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Abstract

Deep learning models are becoming more general and
robust by the day. Specifically, image foundation models
have recently shown exponential growth. In this work, we
introduce a way to exploit this growth in the field of video
classification. The basic idea here is that if we have a good
understanding of space, we should not require complicated
spatio-temporal processing. We introduce Attention Map
(AM) flow, a way to identify the location of local changes
between two frames in a video, without adding additional
parameters specifically for it. We utilise adapters, which
have been growing in popularity in the field of parameter-
efficient transfer learning. These help us incorporate AM
flow in a pretrained image model without the need of fine-
tuning it. With just these changes and minimal temporal
processing, an image model is able to achieve state-of-the-
art results on popular action recognition datasets with low
training time and requiring minimal pretraining. This work
explores the theory behind this idea and the intricacies in-
volved. Through relevant experiments, we show the efficacy
of this method and discuss various ideas to take this work
forward. We use kinetics-400, something-something v2 and
Toyota smarthome datasets and achieve state-of-the-art or
comparable results. We also show that video models suffer
from extensive pretraining on multiple datasets and a large
training time, but our work answers these problems. action-
recognition transformers image-to-video-models

1. Introduction

Foundation models excel beyond their initial training
tasks. We demonstrate that image foundation models con-
tain sufficient spatial information and don’t require con-
version to video models for effective video understand-
ing. With minimal pretraining, they provide a resource-
efficient alternative to video processing backbones while re-
quiring significantly less training time compared to SOTA
approaches.

*These authors contributed equally to this work.

Video foundation models, despite their capabilities, de-
mand substantial pretraining data and computational re-
sources, limiting accessibility and widespread adoption.
Our approach addresses these limitations while preserving
spatio-temporal learning benefits through adapters [50, 19]
- parameter-efficient modules added to frozen pre-trained
backbones that adapt the network distribution to new tasks
or modalities without fully inflating 2D layers to 3D.

We introduce Attention Map (AM) flow, calculated as
the absolute difference between attention maps from two
video frames, which provides encoded motion information
with minimal computational overhead. This approach lever-
ages recent advances in image foundation models like DI-
NOv2 [46] and Hiera [53] with their strong spatial attention
capabilities. By combining adapters and AM flow, we en-
able efficient spatio-temporal reasoning for video classifi-
cation.

AM flow can be concatenated to the adapter inputs across
attention modules. The resulting downsampled embeddings
provide rich spatial information about motion, improving
backbone performance and enabling direct classification us-
ing temporal processing models like LSTMs, transformers,
or TCNs.

We achieve SOTA results on three datasets: Kinetics-400
[5], Something-Something v2 [17], and Toyota Smarthome
[8].

To summarise, the contributions of our work are:

• We introduce AM flow, a way to add temporal atten-
tion to image models with adapters, without additional
trainable parameters.

• We explore various scenarios and offer different ways
to define AM flow and also the model architecture de-
pending on the use case.

• We demonstrate how to exploit adapters to incorporate
AM flow into image models and also for global tem-
poral processing.

• We achieve SOTA performance on three datasets -
Kinetics-400, Something-something v2 and Toyota
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Smarthome utilising AM Flow and basic temporal pro-
cessing using just LSTMs.

2. Related Work
2.1. Image and video foundation models

Pretraining ConvNets [28] or Transformers [61] on large
datasets like ImageNet-65M [16, 42, 57], Instagram [43], or
JFT [73] has been a prevalent strategy for visual recognition
tasks. Self-supervised approaches have introduced Image
Foundation Models (IFMs) [3] that learn general-purpose
representations from unlabeled data. For this work, we use
DINOv2 [46] with its robust spatial features, though CLIP
[52] and Hiera [53] could work similarly.

Video Foundation Models (VFMs) are typically built on
IFMs [71, 68, 74, 29, 31, 62, 67, 1]. Despite impressive
results from Florence [72], CoCa [71], UniFormerV2 [29],
and MTV [68], these models struggle with high temporal
variance actions [17, 55]. InterVideo [65], VIOLET [15],
All-in-One [63], and LAVENDER [31] perform well on
multimodal benchmarks but struggle with video-only tasks.
Our method facilitates temporal processing module integra-
tion with demonstrated performance improvements.

2.2. Video Classification

Deep learning algorithms dominate action recognition in
unconstrained videos, leveraging datasets like Kinetics [5]
and Something-Something [17]. Model architectures have
evolved from CNNs [26, 13, 14, 34, 40, 47, 60, 66, 64]
to Transformers [1, 12, 61, 30, 33]. Since Vision Trans-
former (ViT)[11] emerged, researchers have extended pre-
trained image models for video understanding by initializ-
ing video transformer components [1, 2, 68, 11] or inflating
video transformers [38]. While effective, these approaches
require extensive finetuning. Our method achieves compa-
rable performance with approximately 10 times fewer train-
ing epochs.

