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Abstract. Video anomaly detection (VAD) in autonomous driving sce-
nario is an important task, however it involves several challenges due
to the ego-centric views and moving camera. Due to this, it remains
largely under-explored. While recent developments in weakly-supervised
VAD methods have shown remarkable progress in detecting critical real-
world anomalies in static camera scenario, the development and valida-
tion of such methods are yet to be explored for moving camera VAD.
This is mainly due to existing datasets like DoTA not following training
pre-conditions of weakly-supervised learning. In this paper, we aim to
promote weakly-supervised method development for autonomous driv-
ing VAD. We reorganize the DoTA dataset and aim to validate recent
powerful weakly-supervised VAD methods on moving camera scenar-
ios. Further, we provide a detailed analysis of what modifications on
state-of-the-art methods can significantly improve the detection perfor-
mance. Towards this, we propose a “feature transformation block” and
through experimentation we show that our propositions can empower
existing weakly-supervised VAD methods significantly in improving the
VAD in autonomous driving. Our codes/dataset/demo will be released
at github.com/ut21/WSAD-Driving.
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1 Introduction

Anomaly detection on egocentric vehicle videos is a prominent task in computer
vision to ensure safety and take actionable decision (such as emergency break-
ing) in a autonomous driving scenario. While video anomaly detection (VAD) in
static CCTV scenarios has been extensively studied in recent research, egocentric
vehicle view anomaly detection (ego-VAD) remains largely unexplored. This is
due to the complexity involved in ego-VAD as it poses several unique challenges.
These include: (i) complex dynamic scenarios due to moving cameras, (ii) low
camera field of view, (iii) little to no prior cues before anomaly occurrence. Fur-
thermore, the previous methods majorly focused on pixel reconstruction based
unsupervised anomaly detection while a few follow supervised settings. However,
the unsupervised methods [1, 2, 17,20] have low generalization ability to diverse
scenarios and tends to generate false positives for minor variations from training
samples. Anomalies are measured against a contextual notion of normalcy which
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changes from region to region in traffic scenarios, which poses a unique problem
for unsupervised techniques. On the contrary, supervised methods have moder-
ate generalization ability in the diverse real-world scenarios but obtaining the
full temporal annotation required for the training of these models is laborious
and time consuming.

To combat this, recent static camera VAD approaches [6,11,18,21,25–27,29]
adopt a weakly-supervised binary classification paradigm where both normal and
anomaly videos are used during training. In this setting, for a long untrimmed
video sequence, only coarse video-level labels (i.e. normal and anomaly) are re-
quired for training instead of frame-level annotations. Here, previous approaches
first extract features using a pre-trained frozen off-the-shelf feature backbone
(i.e. 3D ConvNet, video transformer) and then learn an MLP ranker by multiple
instance learning (MIL) based optimization. Largely, previous methods consider
only global feature representation (i.e. features extracted from the whole frame)
for optimizing the MLP ranker. However some specialized methods extract both
global and local features to promote subtle and sharp VAD. Furthermore, for op-
timizing the MLP ranker, earlier WSVAD approaches adapt a classical MIL loss
proposed by [18] which selects two instances based on the presence of abnormality
(i.e. one each from normal and anomaly videos) to take part in the optimiza-
tion process. Recent popular weakly-supervised VAD methods [3,19,28] follow a
magnitude-based optimization wherein they encourage the sharp abnormal cues
of short anomalies to take part in optimization. This feature magnitudes-based
optimization is influenced by strong spatio-temporal variation across temporal
segments leading to effective separability for sharp and global anomalies.

Another, critical aspect of weakly-supervised VAD lies in effective tempo-
ral modeling to discriminate anomalies from normal events. To promote this,
previous classical methods [18, 21] adopt conventional temporal modeling net-
works like TCN [10], LSTM [15] to discriminate short anomalies from normal
events. In contrast, authors in [19] proposed a multi-scale temporal convolu-
tion network (MTN) for global temporal dependency modeling between normal
and anomaly segments. Recently, Zhou et al. [28] and Chen et al. [3] adopt
transformer-based global-local and focus-glance blocks respectively to capture
long and short-term temporal dependencies in normal and anomalous videos.
Distinctively, Majhi et al. [14]propose a Outlier-Embedded Cross Temporal Scale
Transformer (OE-CTST) that first generates anomaly-aware temporal informa-
tion for both long and short anomalies and hence allows the transformer to
effectively model the global temporal relation among the normal and anoma-
lies. Recent weakly-supervised VAD methods empowered by effective temporal
modeling ability and strong optimization ability with limited supervision have
gained popularity in static camera condition, however their adaptation to moving
ego-camera setting is still unexplored.

