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Abstract

In this paper, we introduce a new approach for Activities
of Daily Living (ADL) recognition. In order to discriminate
between activities with similar appearance and motion, we
focus on their temporal structure. Actions with subtle and
similar motion are hard to disambiguate since long-range
temporal information is hard to encode. So, we propose an
end-to-end Temporal Model to incorporate long-range tem-
poral information without losing subtle details. The tem-
poral structure is represented globally by different tempo-
ral granularities and locally by temporal segments. We
also propose a two-level pose driven attention mechanism
to take into account the relative importance of the segments
and granularities. We validate our approach on 2 public
datasets: a 3D human activity dataset (NTU-RGB+D) and
a human-object interaction dataset (Northwestern-UCLA
Multiview Action 3D). Our Temporal Model can also be in-
corporated with any existing 3D CNN (including attention
based) as a backbone which reveals its robustness.

1. Introduction
Action recognition is an important problem in the vi-

sion community both for its application domains (secu-
rity, robotics, healthcare) and its challenging issues. Ac-
tion recognition challenges depend on the types of videos.
Datasets such as UCF-101 [28], kinetics [5] with videos
from internet have high inter-class variance and changing
background (i.e. ”ride a bike” vs. ”sword exercise”). In our
case, we are particularly interested in Activities of Daily
Living (ADL) videos. These videos have 1) high intra-class
variance with different subjects performing the same ac-
tion in different ways, 2) low inter-class variation leading
to similar visual appearance of different action classes (for
instance, a person wearing and taking off shoes have similar
motion but belong to different action classes). These chal-
lenges are all the more important than videos are recorded
within the same environment (background image), which

prevents us from using contextual information. Recently,
3D convolutional Neural Networks (3D CNNs) have been
tailored to capture the short-term dynamics of full 2D+T
volume of a video and somewhat alleviating the first afore-
mentioned challenge. However, these models fail to cap-
ture long-range temporal information of actions. Thus, the
second challenge low inter-class variation requires attention
for discriminating them correctly. Such low inter-class vari-
ation is often caused by either similar motion with subtle
variation such as taking out something from pocket/putting
something inside pocket, or complex long-term relationship
such as taking off glasses/wearing glasses. Also, actions
with similar motion tends to have discriminative spatio-
temporal features over a small time scale. For instance,
wearing and taking off a shoe can be distinguished by tak-
ing into account whether or not the shoe is separated from
the human body in the first few frames. In order to solve the
aforementioned challenge, we need to process the videos at
multiple time scales to capture specific subtle motion. Thus,
our objective is to capture spatio-temporal relations at mul-
tiple time scales and link them over time to disambiguate
such temporally complex actions.

In this paper, we propose a Temporal Model to have a
focus of attention on the spatio-temporal features of the
relevant time scale. This is effectuated by splitting the
videos into uniform temporal segments at different time
scale (namely granularity). This is followed by a two-level
attention mechanism to manage 1) relative importance of
each segment for a given granularity and to manage 2) the
various granularities (see fig 1).

The Temporal Model which comprises the classification
network and the attention module, is trained end-to-end for
recognizing actions. We make two hypotheses: the input
video clip contains a single class label, and the articulated
poses are available. Inspired from the recent trend of using
poses to guide RGB cue [3, 4, 8], we take the articulated
poses as input to the attention module. The articulated poses
are highly informative, robust to rotation and illumination,
and thus provide a strong clue to select the pertinent sub-



sequences in a video. To summarize, our contributions are
the following:

• An end-to-end Temporal Model to address the recog-
nition of temporally complex actions. This is done by

– splitting a video into several temporal segments
at different levels of temporal granularity.

– employing a two-level pose driven attention
mechanism. First to manage the relative impor-
tance of the temporal segments within a video for
a given granularity. Second to manage the rela-
tive importance of the various temporal granular-
ities.

• An extensive ablation study to corroborate the effec-
tiveness of our proposed Temporal Model. Besides,
we propose a Global Model to have a generic and com-
plete approach for action recognition.

• A validation of our method on two public datasets.
We achieve state-of-the-art results with our proposed
Global Model on NTU-RGB-D dataset, a human ac-
tivity dataset and Northwestern-UCLA, an object-
interaction human action recognition dataset.
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Figure 1. Framework of the proposed approach in a nutshell for
two temporal granularities. The articulated poses soft-weight the
temporal segments and the temporal granularities using a two-level
attention mechanism.