Previous work [18, 35, 51] explored intermediate fea-
tures for classification but overlooked the rich relational in-
formation in attention maps. Our approach leverages this
information to achieve superior performance.

2.3. Parameter Efficient Transfer Learning

Efficient tuning has gained interest in NLP with large
pretrained language models across downstream tasks [20,
6, 22, 45, 58]. Parameter-efficient fine-tuning techniques
like adapters are now common in computer vision [48, 49,
6, 23, 36, 44, 58], showing pretrained image models can ef-
fectively learn video tasks. Previous approaches added de-
coders with 3D convolution and cross-frame attention [33],
placed 3D convolution between adapter layers [38] (causing
inefficiencies), or required text-encoder branches [21, 37].

Recent work includes ST-adapter [48] with depthwise con-
volution for temporal pooling and dual pathway adapters
[49]. We argue pretrained image models already provide
rich spatial features needing only minimal temporal atten-
tion modifications for video classification, and present such
a method.

3. Methodology
In this section, we walk the reader through the details

of our architecture, illustrated in Figure 1. We take ViT
trained using Dinov2 [46] as our image model and freeze
its weights. Then, scaled parallel adapters are added to the
model, and AM flow is concatenated with adapters across
multi-head self attention (MHSA). Various temporal pro-
cessing modules along with the image model branch give
output logits which are averaged, giving the final output.
Details are given below.

3.1. Adding AM Flow and Modifying Attention

Building upon the previous step, we have a frozen im-
age model with adapters added to it for finetuning, but, we
are missing the benefit of spatio-temporal attention in video
models. To answer this, we introduce the AM flow. It ex-
amines two temporal frames to detect local movement and
informs the adapters so that they can account for it when
adjusting the spatial attention in the image model. Thus,
we achieve spatio-temporal attention with only a minuscule
number of parameters added to the original model.

To compute AM flow, we use the attention maps from a
transformer block. An attention map corresponding to the
frame t (XAt ∈ RN×N ) is a matrix of size N×N , where N
is the number of embeddings in the input to the transformer
block. For us (and also commonly in most transformer-
based architectures), N is equal to the number of patches
of the input. So, the attention map is a matrix in which each
entry signifies the relationship of two particular patches of
the input. Taking the absolute difference of this matrix for
two consecutive inputs results in a matrix where each entry
signifies the amount of change in the relationship of the two
particular patches. Taking a row-wise sum of the transpose
of this matrix, we get the amount of change in each input
patch. The softmax and addition are performed along dif-
ferent dimensions of the attention map. Addition aggregates
the importance of a particular pixel with respect to all the
others and softmax normalises it. So, the difference of nor-
malised, aggregated significance of pixels for two frames
gives AM Flow. Mathematically, this can be expressed as:

XAt
=

QtK
T
t√

dK
(1)

As shown in Figure 1 (Yellow), XAt is an intermediate term
used to compute AM flow. The rest of the symbols have the
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Figure 1: (Red) The middle part of the figure shows the frozen image model (ViT) with trainable additions: adapters in green
and temporal processing module in violet. It takes input (Yellow) On the left, XAt

is shown as computed inside MHSA.
On the right, XAt and XAt+1 are used to compute AMflow. t and t + 1 signify different time-steps for the input frames.
(Violet) shows the global temporal processing module and the classification head added to it. All the logits received from the
temporal processing modules and the frozen model branch are averaged to get the final classification logits.

common meaning of self-attention.

AMflow = softmax(|XAt
−XAt+1

|)T · 1 (2)

1 ∈ RN×1 is a matrix of the same shape as Q,K, V , but
filled with ones. The multiplication operation is equivalent
to the row-wise sum of a matrix. We use 1 in place of V
(which is commonly used in attention) as AM flow needs to
highlight the position of the relevant patches and contextual
information provided by the input is not required by it.

3.1.1 Handling irrelevant motion - Aligning Encoder

AM flow as described above is based on the assumption:
the camera is stable. In the case of moving cameras, the
computed flow would not be very useful unless the tempo-
ral difference between two consecutive frames is reduced.
This can be solved in preprocessing, for example, by taking
a crop of the subject performing the action using foreground

segmentation. Otherwise, this would have to be corrected
by the model. Therefore, before computing the absolute
difference, we take the row-wise sum of the attention maps
and pass it through a transformer encoder (called Aligning
Encoder). 1 The transformer encoder learns to align the rel-
evant information in attention maps and, in turn, disregards
the rest. It still has information about global motion owing
to backpropogation from the temporal processing module.
The weights of the aligning encoder are shared between the
two frames used to compute AM flow. Figure 2 illustrates
the aligning encoder added to self-attention in a transformer
block of the frozen image model. Mathematically expressed
as:

XAt = AligningEncoder(softmax(
QtK

T
t√

dK
)T · 1) (3)

1We use fast attention[27] for the aligning encoder.



