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Abstract

In this paper, we propose to improve the traditional use
of RNNs by employing a many to many model for video clas-
sification. We analyze the importance of modeling spatial
layout and temporal encoding for daily living action recog-
nition. Many RGB methods focus only on short term tempo-
ral information obtained from optical flow. Skeleton based
methods on the other hand show that modeling long term
skeleton evolution improves action recognition accuracy. In
this work, we propose a deep-temporal LSTM architecture
which extends standard LSTM and allows better encoding
of temporal information. In addition, we propose to fuse
3D skeleton geometry with deep static appearance. We val-
idate our approach on public available CAD60, MSRDai-
lyActivity3D and NTU-RGB+D, achieving competitive per-
formance as compared to the state-of-the art.

1. Introduction
In this work we focus on solving problem of daily living

action recognition. This problem facilitates many applica-
tions such as: video surveillance, patient monitoring and
robotics. The problem is challenging due to complicated
nature of human actions such as: pose, motion, appearance
variation or occlusions.

Holistic RGB approaches focus on computing hand-
crafted or deep features (eg. CNN). Such methods usually
model short term temporal information using optical flow.
Long term temporal information is either ignored or mod-
eled using sequence classifiers such as HMM, CRF or most
recently LSTM.

Introduction of low-cost depth sensors and advance-
ments in skeleton detection algorithms lead to increased
research focus on skeleton based action recognition. 3D
skeleton information allows to build action recognition
methods based on high level features, which are robust to
view-point and appearance changes [32]. RNNs are a vari-
ant of neural nets capable of handling sequential data, ap-
plied on this problem to model the dynamics of human
motion. Existing work on RNN based action recognition

model the long term contextual information in the tempo-
ral domain to represent the action dynamics and so on. The
traditional many-to-one LSTMs used for video classifica-
tion, takes decision based on the feature obtained at the last
time stamp, failing to incorporate the prediction of video
class over time in the loss backpropagated. This disables
the LSTM to model long-term motion for action classifica-
tion.
In this paper we propose a many-to-many model for video
classification namely, deep-temporal LSTM in which the
features extracted and the loss backpropagated is computed
over time. We show that this latent representation of video
from LSTM leads to better temporal encoding. We also
propose to fuse RGB information and skeleton information.
We claim that it is especially important in daily-living ac-
tion recognition, where many actions have similar motion
and pose footprint (eg. drinking and taking pills), thus it is
very important to model appearance of objects involved in
the action accurately.

This paper shows (1) that LSTM can model temporal
evolution of activities when the loss is computed over every
temporal frames rather than relying on the last time step, (2)
deep appearance and motion based features selected from
appropriate image region for action classification. In our
work, we propose to use late fusion of skeleton based LSTM
classifier with appearance based CNN classifier. Both clas-
sifiers work independently and we fuse their classification
scores to obtain final classification label. In this way, we
take advantage of LSTM classifier which is able to capture
long term temporal evolution of pose and CNN classifier
which focuses on static appearance features.

We validate our work on 3 public daily-activity datasets:
CAD60, MSRDailyActivity3D and NTU-RGB+D. Our ex-
periments show that we obtain competitive results on all the
datasets as compared to the state-of-the-art.

2. Related Work
Previous work on human action recognition was cen-

tric with the use of dense trajectories [28] combined with
Fisher Vector (FV) aggregation. The introduction of low
cost kinect sensors have made it possible to detect the skele-
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ton poses of human body easily which can be exploited to
recognize actions as in [29] or 3D trajectories [11].