2. Related Work
In this section, we mainly study how models in the lit-

erature aggregate the frame-level features along time scale
for action classification.

In the past, Wang et al. [31, 32] computed video level
descriptor from frame based local features by fisher vector
encoding [19]. Later, with the emergence of deep networks,

the video level descriptors were computed by simple max-
min pooling [6]. All such temporal aggregation methods
ignore modeling the temporal structure of the actions.

Then, the Recurrent Neural Networks (RNNs) were ex-
ploited to model the temporal evolution of the spatial fea-
tures fed to them [11, 9]. However, these RNNs operate
over simple feature vectors extracted from images. Con-
sequently, they do not capture how the state of an object
or a human changes over time in a video. To better cap-
ture fine temporal relationships of the frame level features,
the authors in [27, 2, 3] soft-weight the key frames. By
soft-weighting the key frames, we mean soft-weighting the
latent variables output from the RNN classification net-
work. In Temporal Segment Network (TSN) [34], a video
is divided into a fixed number of segments, and a frame
is randomly sampled from each segment. Then a con-
sensus function aggregates the information from the sam-
pled frames. A similar segment based method has been
proposed in [26] with self-attention to adaptively pool the
frame-level softmax scores for each segment to obtain the
video-level prediction. All these methods including the seg-
ment based methods and the formerly discussed temporal
attention mechanisms can encode the temporal evolution of
the image features sparsely sampled from the whole videos.
However, these sparsely sampled frames are disconnected
which prevents the extraction of local motion patterns. So,
these methods perform well on internet videos (videos with
strong motion w.r.t human posture and background) and
videos with distinctively high human motion (for [27, 2, 3]),
whereas they do not model the smooth local temporal struc-
ture for ADL. We also argue that the use of optical flow in
TSN and other recognition models can only address instan-
taneous motion but does not model long-term relations of
these motion patterns. Zhou et al. [37] proposed a Tempo-
ral Reasoning Network (TRN) by learning the temporal re-
lations among the sparsely sampled frames at multiple time
scales. Along with missing subtle motion patterns due to
the selection of sparse frames, their method also introduces
noise by averaging the features from multiple time scale.

Recently, the introduction of spatio-temporal convolu-
tional operations [29] (in C3D network) addresses the afore-
mentioned drawback of the RNNs yielding rich discrimina-
tive features for subtle motion patterns. The C3D network
has been enhanced to I3D network [5] which takes up to 64
frames of a video clip for classification. The I3D network
is effective for action classification on internet videos, but it
is not as successful for ADL recognition. This is because it
cannot process long-term temporal relationships to disam-
biguate actions with similar motion occurring in the same
environment.

In order to improve the spatio-temporal features ex-
tracted from these 3D CNN (like I3D), Wang et al. [35] have
proposed a non-local self-attention block. This non-local



block computes the relative distance (using Gaussian em-
bedding) among all its pixels in the spatio-temporal cube.
However, this operation computing the affinity between the
features does not go beyond the spatio-temporal cube, thus
does not account for long-term temporal relations. For ADL
recognition, Das et al. [8] proposed a spatial attention mech-
anism on the spatio-temporal features extracted from I3D
network. The spatial attention provides soft-weights to the
pertinent human body parts relevant to the action. However,
this spatial attention is applied globally over the spatio-
temporal features from I3D network, so it fails to capture
long-term temporal relations. To fully address ADL chal-
lenges pertaining to long-term temporal relationships, we
claim that two types of temporal attention are required even
in the presence of temporal convolutional operations. We
argue that temporal convolutions are mostly designed to ex-
tract motion patterns. A first temporal attention is needed to
highlight which motion patterns are important, especially
when they are subtle. A second temporal attention is also
required to model long-term relations between the motion
patterns to disambiguate actions with complex temporal re-
lationship which are very common in ADL.

So, instead of extracting frame-level features from the
temporal segments as performed in the state-of-the-art [34,
37], we compute spatio-temporal features from the densely
sampled frames within the temporal segments to capture
subtle motion. Then we propose a focus of attention on the
pertinent temporal segment in a video and the pertinent tem-
poral granularity. Furthermore, the capability of the Tempo-
ral Model to be combined with the existing 3D CNNs [8, 35]
stands it out from the existing approaches [34, 37] for tem-
porally complex actions.

