augmented representation, where
details, visible in few frames from some angle, are encoded.

3.6. Loss

The loss function is the mean squared error (MSE) loss
between the normalized masked tokens and reconstructed
ones in the pixel space:

L =
1

Ω

∑
p∈Ω

|V (p)− V̂ (p)|2, (1)

where p is the token index, Ω is the set of all tokens, V is
the input video, and V̂ is the reconstructed one.



Table 1. The main characteristics of the four conversational emo-
tion datasets used in this study.

Dataset # Videos Source # Emotions
MEAD [32] 221K 48 actors 8
MFA [16] 200 YouTube 5

DFEW [17] 16K 1500 movies 7
CMU-MOSEI [34] 23K 1000 speakers 6

4. Experiments
4.1. Datasets and Preprocessing

We use four conversational datasets (Table 1), namely
MEAD [32], MFA [16], DFEW [17], and CMU-MOSEI
[34].

The MEAD dataset is the only one including multi-view
and multi-intensity emotion samples. We use it for pre-
training and cFER fine-tuning. It is a talking-face video
corpus, where 48 performers are recorded while reproduc-
ing eight different emotional expressions at three intensities.
The eight emotional expressions expand the six Ekman’s
basic emotions (i.e., anger, disgust, fear, sadness, neutral,
contempt, surprise, and happiness) [8] with the neutral and
the contempt states. The three intensities relate to low, nor-
mal, and high. The participants are simultaneously recorded
from seven different views (Figure 5a): front, top, down,
left 30°, left 60°, right 30°, right 60°. It is a large-scale
and high-quality dataset with more than 220k videos and
1920x1080 pixel resolution.

MFA is a multicultural video dataset of negative emo-
tional expressions in-the-wild [16] (Figure 5b). The MFA
dataset expresses two major challenges in cFER. Firstly, it is
small (around 200 videos). Secondly, it contains a multitude
of emotional nuances. The majority of emotional datasets
collect data under broad label (as ”anger”), while we typ-
ically experience a wider range of emotional expressions
such as annoyed, contemptuous and more. The fine-grained
five labels used are: contempt, annoyed, anger, hatred, and
furious. Notably, in MFA the subjects are not recorded only
in frontal view, as happening in many in-the-wild datasets,
they are moving freely in the scene.

Dynamic Facial Expression in-the-Wild (DFEW) is a
large-scale facial expression database with 16,372 videos
derived from movies. Videos in DFEW have challenging
interferences, such as extreme illumination, occlusions and
sudden pose changes. DFEW is annotated with seven dis-
crete emotional expressions: happiness, sadness, neutral,
anger, surprise, disgust, and fear.

CMU-MOSEI [34] is an in-the-wild conversational
dataset with 23,453 annotated videos from 1000 distinct
speakers. Each video is annotated with 6 classes: happi-
ness, sadness, anger, fear, disgust, and surprise.

For all the datasets the input videos are cropped with the
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Figure 5. The MEAD and the MFA datasets. a) The MEAD
dataset with the 8 emotional expressions, illustrated in high and
low-intensity, and 7 views. b) The MFA dataset with the 5 emo-
tional expressionsand examples of the encountered views with ex-
treme face angle.

OpenFace library and resized to 240×240 pixels. We select
OpenFace as it is a stable and largely adopted library in the
community. We apply a random crop of the input frames to
224× 224 pixels and random flip during training.

4.2. Experimental setup

In the first step, we pre-train the autoencoder on the MEAD
dataset using the MAURA pre-training. In the second
step, all weights of the pre-trained encoder are fine-tuned
with fine-tuning (FT) or only the last linear layers of
the pre-trained encoder are fine-tuned with linear probing
(LP). For linear probing and fine-tuning we use multiple
datasets: MEAD, MFA, DFEW, and CMU-MOSEI. For
the MFA, DFEW and CMU-MOSEI datasets, we use the
train/validation/test splits provided by the authors. In the
case of MEAD, we use all views as input and target data,
and also use 5-fold cross-validation, as we are the first to
apply this dataset for FER.