Motivated by this, in this paper we aim to provide an extensive exploration of
recent popular weakly-supervised methods on ego-centric VAD task. We choose
four state-of-the-art (SoTA) reproducible methods: RTFM [19] (ICCV’21), MGFN [3]
(AAAI’23), UR-DMU [28] (AAAI’23), and OE-CTST [14] (WACV’24) for quan-
titative and qualitative analysis. Further, as weakly-supervised methods majorly
relay on pre-computed input feature maps, we leverage recent popular vision-
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language model CLIP [16] for backbone feature extraction. Next, we proceed to
propose a feature transformation block (FTB) to enhance the temporal saliency
which can enable better temporal modeling and optimization with feature magni-
tude supervision in SoTA methods. Further, as existing ego-centric VAD datasets
like DoTA [23] does not have normal samples in training split, so the official
DoTA dataset is not useful for weakly-supervised training (requires both nor-
mal and anomaly samples for training). Thus, we reorganize the training split of
DoTA dataset to fulfill the weakly-supervised training regime and kept the test
split as in official DoTA dataset for fair comparison with previous unsupervised
methods. We declare this reorganize DoTA dataset as WS-DoTA to promote
weakly supervised research exploration on ego-cetric VAD task. Through exper-
imentation, we have shown in section 5 that what matters in weakly-supervised
learning of anomalies in ego-centric autonomous driving videos. Further, we show
how the proposed FTB enhances the SoTA methods performance significantly
on WS-DoTA dataset.

2 Preliminaries of Video Anomaly Detection in
Weakly-Supervised Setting

Table 1: WS-DoTA Dataset Statistics. The numbers in red
denote the statistics for only the abnormal segment of the
videos. Here, abnormal classes in test splits are ST:Collision
with another vehicle which starts, stops, or is stationary,
AH: Collision with another vehicle moving ahead or wait-
ing, LA: Collision with another vehicle moving laterally in
the same direction, OC:Collision with another oncoming ve-
hicle, TC:Collision with another vehicle which turns into or
crosses a road, VP: Collision between vehicle and pedestrian,
VO: Collision with an obstacle in the roadway, 00: Out-of-
control and leaving the roadway to the left or right. The
red text denotes that the statistics is only reported for the
anomalous sections of the video

Frame Count Train Split Test Split
Normal Anomaly ST AH LA OC TC VP VO OO

Average 737.8 104.6 25.5 32.6 36.7 28.4 29.1 30.1 30.4 49.2
Minimum 287 30 9 7 4 5 1 10 12 9
Maximum 750 299 50 84 158 203 135 71 75 143
Total Videos 3592 2689 24 164 168 115 390 35 29 106

Video anomaly de-
tection (VAD) aims
to detect whether an
anomaly is occurring
at the current mo-
ment (t). For VAD,
an algorithm can com-
pute an anomaly score
s(t) for the current
frame ft. In the con-
text of supervised anomaly
detection, a classifier
needs full temporal
annotations of each
frame in videos. How-
ever, obtaining tem-
poral annotations for
long videos is time
consuming and la-
borious. Weakly-supervised
setting relaxes the assumption of having these accurate temporal annotations.
Here, only video-level labels indicating the presence of an anomaly in the whole
video is needed. A video containing anomalies is labeled as positive and a video
without any anomaly is labeled as negative. Formally the weakly-supervised
anomaly detection task can be formulated as:

Given a set of normal , anomaly untrimmed video for training and a test
query untrimmed video V with n frames i.e. V = {f1, f2, f3, . . . , fn}, goal is to
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Fig. 1: Our Framework for experimental analysing of Weakly-supervised video anomaly
detection methods on autonomous driving videos. Here, we integrate a feature trans-
formation block (FTB) to improve state-of-the-art methods performance.

find out a set of m (m ≤ n) frames, Vanomaly that contains an anomaly video
pattern i.e. Vanomaly = {fa

1 , f
a
2 , f

a
3 , . . . , f

a
m}, where Vanomaly ⊆ V .