3. Proposed Temporal Model
In this section, we present the Temporal Model for learn-

ing and recognizing actions that exhibit complex tempo-
ral relationships. This approach involves three stages (see
fig. 2) to classify the actions. Stage A consists in splitting
the video into several temporal segments at different levels
of temporal granularity (see section 3.1). Stage B classifies
the temporal segments of each granularity. It has a Recur-
rent 3D Convolutional Neural Network (R−3DCNN ) and
an attention mechanism (TS−att) so that the different tem-
poral segments are tightly coupled in an optimized manner
(see section 3.2). Stage C performs the fusion of the differ-
ent temporal granularities to classify the action videos (see
section 3.3).

3.1. Temporal Segment Representation

In the first stage (stage A), our goal is to split the video
into several partitions. However, determining the number of
such partitions is a difficult task and depends on the content
of the action. Thus, for a coarse-to-fine video analysis, a
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Figure 2. Proposed approach with three stages. Stage A splits the
video into different segments at different granularities. stage B is
the classification network composed of Recurrent 3D CNN (R −
3DCNN ) and an attention mechanism. Stage C performs a fusion
of the temporal granularities for predicting the action scores.

hierarchy of temporal segments is built. For a given level
in the hierarchy (or granularity), the video is divided into
non-overlapping segments of equal length.
Formally, given a video V (RGB+Pose) at granularity G,
we divide it into G temporal segments. The video with
N frames is processed at different levels of granularity
G = {2, 3, ..., Gmax | Gmax ≤ N}. Thus at granularity
G, each temporal segment SGi | i = {1, 2, .., G} is a stack
of RGB images and PGi | i = {1, 2, .., G} is a stack of 3D
poses. See an example with a drinking video from NTU-
RGB+D [23] in fig. 3.

Note that G = 1 represents the whole video and is not
input to the proposed Temporal Model. Further discussion
can be found in section 4.

3.2. Classification Network

Stage B follows several steps to process the temporal seg-
ments for each granularity as described below (see fig. 4).

3.2.1 Recurrent 3D Convolutional Neural Network

A. Processing the Temporal Segments - The first step
(step 1) computes the local features for each temporal seg-
ment SGi. These features are computed by a 3D CNN,
called f(.). The spatio-temporal representation ST (V,G)
is given by:

ST (V,G) = ST ({SG1, SG2, ...SGG})
= [f(SG1; θw), f(SG2; θw), .., f(SGG; θw)]

The output of the 3D CNN f(.) with parameters θw is a
4-dimensional convolutional feature map. This ST repre-
sentation is obtained at each level of temporal granularities.
In step 2, these convolutional features for each segment SGi
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Figure 3. A drinking video (from NTU-RGB+D [23]) with RGB frames (at left) and 3D poses (at right) is represented with coarse to fine
granularities. G representing granularity ranges from 2 to Gmax(≤ N ).
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Figure 4. A zoom of the classification network (stage B) for a
given granularityG. The inputs to the RNNRS

G are the flattened
3D convolutional features of the temporal segments SGi. Tempo-
ral segment attention soft-weighs the temporal segments.

are resized to a single dimensional tensor by a flatten(.)
operation.

B. Combining the Temporal Segments - Step 3 is the
global sequential processing of the video at a granularity
(G) by the combination of all its temporal segments SGi.
For each granularity G, the aforementioned combination
is performed by a recurrent network RS

G which models
the long-term dependencies among the dense temporal seg-
ments. Thus,R−3DCNN in fig. 4 is the recurrent network
RS

G with 3D CNN f(.) as a backbone. The input ofRS
G with

parameters θSG, is the succession of flattened feature maps

f(SGi). The output UGi at each time step i of the recurrent
network RS

G is given by:

UGi = RS
G(flatten(f(SGi)); θ

S
G) (1)

Step 4 of the classification network combines the output of
step 3 with soft-weights provided by a temporal attention
mechanism, which is described below.

3.2.2 Attention on Temporal Segments

For a video, some of the segments may contain discrimina-
tive information while the others provide contextual infor-
mation. We argue that poses (3D joint coordinates) are clear
indicators to select the prominent sub-sequences in a video
as proposed in [27, 2]. This is because of their capability to
understand the human body dynamics which is an important
aspect in daily living actions.