4.3. Implementation Details

MAURA has an asymmetric encoder-decoder architecture
where both the encoder and the decoder are ViT-B with
12 and 4 blocks, respectively. Except for learnable joint
space-time positional embeddings, neither the encoder, the
decoder, nor the masking strategy, has any spatio-temporal
inductive bias. The input and target videos are temporally
downsampled with a stride two and transformed to patches.
Each patch has a size of 2 × 3 × 16 × 16, where 2 is the
temporal size, 3 is the number of channels, and 16 × 16 is
the spatial size. For a 16× 3× 224× 224 video, this patch
size produces 8× 14× 14 = 1568 tokens.



Table 2. Comparison with state-of-the-art FER methods on the MEAD, DFEW, MFA and CMU-MOSI datasets. We compare Linear
Probing (LP) and Fine-Tuning (FT) results. * denotes supervised methods.

Method F1-score Accuracy
MEAD (low) MEAD (high) MFA DFEW CMU-MOSEI

ViT-B (pt on MEAD)* 41.2 42.2 43.4 43.6 -
3D Resnet18* [18] - - - 41.1 -

MLKNN* [16] - - 42.0 - -
UMONS* [6] 43.4 52.7 - - 80.7
MARLIN [5] - - - - 80.6

VideoMAE [30] 43.3 46.1 52.7 43.6 80.4
MAURA (LP) 50.6 51.2 53.1 45.2 80.5
MAURA (FT) 51.9 54.6 55.6 47.5 80.7

5. Results
5.1. Comparison with SOTA

We adopt linear probing and fine-tuning for downstream
adaptation. We show the results on three affective down-
stream tasks: low-intensity, fine-grained, and in-the-wild
cFER.

5.1.1 Low-intensity cFER

To test low-intensity cFER we use the MEAD dataset. We
firstly compare MAURA with the self-supervised Video-
MAE and MARLIN pre-training methods. All methods use
the ViT-B encoder and the same 70% masking percentage.
We then compare our approach with supervised UMONS
[6] that uses fixed Action Units features as input to a shal-
low Transformer encoder. The first two columns of Table 2
show that we obtain the best results with MAURA in both
low and high-intensity cFER. In the case of low-intensity,
we achieve the result of 51.9% F1-score using fine-tuning.
Both VideoMAE pre-training and UMONS show a little
( 2%) increase over ViT-B without pre-training, reaching
around 43%. This shows how difficult it is to classify low-
intensity emotions using the available methods. For high-
intensity FER using ViT-B without pre-training, F1-score is
around 42%, which is increased with UMONS and Video-
MAE by 10% and 4%, respectively. In the high-intensity
FER, MAURA FT achieves the best F1-score of 54.6%.

5.1.2 Fine-Grained Anger cFER

To test the fine-grained anger cFER, we use the MFA
dataset. MFA is quite challenging as it expresses multi-
ple nuances of anger and the videos contain multiple views,
representing free-moving humans. Moreover, it is small
as it contains only 200 videos. The MAURA encoder is
pre-trained on the MEAD dataset for both high and low-
intensity emotions. To show the generalizability of our
method, we fine-tune the pre-trained ViT-B on the MFA

dataset to show transferable learning. We compare the ob-
tained results with (1) the MLKNN method, which is the
state-of-the-art on MFA, (2) ViT-B trained on MFA from
scratch, (3) ViT-B pre-trained with VideoMAE and (4) ViT-
B pre-trained with MAURA. We use V-F1-score from [16]
where V means assigning the label to the whole video by
taking the majority of predicted labels on the frames. Table
2 shows that our MAURA pre-training achieves the highest
F1-score on MFA.

5.1.3 In-the-wild cFER

To further evaluate generalizability on datasets, we compare
the LP and FT adaptation performance of MAURA with the
current state-of-the-art methods on the DFEW and CMU-
MOSEI datasets.