– Vanomaly can be ϕ, if all frames of V are normal.
– Vanomaly can be V , if all frames of V contain anomaly.

3 WS-DoTA Dataset

To train weakly-supervised models we require the dataset to contain both normal
and anomalous videos. We curate a suitable dataset having over 6000 videos for
training, and over 1000 videos for testing all of which are anomalous. The training
split contains videos from Detection of Traffic Anomaly (DoTA) 1 which contains
anomalous videos and D2-City dataset which contains normal videos. The test
split contains videos from only the DoTA dataset.

4 Benchmark Methods Discussion and Our Proposition

The performance of weakly-supervised VAD algorithms keeps improving with the
recent state-of-the-art (SoTA) methods obtaining impressive results on publicly
available benchmark datasets. For this, we have analyzed four SoTA methods
and their functionality on ego-centric vehicle view moving camera dataset. A
typical framework for analyzing SoTA methods can be seen in Figure 1. The
functional analysis begins with extracting off-the-shelf video features from
CLIP [16] image encoder Fv ∈ RT×D0, where T and D0 is the temporal (i.e.
no.of frames) and embedding dimension respectively. Next, the Fv is spatio-
temporally enhanced via a proposed "feature transformation block (FTB)" and
the resultant is passed it to SoTA methods for learning the abnormality. The
functional analysis framework in Figure 1 is designed such that by "switching
on" a particular SoTA method, the respective anomaly detection performance is
reported. Next we briefly characterize the SoTA methodologies before proceeding
for the description of proposed FTB. Detailed functional framework of SoTA
methods is provided in supplementary material.
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4.1 RTFM [19]
Robust temporal Feature Magnitude (RTFM) addresses one of the major chal-
lenge of WSVAD i.e. how to localise anomalous snippets from a video labelled
as abnormal. The challenge arises due to two reasons: (i) the majority of snip-
pets from an abnormal video consist of normal events, which can overwhelm
the training process and challenge the fitting of the few abnormal snippets; (ii)
the distinction between normal and abnormal snippets may be subtle, making
it difficult to clearly differentiate between the two.

RTFM uses the temporal feature magnitude of video snippets, with low-
magnitude features indicating normal (negative) snippets and high-magnitude
features indicating abnormal (positive) snippets. It is based on the top-k multi-
ple instance learning (MIL) approach, which involves training a classifier using
the k highest-scoring instances from both abnormal and normal videos. Addi-
tionally, to capture both long and short-range temporal dependencies within
each video, RTFM integrates a pyramid of dilated convolutions with a temporal
self-attention module. This combination allows for more comprehensive learning
of temporal patterns across different time scales.
4.2 MGFN [3]
Magnitude-Contrastive Glance-and-Focus Network (MGFN) advances the no-
tion of RTFM [19] and provides a contrastive learning framework for WSVAD.
Using global-to-local information integration mechanism similar to human vi-
sion system for detecting anomalies in a long video, MGFN first glances the
whole video sequence to capture long-term context information, and then fur-
ther addresses each specific portion for anomaly detection. Instead of merely
fusing spatio-temporal features, the MGFN strategy allows the network to first
gain an overview of the scene, then detect scene-adaptive anomalies using global
knowledge as a prior. Crucially, unlike the RTFM loss, which simply separates
normal and abnormal features without accounting for different scene attributes,
they propose a Magnitude Contrastive loss to learn a scene-adaptive cross-video
magnitude distribution.
4.3 URDMU [28]
To enhance anomaly detection under weak supervision, URDMU uses dual mem-
ory units with uncertainty regulation to store and differentiate normal and abnor-
mal prototypes, unlike previous methods that use a single memory for normality.
The anomaly memory bank gathers information from anomalous videos, while
the normal memory bank learns patterns from normal and abnormal videos.