For a granularity G, the temporal segment attention
(TS − att) includes two parts (see fig. 5). First, the 3D
poses of the temporal segments PGi are processed by an
RNN Rp

G,i (with parameters θpG,i). Then, the output set of
the first RNNs are processed by another RNN Rp

G (with
parameters θpG) to combine all the temporal segments into
G weights corresponding to the importance of the temporal
segments. The soft attention αG,j for jth segment of a
given granularity G is predicted by learning the mapping:

αG,j =
exp(Rp

G(R
p
G,j(PGj ; θ

p
G,j); θ

p
G))∑G

i=1 exp(R
p
G(R

p
G,i(PGi; θ

p
G,i); θ

p
G))

(2)



Figure 5. Temporal Segment attention (TS − att) from 3D poses
for a given granularity G. PGi being input to the RNN Rp

G,i fol-
lowed by their combination using RNN gpG to assign soft-weights
αG,j .

Thus the final output vG of the classification network is a
result of adaptive pooling of UGi, given by:

vG =

G∑
j=1

αG,j · UGj (3)

For each granularity G, (G + 1) recurrent networks are
required, which may look expensive but at the same time
they operate on lightweight 3D pose information. So, they
are computationally very efficient.

3.3. Fusion of different temporal granularities

Clipping videos into shorter segments may not be an op-
timal solution for capturing the subtle motion of an action.
So, we propose a temporal granularity attention (TG− att)
to find the extent of fine temporal segments required to
recognize an action. In stage C of fig. 2, the temporal
segment attention (TS − att) described above is extended
to soft-weight the output features of the classification net-
work (R− 3DCNN ) for each granularity (see fig. 6). The
last timestep output features of the pose based RNN Rp

G

are concatenated to form a feature vector Y . So, Y =
[Y2, Y3, .., YGmax

] where YG = Rp
G(R

p
G,j(PGj ; θ

p
G,j); θ

p
G)

for j ∈ [1, Gmax] and G ∈ [2, Gmax]. The attention weight
βG for Gth granularity is computed by

βG =
exp(YG)∑Gmax

i=2 exp(Yi)
(4)

This attention weight is used for focusing on the pertinent
temporal granularities. Finally, the prediction for C classes
is the weighted summation of the scores at all the granular-
ities followed by a softmax operation:

prediction = softmax(

Gmax∑
G=2

βG · vG) (5)

Figure 6. Attention for temporal granularity (TG−att) to globally
focus on the video representation vG for a given granularity. The
model extended from fig 5 soft-weights the video representations
for Gmax granularities of the video.

4. Global Model for Action Recognition

In the above subsection, we have described our Tempo-
ral Model where temporal segments with different gran-
ularities (Gmax ≥ 2) are adaptively fused to classify ac-
tions. We call a 3D CNN used for the whole video sequence
without any temporal decomposition (i.e. G = 1), as the
Basic Model. The Basic Model is simply the backbone
of the Temporal Model to classify the actions. As stated
in [30], temporally segmenting videos can destroy the lo-
cal structure of some short actions. So, we define a Global
Model for action classification by performing a late fusion
of the proposed Temporal Model and the Basic Model. This
is done by performing dot product operation of the model
scores at logit level. We do not perform soft weighting of
the temporal segment with G = 1 (i.e., the Basic Model)
to classify the actions. The reason is the presence of asym-
metric operations in the subnetworks (RNN and 3D CNN)
with G = 1 and G > 1 makes the proposed attention model
difficult to train.

5. Network architectures

For the 3D CNN f(.), we use I3D [5] pre-trained on Im-
ageNet [14] and kinetics [5]. Shareable parameters are used
to extract spatio-temporal representations of each temporal
segment. Spatio-temporal features are extracted from the
Global Average Pooling layer of I3D. Recurrent networks
RS

G modeling global temporal structure are Gated Recur-
rent Networks (GRUs) with single hidden layer of size 512.
All the recurrent networks for Rp

G,j and Rp
G are also GRUs

with a hidden state of size 150. We use 3D pose information
from depth based middleware [25].