These are large datasets with difficulties related to oc-
clusions and sudden pose changes. We compare the self-
supervised MAURA pre-training with a fully supervised
FER pre-training: ViT-B (pt on MEAD) in Table 2. We use
ViT-B pre-trained with MAURA on MEAD for the unsu-
pervised pre-training and ViT-B pre-trained on DFEW for
the supervised pre-training. We fine-tune both pre-trained
models on the MFA dataset using the same protocol. Table
2 shows that MAURA achieves a higher F1-score, being
able to learn more generalizable representations.

We also show the results on the CMU-MOSEI dataset.
UMONS is trained on video, audio, and text modalities,
MARLIN and MAURA use only video modality. MAURA
and UMONS show similar performance outperforming
MARLIN with 0.1 accuracy. This small difference is ex-
plained by the fact that the visual modality is not considered
the most relevant for this dataset, since the annotations are
made primarily based on the linguistic modality.[6].

5.2. Ablation Study

We have performed extensive ablation studies to provide
justification for our design choices. We provide the abla-
tion results on the MEAD, DFEW and MFA datasets.



Table 3. Multi-view study. F1-score for ViT-B pre-trained with VideoMAE, VideoMAE+MAU, VideoMAE+RA, and MAURA on the
different views of the MEAD dataset with low and high intensities.

View MEAD low MEAD high
VideoMAE + MAU + RA + Both (MAURA) VideoMAE + MAU + RA + Both (MAURA)

front 54.2 54.9 55.3 56.0 57.1 57.2 57.4 57.9
left 30° 43.1 45.3 49.7 51.2 46.0 47.0 54.9 56.5
left 60° 34.0 38.1 47.8 48.5 36.6 38.2 50.2 52.3

right 30° 47.5 47.9 53.1 53.7 48.2 49.0 55.5 55.8
right 60° 36.9 38.0 51.3 49.5 38.0 42.1 51.2 52.5

top 45.2 47.6 51.8 52.3 49.8 50.0 53.8 54.7
down 42.6 44.4 49.5 50.0 47.1 48.3 50.7 52.6

average 43.3 45.2 51.2 51.9 46.1 47.4 53.4 54.6

Table 4. Contribution of Masking Action Units and Reconstruct-
ing multiple Angles on the MEAD (low-intensity), DFEW and
MFA datasets. F1-score is reported.

Modules MEAD low DFEW MFA
VideoMAE 43.3 43.6 52.7

+ MAU 45.2 44.9 53.4
+ RA 51.2 47.0 55.1

+ Both (MAURA) 51.9 47.5 55.6

5.2.1 Multi-View

Table 3 reports the study on multiple input views of the
MEAD dataset. When studying multiple input views,
MAURA is compared with VideoMAE, VideoMAE +
MAU, and VideoMAE + RA. During pre-training, MAURA
and VideoMAE + RA take a video from any of the seven
views as input and reconstruct another video, randomly se-
lected from the remaining six views. The same view is
reconstructed in VideoMAE and VideoMAE + MAU. The
results show that VideoMAE + RA significantly improves
the recognition on lateral views while VideoMAE + MAU
mainly improves the performance on the frontal view. Not
big performance improvement using masking AUs might be
ascribed to a more precise AU localization on the frontal
view, while there are some mistakes in creating AU-based
mask on other views. There are two main reasons for
this. Firstly, OpenFace was trained primarily on front-view
videos, so predicting AUs on other views may introduce
errors and thus lead to degraded performance when pre-
training with MAURA. Secondly, the rules for locating AUs
on the face are created for frontal view and, thus perform
worse on other views. Table 3 demonstrates that MAURA
achieves the best result on average. While the frontal view
gives the highest score in absolute, it is more relevant to
compare the average results, as in real applications faces
are presented in different angles.