Building on RTFM [19] finding that normal features typically have low mag-
nitudes, URDU observes normal feature fluctuations due to factors like camera
switching. These are modeled with a Gaussian distribution, using a normal data
uncertainty learning scheme to create a latent normal space, helping to sepa-
rate normal and anomalous instances and minimize false alarms. Additionally, a
Global and Local Multi-Head Self Attention module is used in the Transformer
network to capture video associations more effectively.
4.4 OE-CTST [14]
The Outlier Embedded Cross Temporal Scale Transformer (OE-CTST) takes in-
spiration from transformer-based methods like UR-DMU [28] and MGFN [3]. It
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proposes a novel framework with an outlier embedder (OE) and a cross temporal
scale transformer (CTST). Unlike traditional position embeddings, the OE gen-
erates anomaly-aware temporal position encodings by learning from a uni-class
distribution, treating outliers as anomalies. These encodings are integrated with
temporal tokens and processed by the CTST.

The CTST effectively encodes global temporal relations among normal and
abnormal segments through two main components: a multi-stage design and a
Cross Temporal Field Attention (CTFA) block. The multi-stage design enables
the CTST to examine anomaly-aware tokens at different scales via multi-scale
tokenization.

4.5 Proposed Feature Transformation Block (FTB)

Primarily, this section considers a new feature transformation strategy ideal
for image models like CLIP [16] and weakly-supervised VAD. A key drawback
in CLIP for video feature extraction is that it extracts per-frame features as a
results it ignores the underlying motion of the video. This underlying motion cue
is a relevant attribute in autonomous VAD. Hence a motion enhanced feature
map that can highlight the salient temporal region is desirable. For this, we
study and propose three modules (M1, M2, M3) of feature transformation as
described below.

M1: Spatial Feature As shown in Figure 1, this module considers the raw
spatial video feature obtained from Image encoder of CLIP Fv ∈ RT×D0 as a
baseline. The feature map Fv has enriched spatial semantics thanks to large-scale
vision-language pre-training. However, Fv without motion representation alone
may not be self-sufficient to represent an abnormality in autonomous VAD.

M2: Frequency aware Temporal Regularity Feature To overcome the
lacuna of M1, this module shown in Figure 1 explicitly encodes the motion rep-
resentation via the temporal regularity feature map ∆Fv ∈ RT×D0 and it’s cor-
responding discrete cosine transform (DCT) coefficients. To obtain ∆Fv, at first,
a temporal shift operation is applied to Fv that principally moves the tempo-
ral feature vector along the temporal dimension. The outcome of the temporal
shift operator is also a T ×D0 dimensional video feature map F+

v where the
first and last temporal tokens are padded and truncated respectively. Then, an
absolute difference between Fv and F+

v is performed to compute the temporal
regularity ∆Fv. This operation enables to capture the amount of change between
consecutive segments. Further, to enhance the motion representations, discrete
cosine transform s applied on top of temporal regularity feature ∆Fv. The moti-
vation and intuition behind using DCT for feature enhancement is quite straight
forward, as DCT components can represent entire temporal motion sequence and
can be sensitive to subtle motion patterns as well. Further, Low-frequency DCT
coefficients reflect the movements with steady or static motion patterns, which
are not discriminative enough. Thus, we element-wise added the resultant of
DCT and ∆Fv to infuse low-frequency component of DCT with higher order
temporal regularity feature. This feature transformation allow the sharp tempo-
ral regularity feature to be aware of subtle low-frequency features which is to be
used by SoTA method for anomaly separability learning.
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M3: Spatial aware Temporal Regularity Feature As shown in Figure 1,
this module extends the notion of M2 in feature enhancement and re utilizes the
enriched vision-language spatial semantics on top of temporal regularity feature
∆Fv. The motion salient temporal regularity features has the ability to capture
sharp changes however it’s agnostic about spatial scenario variances. Moreover,
these spatial information could be critical along with the motion encoding in
autonomous driving condition where the scenario is quite dynamic. Thus, In
order to complement the temporal regularity features ∆Fv via spatial feature,
Fv is sigmoid activated and added element-wise to ∆Fv to result in a spatial
aware temporal regularity feature map to be used by SoTA methods.