6. Experiments
6.1. Dataset description

We performed our experiments on the following two
public human action recognition datasets: NTU RGB+D
Dataset [23] and Northwestern-UCLA Multiview Action
3D Dataset [33].
NTU RGB+D Dataset (NTU) - The NTU dataset is
currently one of the largest action recognition dataset
containing samples with varied subjects and camera views.
It was acquired with a Kinect v2 sensor. It contains 56880
video samples with 4 million frames and 60 distinct action
classes. The actions were performed by 40 different
subjects and recorded from 80 viewpoints. Each person in
the frame has 25 skeleton joints which were pre-processed
to have position and view invariance [23]. We followed
the Cross-Subject (CS) and Cross-View (CV) split protocol
from [23].
Northwestern-UCLA Multiview Action 3D Dataset (N-
UCLA) - This dataset is captured simultaneously by three
Kinect v1 cameras. It contains RGB, depth and human
skeleton for each video sample. It contains 1194 video
samples with 10 different action categories performed by
10 distinct actors. Most actions in this dataset contain
interaction between human and object which is difficult to
model making this dataset challenging as described in [4].
We performed our experiments by following Cross-View
protocol from [33], we take samples from two camera
views for training our model and test on the samples from
the remaining view. V 3

1,2 means that samples from view 1
and 2 are taken for training, and samples from view 3 are
used for testing.

6.2. Implementation details

For training, first the 3D CNN (I3D) backbone is pre-
trained separately on the full human body crops. Then
the classification network is trained using the Adam Opti-
mizer [13] with an initial learning rate of 0.0005. We use
minibatches of size 32 on 4 GPUs. Straightforward cate-
gorical cross-entropy with no regularization constraints on
the attention weights has been used to train the network end-
to-end. For training the pose driven attention network, sim-
ilar to [23], we uniformly sample the pose segments into
sub-sequences of respectively 5 and 4 frames for NTU and
N-UCLA. We use the 3D CNN (I3D) trained on NTU as a
pre-trained model and fine-tuned it on N-UCLA.

6.3. Hyper-parameter settings

The hyperparameter Gmax is the most sensitive choice
in our Temporal Model. We have tested different values of
Gmax: 2,3, and 4. In the ablation study, we show that the
choice of taking up to 4 granularities is meaningful for the

short actions described above.

6.4. Ablation study for Temporal Attention

In this section, we show the effectiveness of our pro-
posed two-level attention mechanism on NTU (CS and CV)
and NUCLA datasets. We provide two ablation studies to
evaluate the benefit of the (A) temporal segment attention
(TS−att), (B) temporal granularity attention (TG−att)
compared to baseline I3D.
(A) Fig. 7 is a plot of action classification accuracy w.r.t.
the number of granularities. The dotted and solid lines rep-
resent the classification results without/ with (TS− att) re-
spectively. The relatively higher accuracy scores of the solid
line for G > 1 as compared to the dashed line indicates
the effectiveness of the proposed first level TS − att atten-
tion. Fig. 7 also shows that, as we introduce the Temporal
Model for G > 1, the classification performance improves
as compared to the performance of baseline I3D network
(G = 1) for NTU. This implies that the temporal decom-
position in the Temporal Model improves the classification
of temporally complex action videos (examples provided at
the end of this section). As we go for finer granularities
from G = 2 to 4, the action classification accuracy goes
down, say from 89.7% to 87.4% for NTU-CS with TS−att.
This is due to the short duration of actions present in the
database mentioned above such as clapping (-7.2%), tak-
ing out something from pocket (-6.4%) which lacks tem-
poral structure. It is interesting to note that the classifica-
tion performance degrades for N-UCLA, when processed
in segments. However, we observe that actions like pick
up something with one hand or two hands are now classi-
fied correctly when processed with Temporal Model rather
than the Basic Model. Thus, the visual features learned in
the Temporal Model are complementary to that of the Basic
model.
(B) Table 1 shows the improvement of the classification
score with the combination of granularities (G = 2, 3, 4).
For instance, the accuracy of the Temporal Model from the
Basic model improves by 4.5% on NTU, even without em-
ploying temporal granularity attention (TG−att). TG−att
attention further improves the action classification score by
0.8% on NTU dataset. Table 1 also shows the importance of
fusing together the Basic and Temporal Model into a Global
Model. There are some actions which are correctly recog-
nized by the Basic Model but mis-classified by the Tempo-
ral Model such as punching (-13.4%) and throwing (-8.4%).
Temporal decomposition of these actions with very few key
frames, does not improve their recognition. So, thanks to
the late fusion of the aforementioned Models, we manage
to recover the correct recognition of these actions. Thus,
the Global Model improves the action classification perfor-
mance by approximately 2% as compared to the Temporal
Model over all the datasets.
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Figure 7. A plot of Accuracy in % (vertical axis) vs number of
granularities G (horizontal axis) to show the effectiveness of the
temporal segment attention (TS − att) on NTU-RGB (CS & CV)
and N-UCLA(V 3

1,2). Note that the accuracy for G = 1 is on the
I3D base network.