Table 5. Ablation study on masking strategy and masking ratio on
the MEAD (high-intensity) dataset. The reported ratio of masking
for MAURA is related to the total amount of masking percentage,
which combines the AU-masked + random masking. F1-score is
reported.

Method random tube
70% 90% 70% 90%

VideoMAE 46.1 45.1 46.0 45.7
MAURA 54.6 46.1 48.2 46.3

5.2.2 Modules

Tables 4 and 5 show the ablation on Masking Action Units
and Reconstructing Multiple Views strategies. The re-
sults show that there is a continuous improvement with
each module added. Reconstructing multiple Angles gives
the largest improvement on the MEAD, DFEW, and MFA
datasets. Masking AUs improves F1-score more on MEAD
and DFEW and less on MFA. This might be ascribed to
the fact that there are more extreme views in MFA than in
MEAD and DFEW and MFA has worse video quality.

5.2.3 Masking Strategy and Masking Ratio

Table 5 shows the study on masking strategy and mask-
ing percentage. We compare 70% and 90% percentages of
video masking using random and tube masking strategies.
In MAURA, the visible unmasked patches are detected with
the tube strategy and other patches are masked using a ran-
dom or tube masking strategy which correspond to random
and tube in Table 5. Random and tube masking strate-
gies are applied to both masked and unmasked patches in
VideoMAE. The study is done on the MEAD dataset with
high-intensity emotions. The best result is achieved using
MAURA with the random masking strategy and 70% ratio.
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Figure 6. The input, masked and reconstructed output videos of the MAURA method with the MEAD dataset.
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Figure 7. Qualitative analysis. In the central column the recon-
structed videos of the different views for the high and low level
intensity and five different emotions.

6. Discussion

The best results obtained with the MAURA pre-training re-
late to the reconstruction of other views being more ben-
eficial than reconstructing the same video. MAURA out-
performs VideoMAE by around 8% in both, high and low-
intensity emotional expressions, thanks to encoding infor-
mation from multiple views and learning the dependencies
between muscle activations. Some examples of the recon-
structed videos with the MAURA approach are reported in
Figure 7. The relevance of using multi-view is supported by
the results reported in Table 3 where we can see that differ-
ent views have different recognition capabilities. With the
MAURA method, the left 60° view is the one that encodes

less information, both in high and low-intensity cases, how-
ever, the left 60° with MAURA is better than the one pre-
trained with VideoMAE. The excellent F1-score achieved
in the case of low-intensity emotions, when compared with
VideoMAE and UMONS, can be ascribable to multiple rea-
sons. First, small muscle movements, visible only from
some views, are well encoded through the MAURA strat-
egy. In Figure 7 we can see how the reconstructed facial
expressions show different details, helping the model to dis-
criminate better. Second, frozen features do not capture
well low-intensity actions in all views. This is why raw
data is needed in a more challenging task. Third, we hy-
pothesize that low-intensity emotions are visible in fewer
frames, meaning that the low-intensity is a reduced dataset.
The ability to well discriminate fine-grained emotions is
tested on the MFA dataset. The results confirm that our
pre-training is a key step for such challenging and small
datasets. The capability of MAURA in terms of transfer-
able learning is further evaluated on the DFEW and CMU-
MOSEI datasets. MAURA achieves very good F1-scores on
DFEW showing that this method is able to learn powerful
and transferable representations.

7. Conclusions and future work

The proposed MAURA approach is a highly efficient pre-
training method for cFER, increasing the expressive power
of video representation encoding of low-intensity facial
movements. MAURA endows the ViT-B network with the
ability to be successfully applied to small datasets. We show
significant improvement over state-of-the-art w.r.t. classi-
fication accuracy in the challenging setting of in-the-wild,
low-intensity and fine-grained cFER. Our future work will
aim at adding additional modalities, including audio and
language in the recognition step, and will also aim at ex-
ploring additional downstream tasks such as lip synchro-
nization, AU detection, and DeepFake detection.
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