5 State-of-the-art Quantitative Comparison and Qualitative Analysis

In Table 2, we compare the four popular weakly-supervised state-of-the-art (W-
SoTA) methods RTFM [19], MGFN [3], URDMU [28], and OE-CTST [14] with
the classical unsupervised and supervised methods. Further, we analyse the ef-
fectiveness of our feature transformation block (FTB) in performance gain across
four W-SoTA method. To support this, a detailed qualitative analysis is shown
in Figure 7. In Table 2, the performances are compared across two indicator
i.e. overall and class-wise performance. Kindly note that, unlike unsupervised
methods we only use raw RGB frames as input to W-SoTA methods, hence it
is fair to compare the results on only RGB modalities. Additional qualitative
analysis is provided in supplementary material.

Table 2: State-of-the-art comparisons on the test set of
WS-DoTA dataset across overall and class-wise perfor-
mance indicators, where the considered test-set of WS-
DoTA has the same test protocol as DoTA [23] dataset
for fair comparison with previous.

Methods Overall Class-Wise Performance (AUC%)
AUC (%) ST AH LA OC TC VP VO OO

Unsupervised Method with RGB only Feature
ConvAE (gray) [7] 64.3 - - - - - - - -
ConvAE (flow) [7] 66.3 - - - - - - - -

ConvLSTMAE (gray) [5] 53.8 - - - - - - - -
ConvLSTMAE (flow) [5] 62.5 - - - - - - - -

AnoPred (RGB) [13] 67.5 70.4 68.1 67.6 67.6 69.4 65.6 64.2 57.8
AnoPred (Mask RGB) [13] 64.8 69.6 67.9 62.4 66.1 65.6 65.3 58.8 59.9

TAD (Bbox+ flow) [24] 69.2 - - - - - - - -
TAD [24] + ML [9] [12] (Bbox+ flow) 69.7 71.2 71.8 68.9 71.3 70.6 67.4 63.8 69.2

Ensemble (RGB + Bbox+ flow) 73.0 75.4 75.5 71.0 75.0 74.5 70.6 65.2 69.6
Supervised method with RGB only Feature

LSTM [8] (RGB) 63.7 - - - - - - - -
Encoder-Decoder [4] (RGB) 73.0 - - - - - - - -

TRN [22] (RGB) 78.0 - - - - - - - -
Weakly-Supervised Methods with M1: Spatial only Feature

RTFM [19] 57.9 59.8 58.6 57.6 56.5 56.2 55.2 51.6 60.6
MGFN [3] 66.6 57.1 66.2 64.6 69.6 67.0 63.0 64.3 69.3

URDMU [28] 57.5 50.8 58.8 60.0 57.4 56.7 55.3 53.2 56.2
OE-CTST [14] 70.9 64.2 71.4 71.5 68.2 71.2 66.2 69.6 75.2

Weakly-Supervised Methods with M2: Frequency aware Temporal Regularity Feature
RTFM [19] 56.0 57.1 56.1 55.7 53.4 56.2 57.9 53.9 58.1
MGFN [3] 67.4 67.1 70.0 66.8 67.9 67.6 67.6 73.7 69.0

URDMU [28] 54.8 58.4 56.3 54.3 53.0 54.7 52.8 54.5 55.1
OE-CTST [14] 71.9 66.3 70.6 72.0 72.1 71.1 67.1 76.4 75.9

Weakly-Supervised Methods with M3: Spatial aware Temporal Regularity Feature
RTFM [19] 78.2 62.7 79.2 78.7 76.5 77.5 74.7 79.8 83.1
MGFN [3] 67.4 60.8 68.9 66.5 66.8 67.3 61.2 66.1 68.0