Table 1. Ablation study to show the effectiveness of the temporal
granularity attention (TG− att) and the Global Model compared
to the Basic and Temporal Models on NTU-RGB (CS & CV) and
N-UCLA(V 3

1,2). Acc. denotes action classification accuracy.
Model G TG− att NTU-CS NTU-CV N-UCLA

Acc. (%) Acc. (%) Acc. (%)

Basic 1 × 85.5 87.2 88.8
Temporal 2,3,4 × 89.9 91.9 88.2
Temporal 2,3,4 X 90.6 92.8 89.5

Global 1,2,3,4 X 92.5 94.0 91.0

Figure 8. Accuracy difference per action label of the 20 best
classes for NTU dataset between the Temporal Model and the
Global Model. The base network is I3D and the results are av-
eraged over the CS and CV protocols.

To analyze the gain obtained by the Temporal Model, we
study the difference in classification accuracy between the
Basic Model and the Global Model for the 20 best classes
in fig. 8. Our Global Model improves 53 out of 60 ac-
tion classes. The most significant improvements concern
actions with repetitive cycles like brushing teeth (+17.1%),
handwaving (+16.9%), and use a fan (+16.4%). These ac-
tions have long-term temporal structure (the repetition of
actions) which our proposed Temporal Model successfully
decipher. The Basic Model fails when it has to distinguish
between action pairs with similar poses and subtle motion,
such as wearing and taking off a shoe and wearing and tak-
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Figure 9. Examples of videos at left (taking on a shoe and put
something inside pocket) and attention weights of temporal seg-
ments and granularities at right. Our proposed Global Model clas-
sifies these action videos correctly but Basic Model (I3D) does
not. The distinctive context or gesture in the pertinent temporal
segment is highlighted with yellow box.

ing off glasses. On the contrary, the temporal decompo-
sition of these actions into segments enables the classifier
to discriminate between similar pairs, and thus improves
the recognition of wearing a shoe (+14.1%) and wearing
glasses (+14.0%). For these actions, the temporal segments
contain very specific and discriminative parts which enables
the classifier to discriminate the similar ones. See fig. 9 in
which our proposed Global Model outperforms the Basic
Model (I3D). For action taking on a shoe, the first temporal
segment S21 for granularity G = 2 discriminates it from
taking off a shoe. Similarly, for action put something in-
side pocket, the second temporal segment S32 for temporal
granularity G = 3 enables the classifier to recognize the
action correctly. Actions like cross hands in front (-4.0%)
and punching (-3.1%) are the two major worst classes. The
Global Model has difficulties recovering these actions be-
cause the Temporal Model may add noise to the recogni-
tion score acquired by the Basic Model during their fusion.
However, these drops in performance are not as significant
as the improvements.

6.5. Comparison with the State-of-the-art

In this section, our Global Model is compared with pre-
vious methods. We achieve state of the art performance
on the NTU and N-UCLA datasets as shown in Table 2
and Table 3. For input modalities, a pose is defined as the
3D body joint information whereas depth is defined as the
depth map from RGB-D sensor. Note that in table 2 and 3,
Glimpse Cloud [4] uses pose information only for learning
but performs significantly worse for cross-subject protocol
on NTU dataset. In table 2, the Temporal Model compete
closely with PEM [18] which uses evolution of heatmaps of
pose estimation. But we argue that, in real world settings
this pose estimation can be noisy, especially in case of oc-