SSV2Method Pretrain #F Model
# Params

(M)

Trainable
# Params

(M)

FLOPs
(T) Top-1 Top-5

Specialised backbone with supervised pretraining
VideoSwin-B [39] IN-21K+K400 32 89 89 1.0 69.6 92.7
MViTv2-L [33] IN-21K+K400 40 213 213 8.5 73.3 92.7
Vanilla ViT with self-supervised pretraining for 1600 epochs.
VideoMAE-L [59] - 16 305 305 3.6 74.3 94.6
Well-prepared ViT with plug-and-play modules.
TimeSformer-L [2] IN-21K 96 121 121 7.1 62.3 81.0
MTV-B [68] IN-21K+K400 32 310 310 11.2 68.5 90.4
CoVeR [75] JFT-3B+KMI 16 431 431 17.6 70.8 -
Full tuning
UniFormerV2-B [29] CLIP-400M 16 163 163 0.6 69.5 92.3
UniFormerV2-L [29] CLIP-400M 16 574 574 8.0 72.1 93.6
Parameter Efficient Tuning
VPT-B [21] CLIP-400M 8 92 6,0 0.5 36,2 61,1
AdaptFormer-B [6] CLIP-400M 8 94 8 0.5 51.3 70.6
ST-Adapter [48] CLIP-400M 32 97 11 2 69.5 92.6
DUALPATH-B [49] CLIP-400M 16 99 13 0.7 70.3 92.9
DUALPATH-L [49] CLIP-400M 48 336 33 1.9 72.2 93.7
Ours - AM/12, TCN (Dinov2) IN-21K 24 86+28+45+54 28+45+54 5.1 74.8 95.0
Ours - AM/12, TCN (CLIP) IN-21K 24 86+28+45+54 28+45+54 5.1 73.5 94.7
Ours(ViT-B)-AM/12, LSTM (Dinov2) IN-21K 8 86+30+45+360 30+45+360 4.6 58.3 82.8

Table 1: Comparison with the SOTA on SSv2. The colours represent # of parameters in the modules. AM flow and linear
layers, Aligning encoder, and Temporal Processing Module. AM/12 signifies that AM flow is added to each transformer
block.
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Figure 2: This figure shows how AM flow (XA) is com-
puted in case there is a camera movement or motion in the
background

The variables have the same references as above. The align-
ing encoder is a simple transformer encoder with 12 heads.

AMFlow = |XAt −XAt+1 | (4)

3.2. Classification Head and Temporal Processing

With the above step, we have successfully merged local
temporal attention with spatial attention in a frame. To ex-

tend this to video classification, we need global temporal
processing. It is very interesting to note here that with the
rich downsampled embedding from the adapter, very sim-
ple temporal processing allows us to achieve SOTA results.
Figure 1 (violet) demonstrates the temporal and classifica-
tion module and is self-explanatory. The formulation of the
input embedding can be expressed as:

E = ReLU(Wdown(LayerNorm(X)||AMFlow)) (5)

E is the embedding and Wdown is the downsampling layer
of the adapter.

Thus, we are able to obtain SOTA results even with
LSTMs for temporal processing. We would like the reader
to note that LSTMs are just used as a proof of concept, and
we do not claim that this is the best configuration for per-
formance. For robustness, we show results with transformer
encoder and TCN.

The final step of classification is managing the 25 out-
puts we get (for ViT-L). 2 from each transformer block as
there are 2 adapters in each block and 1 from the frozen
image model taking the final frame as input. There are 12
blocks in ViT-B. We initially added a linear voting layer, but
it just makes training unstable. Average pooling works well
here. An interesting thing to note is that even a randomly
initialised frozen linear layer works well in place of aver-



K400Method Backbone Pretrain Views Model
# Params

(M)

Trainable
# Params

(M)