URDMU [28] 73.0 63.8 71.1 72.4 72.9 74.9 65.4 79.5 75.9
OE-CTST [14] 75.6 63.6 77.4 76.0 73.8 74.9 73.3 76.2 78.1

Overall Performance
(AUC%) In this indi-
cator, RTFM [19] with
M3 feature transforma-
tion (i.e. spatial aware
temporal regularity fea-
ture) has a significant
performance gain of +10.7%
compared to unsupervised
Anopred [13] method and
further, it surpasses the
fully supervised TRN by
+0.2%. Similar impres-
sive performance gains
are also achieved by other
W-SoTAs with M3 fea-
ture transformation, which
shows the effectiveness
of M3 in highlighting
anomaly relevant salient
clues in the input fea-
ture maps. In contrast,
W-SoTAs with M1 fea-
ture transformation (i.e. spatial only features) performs poorly w.r.t unsuper-
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vised and supervised methods. This is mainly due to the lack of motion rep-
resentative features in CLIP [16] backbone which may turn out crucial in ego-
centric video anomaly detection. Further, to encourage motion features in CLIP
embeddings, W-SoTAs are analysed with M2 feature transformations (i.e. fre-
quency aware Temporal regularity features). However, in contrast to our as-
sumptions the performance gain by W-SoTAs are marginal or even lower for
some cases. From details investigation, we found that the DCT frequency com-
ponents in M2 feature transformations has sensitivity even for subtle motions.
Thus, it tends to produce many false positives in autonomous driving condition
as the dynamic scene has many subtle to sharp motion cues. The drawback of
M1 and M2 feature transformations are addressed by M3 by encouraging only
sharp motion cues while retaining the rich spatial semantic of the scene. Thanks
to this, all the W-SoTAs considered for analysis has larger performance gain.

W-SoTA with M1: 
Spatial Feature

W-SoTA with M2: Frequency 
aware Temporal Regularity 

Feature

W-SoTA with M3: Spatial 
aware Temporal Regularity 

Feature

GT
MGFN

OECTST
RTFM
URDMU

GT
MGFN

OECTST
RTFM
URDMU

GT
MGFN

OECTST
RTFM
URDMU

Video Name: O9uvBFovKj8_001577.mp4

Video Name: 8dI7OolIEXY_005013.mp4

Video Name: bhA2ckvE-TQ_000722.mp4 

Fig. 2: Visualization of Ground truth vs. prediction
heatmaps for SoTAs in with different feature maps ob-
tained from feature Transformation block (FTB). We
portray such visualization for three challenging videos.
More visualization can be found in appendix.

Class-wise Performance
(AUC%) To bring addi-
tional analytical insights
to W-SoTA performance
comparison, Table 2 pro-
vides an anomaly class-
wise performance com-
parison. The W-SoTAs
with M3 feature transfor-
mation has the significant
performance gain many
classes with few excep-
tions like "ST", where W-
SoTAs across all feature
transformations (M1, M2,
M3) are less better than
unsupervised Anopred [13]
method. However, from
empirical investigation we
found that "ST" cate-
gories have less abnormal
samples compared to oth-
ers in the test set of WS-
DoTA and thus W-SoTAs
with our feature transformation block could not outperform with less test sam-
ples. Apart from this, W-SoTAs (specifically RTFM) able to achieve significant
performance gain (i.e. at least +8% and at most +25% ) in class-wise perfor-
mance thanks to the M3 feature transformations where salient sharp motion
cues are encouraged along with the relevant spatial semantics.

From state-of-the-art comparison and analysis, it is evident that weakly-
supervised methods has the potential to improve the anomaly detection in au-
tonomous driving condition provided the input feature maps has the explicit
encoding for motion and spatial semantics cues.
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6 Conclusion

In this work, we provide a experimental exploration of state-of-the-art weakly-
supervised methods on video anomaly detection for autonomous driving scenar-
ios. By covering experimental depth and breadth, it is evident that the weakly-
supervised methods along with our feature transformation block has the po-
tential to drive the detection performances far ahead of classical unsupervised
methods. Next, to promote subsequent research of weakly-supervised method
on autonomous driving video anomaly detection task, we provide a WS-DoTA
dataset and the validation of benchmark methods to be considered for baseline.
in future, we will develop specialized framework for detection and description of
video anomalies in autonomous driving scenario.
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Supplementary Material

A State-of-the-art Weakly-supervised Video Anomaly
Detection Methods Architectural Framework

Fig. 3: MGFN. [3] Framework

Fig. 4: OECTST [14] Framework
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Fig. 5: RTFM [19] Framework

Fig. 6: UR-DMU [28] Framework
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B Additional Qualitative Results
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Fig. 7: Visualization of Ground truth vs. prediction heatmaps for SoTAs with differ-
ent feature maps obtained from the feature Transformation block (FTB). We portray
such visualization for three challenging videos. More visualization can be found in the
appendix.
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