clusions. Thus, the reliability of this pose estimation weak-
ens the (PEM) method. In comparison, we only use pose
information to learn the attention weights. Consequently,
classification is not affected by the wrong poses. Table 2
and Table 3 also show the effectiveness of our Temporal
Model when adopted on top of rich discriminative features
from existing spatio-temporal attention models [8, 35]. We
call them Global Model (I3D-NL base) or (P-I3D base) - the
base network in parentheses. The attention mechanism of
non-local blocks [35] from convolutional feature maps are
not view-invariant and thus perform worse than simple I3D
as backbone of the Temporal Model in CV protocols. P-
I3D [8] with 42M trainable parameters as compared to sim-
ple I3D’s 12M trainable parameters outperforms the state-
of-the-art results on NTU (95% average over CS and CV)
and NUCLA (93.5%) datasets when used as a backbone of
the Temporal Model. The Global Model with P-I3D as base
network has 80M trainable parameters and improves action,
with similar motion like wearing glasses (+2.5%) and tak-
ing off glasses (+2.1%) compared to the Basic Model (P-
I3D).

Table 2. Accuracy results on NTU RGB+D dataset with cross-
subject (CS) and cross-view (CV) settings along with indicating
the input modalities (accuracies in %); Att indicates attention
mechanism, ◦ indicates that the modality has only been used for
training. ∗The code has been reproduced on this dataset.

Methods Pose RGB Att CS CV
STA-LSTM [27] X × X 73.2 81.2
TS-LSTM [15] × X × 74.6 81.3
GCA-LSTM [16] X × X 74.4 82.8
DSSCA-SSLM [24] × X × 74.8 -
MTLN [38] × X × 79.6 84.8
VA-LSTM [36] X × × 79.4 87.6
STA-Hands [2] X X X 82.5 88.6
altered STA-Hands [3] X X X 84.8 90.6
Glimpse Cloud [4] ◦ X X 86.6 93.2
I3D-NL [35]∗ × X X 88.4 87.1
PEM [18] X X × 91.7 95.2
P-I3D [8] X X X 93 95.4
Global Model (I3D base) X X X 92.5 94.0
Global Model (I3D-NL base) X X X 92.6 93.9
Global Model (P-I3D base) X X X 93.9 96.1

6.6. Runtime

Training the Temporal Model end-to-end takes 3 hours
with a single job spread over 4 GTX 1080 Ti GPUs. Pre-
training the Basic Model on the NTU dataset takes 15 hours.
3D CNN (I3D) features are extracted in parallel over 16
GPUs for 4 granularities and thus varying the granularity
does not affect the run time of the model. At test time, RGB
pre-processing takes one second (loading Full-HD video
and extracting 3D CNN features). The Temporal Model

Table 3. Accuracy results on Northwestern-UCLA Multiview Ac-
tion 3D dataset with cross-view V 3

1,2 settings along with indicat-
ing input data modalities (accuracies in %); Att indicates attention
mechanism.

Methods Data Att V 3
1,2

HPM+TM [21] Depth × 91.9
HBRNN [12] Pose × 78.5
view-invariant [17] Pose × 86.1
Ensemble TS-LSTM [15] Pose × 89.2
nCTE [10] RGB × 75.8
NKTM [20] RGB × 85.6
Glimpse Cloud [4] RGB+Pose X 90.1
P-I3D [8] RGB+Pose X 93.1
Global Model (I3D base) RGB+Pose X 91.0
Global Model (P-I3D base) RGB+Pose X 93.5

with granularity Gmax= 4, takes 1.1 ms including the pre-
diction from the Basic Model on a single GPU. The tempo-
ral attention module is very efficient because it works only
on the 3D pose joints. Classification can thus be done close
to real-time. The proposed model has been implemented in
Keras [7] with tensorflow [1] as back-end.

7. Conclusion
In this paper, we have presented an end-to-end Temporal

Model for human action recognition. The Temporal Model
includes the notions of granularity and temporal segments
for each granularity. A two-level attention mechanism man-
ages the relative importance of each temporal segment for
a given granularity and handles the various granularities.
The proposed attention model is driven by articulated poses.
As now 3D poses can be obtained from RGB frames us-
ing [22], our recognition approach is not restricted for RGB-
D videos. Our ablation study shows the potential of the
proposed Temporal Model to capture complex temporal re-
lationships, finally resulting in better action classification.
Existing attention/no-attention based spatio-temporal CNN
architectures can be combined with our Temporal Model
as its backbone. For example, the Temporal Model when
combined with existing spatial attention based 3D CNN,
outperforms the state-of-the-art performance on NTU and
N-UCLA datasets. Future work will be to adapt the pro-
posed Temporal Model for untrimmed action detection.
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