FLOPs
(T) Top-1 Top-5

Specialised backbone with supervised pretraining
VideoSwin-L [39] Swin-L IN-21K 32 × 3 × 4 197 197 7.2 83.1 95.9
MViT-L [33] MViTv2-L IN-21K 40 × 3 × 5 218 218 42.4 86.1 97.0
Vanilla ViT with self-supervised pretraining for 1600 epochs.
VideoMAE-L [59] ViT-L 40 × 3 × 4 305 305 47.5 86.1 97.3
Well-prepared ViT with plug-and-play modules.
TimeSformer-L [2] ViT-B IN-21K 96 × 3 × 1 121 121 7.1 80.7 94.7
X-CLIP-L [44] ViT-L CLIP-400M 16 × 3 × 4 430 430 37.0 87.7 97.4
MTV-H [68] ViT-H+B+S+T IN-21K+WTS-600M 32 × 3 × 4 1000+ 1000+ 44.5 89.1 98.2
Full tuning
UniFormerV2-B [29] ViT-B CLIP-400M+K710-0.66M 8 × 3 × 4 115 115 1.6 85.6 97.0
UniFormerV2-L [29] ViT-L CLIP-400M+K710-0.66M 32 × 3 × 4 354 354 16.0 89.7 98.3
Parameter Efficient Tuning
ST-Adapter [48] ViT-B CLIP-400M 32 × 3 × 1 93 7 1.8 82.7 96.2
DUALPATH-B [49] ViT-B CLIP-400M 32 × 3 × 1 96 10 0.7 85.4 97.1
DUALPATH-L [49] ViT-L CLIP-400M 32 × 3 × 1 330 27 1.9 87.7 97.8
Ours - AM/12, LSTM ViT-B(Dinov2) IN-21K 8 × 3 × 1 86+32+45+360 32+45+360 5.3 88.8 98.2
Ours - AM/12, Transformer ViT-B(Dinov2) IN-21K 8 × 3 × 1 86+32+45+103 32+45+103 6.9 89.1 98.3
Ours - AM/12, Transformer ViT-B(Dinov2) IN-21K 32 × 3 × 1 86+32+45+103 32+45+103 13.8 89.6 98.4
Ours - AM/12, LSTM - IN-21K 8 × 3 × 1 86+32+45+360 32+45+360 5.3 78.3 91.5

Table 2: Comparison for K400 with the SOTA methods. The colours represent # of parameters in the modules. AM flow and
linear layers, Aligning encoder, and temporal module. AM/12 signifies that AM flow is added to all 12 transformer blocks.

age pooling. The scaling parameter in the adapters learns to
work around the randomly assigned weights.

4. Experiments and Observations
4.1. Specific Details and Comparison to SOTA

In this section, we compare the performance of our
model against the baselines and the respective SOTA [68,
29, 59, 9] for the datasets.

4.1.1 SSv2

We achieve the SOTA results for Ssv2 as in Table 1. Since
this is a more challenging dataset and 8 frames are not
enough to capture the essence of the actions, we use TCN
in place of LSTM, with 24 frames as input. We present
the results for both settings. We obtain state-of-the-art re-
sults and also show that the total number of parameters can
be reduced using a different temporal processing module.
We also show results using CLIP backbone in place of di-
nov2 and are discussed in 4.2. Since there is a lot of motion
in the frames and there are multiple objects of interest, the
computation of AM flow is utilised along with the aligning
encoder. Adapters and temporal processing modules are
added to each transformer block.

4.1.2 K400

We report the SOTA comparison for K400 in Table 2. We
achieve the best results with 32 frames and using a trans-
former encoder for temporal processing (discussed in 4.2).

But we also achieve high performance when using only 8
frames and pretraining just on ImageNet dataset and using
LSTMs. We lag behind Uniformerv2-L, but compared to
them, we have negligible pretraining data and require fewer
frames (8 for us vs. 32), training time (480 GPU hours for us
vs. 9600), flops (5.3T for us vs. 16T), and backbone (ViT-B
for us vs. ViT-L) to achieve comparable results. Compari-
son against CoCa and MTV-H is not fair, as they have 1B+
parameters. Our number of parameters is high, as the align-
ing encoder and LSTMs (or transformer enocoder) are not
optimised for their function and are only used as a proof of
concept. Therefore, our total number of parameters is re-
ducible but is left for future work (further discussed in 4.2).
The aligning encoder and AM flow computation are em-
ployed since the camera is moving. Each transformer block
has temporal processing modules and adapters attached to
it.

Method RGB Skeleton Pretrain # F CS
Separable STA [7] 64 ✓ ✓ K400 - 54.2

VPN [10] ✓ ✓ K400 64 +pose 60.8
MMNet [4] ✓ ✓ - - 70.1
VPN++ [9] ✓ ✓ - 64 +pose 69.0

ST-GCN [69] ✓ Scratch - 53.8
2s-AGCN [56] ✓ Scratch - 60.9
MS-G3D [41] ✓ Scratch - 61.1

UNIK [70] ✓ Posetics - 64.3
I3D [32] ✓ K400 64 53.4

AssembleNet++[54] ✓ K400 - 63.6
Ours - AM/2(1,12), LSTM ✓ IN-21K 8 70.2

Table 3: Results of Toyota Smarthome. AM/2 signifies that
AM flow is added to two transformer blocks (1,12). Thus it
has 1/6th the number of parameters for temporal and align-
ing encoders as compared to kinetics-400 and SSv2.



Model Top-1

Ours 88.8
w/o AM Flow 74.3

(a) Impact of AM flow

Model Top-1

Ours 88.8
w/o Aligning Encoder 72.7

(b) Impact of Aligning Encoder

Model Top-1

Ours 88.8
Ours with hyperformer 84.2

(c) Type of Adapter

Table 4: Tables for Component Analysis (Experiments performed on K400)

4.1.3 Toyota Smarthome

We report the comparison for Smarthome in Table 3 achiev-
ing SOTA results. This shows that our method also adapts
well to small datasets. The camera is stable here and since
these are daily-action video for old-people, the subjects do
not move much in the frame. Therefore, the vanilla AM flow
(without aligning encoder) is used.

4.2. Additional Experiments and Discussion

This section covers ablation studies and other experi-
ments to validate the efficacy of the contributions.

Number of parameters and changing the temporal
processing module and the input frames. The choice of
temporal processing module is not focused on in this work
as even with LSTMs, we get enough performance to prove
the efficacy of the additions. TCN and transformer encoder
provide the same performance with fewer parameters. The
additions also do not have to be done at each step and this
further reduces the number of trainable parameters consid-
erably. This is discussed in the following part of this sub-
section. But irrespective of the module used, as discussed
above, we require very less training and have negligible pre-
training requirements compared to the SOTA.

LSTMs do not have enough processing power to han-
dle more than 8 frames as input. Since SSv2 has complex
temporal relations, we use TCN with 24 frames to achieve
better performance. Thus, even though this is not explored
in detail as it is not a direct contribution, a better module
and a higher number of frames would give better results,
as shown by this experiment in Table 1. Using more num-
ber of frames for K400 also improves performance showing
that the model is scalable.

Impact of AM Flow. Results in Table 4(a). We ob-
serve that the addition of AM flow greatly improves perfor-
mance. Two factors affect this improvement: 1) Concatena-
tion of AM flow to the adapter input pushes the downsam-
pled embedding to learn semantic information about the in-
put, thus parallel adapters overcome their shortcoming over
serial adapters for temporal processing (sec 3.1.2). 2) As
intended, it adds local temporal attention to the model.

Impact of aligning encoder. Results in Table 4(b). With
irrelevant motion in the frames, AM flow is noisy, as the
patches with change are not only because of the action but

also due to motion. The aligning encoder resolves this issue
(as demonstrated in the Supplementary Materials).

Changing type of adapter. Results in Table 4(c). There
are various variations of adapters, such as hyperformer [25]
and compacter [24]. We compare against hyperformer here.

Training from scratch. To make sure that a well-chosen
pretrained image model is important for our work, we train
from scratch with the same architecture and achieve 78.3%
accuracy for K400 as compared to 88.8% in Table 2. This
shows our method succeeds in utilising the spatial aware-
ness learnt by pretrained image models and it is an impor-
tant step.

Changing the backbone. For completeness, we use
CLIP as a backbone in place of dino v2 in Table 1 and show
that we still achieve SOTA results and that our method is not
specific to the pretraining method. We show results with
Hiera [53] in the supplementary materials. The important
thing is to have good spatial features from the backbone,
irrespective of their nature.

5. Conclusion and Future Work

In this paper, we introduce a novel image-to-video trans-
fer learning model using two key innovations: (1) infusing
local temporal attention into spatial attention via our new
AM flow concept, and (2) employing adapters to incorpo-
rate AM flow into frozen pretrained image models while
providing downsampled embeddings for global temporal
processing.

Our approach performs well on both large datasets
(K400, SSv2) with minimal training steps and only Ima-
geNet pretraining, and adapts effectively to small datasets as
demonstrated by SOTA results on Toyota Smarthome. Ab-
lation studies validate our design choices, achieving SOTA
or comparable performance across all three datasets with
significantly reduced training time.

Future work could explore enhancing AM flow with ad-
ditional memory for more nuanced temporal information,
extending to video detection tasks, optimizing network de-
sign for lighter models, comparing against other PETL tech-
niques, and developing more efficient alternatives to the
resource-intensive aligning encoder.
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