The emergence of Deep Learning in computer vision has
improved the results in terms of accuracy of action recog-
nition as they show some promising results [14]. One of
the key point to use deep learning for action recognition
is that, it not only focuses on extracting the deep features
from CNNs but for instance considers the temporal evolu-
tion of these features using the Recurrent Neural Networks
(RNNs).
In [23], authors have used two stream networks for action
recognition. One for appearance features from the RGB
frames and one for flow based features from optical flow.
They propose to fuse these features in the last convolutional
layer rather than fusing them in the softmax layer which
further improves their accuracy of the framework. Cheron
et al. [4] have used different parts of the skeleton to ex-
tract the CNN features from each of them. These features
are aggregated with max-min pooling to classify the actions.
The authors claim to use the temporal information by taking
the difference of these CNN features followed by the max-
min aggregation. But this aggregation ignores the temporal
modeling of the spatial features. The recent advancement in
this field led to the use of 3D CNNs in C3D and I3D [3] for
action classification reporting high accuracy. But these net-
works containing huge number of parameters are difficult to
train on small datasets. They also do not address the long
term dependencies of the actions.
The availability of informative three dimensional human
skeleton data led to the use of RNNs which are capable
of modeling the dynamics of human motion. Shahroudy et
al. [21] proposed the use of stacked LSTMs namely, Deep-
LSTM and also, p-LSTM where separate memory cells are
dedicated for each body part of an individual. Another vari-
ant of LSTM is proposed in [15], where the authors intro-
duce a new gating mechanism within LSTM to learn the
reliability of the sequential data. Some studies also reports
the use of different types of feature on RNNs as in [7, 32].
Authors in [7] modeled the spatio-temporal relationship by
feeding the LSTM with CNN features from fc-6 of VGG
network. But this strategy is valid for datasets with very dy-
namic actions and not applicable on similar based motion
characterized actions. Authors in [32] have represented 3D
skeletons using distance based features and feed them into 3
layer LSTM. They have also proposed joint line distance to
be the most discriminative features for action classification.
From the above discussion, it is clear that action recogni-
tion tasks focus on improving appearance and motion based
features and temporal features through RNN modeling sep-
arately. But both spatial layout and temporal encoding is
important to model daily living activities. This is because of
the presence of low motion actions like typing keyboard, re-
laxing on couch and so on where spatial layout is important,

and similar actions like drinking water, brushing hair and so
on where temporal encoding is important. Thus we propose
to combine features from convolutional network and recur-
rent network to encode appearance-motion and temporal in-
formation together in a model.
In this paper, we use body translated joint coordinates from
the depth information to find the discriminative dynamics
of the actions using 3-layer LSTM followed by a SVM
classification for the temporal stream. We show that our
LSTM based features can model the actions temporally bet-
ter that the existing LSTM architectures with similar input
sequences. For deep spatial features, we extended [4] to
produce CNN features considering both the flow and ap-
pearance features from different image regions. We employ
a feature selection mechanism to use the most informative
image-region over the training data for classifying actions.
Since temporal information modeling along with encoding
spatial layout is an important dimension in action recogni-
tion, so we focus on using the fusion of deep spatial features
along with temporal information to recognize actions using
a late fusion to learn semantic concepts from unimodal fea-
tures.

3. Proposed Method
3.1. Deep-Temporal LSTM

LSTMs being a special kind of RNNs can model the time
information as in [32]. LSTM mitigates the vanishing gra-
dient problem faced by RNNs by utilizing the gating mech-
anism over an internal memory cell. The gates enable the
LSTM to determine what new information is going to be
stored in the next cell state and what old information should
be discarded. Such recurrent model receives inputs sequen-
tially and models the information from the seen sequence
with a componential hidden state ht:

ht = fh(ht−1, vt; θh) (1)

where LSTM is our recurrent function fh with parameters
θh. We omit the gates from the equations so as to keep the
notation simple. The input to the recurrent model is the
context vector vt which is described below.
The main focus of the existing methods includes using the
RNNs to discover the dynamics and patterns for 3D human
action recognition. The sequential nature of the 3D skeleton
joints over the time makes the RNN learn the discriminative
dynamics of the body. In this work, we use transformed
body pose information on a 3-layer stacked LSTM so as
to model the temporal information as shown in fig. 1. The
main reason for stacking LSTM is to allow for greater
model complexity, to perform hierarchal processing on
large temporal tasks and naturally capture the structure of
sequences. A pre-processing step is performed to normalize
the 3D skeleton in camera coordinate system as in [21].
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Figure 1. Three-layer stacked LSTM with t = T time steps. The
skeleton joint coordinates vt are input at each time step. L is the
loss computed over time and h is the latent vector from last layer
LSTM which is input to the linear SVM classifier.

The 3D skeleton joint is translated to the hip − center
followed by a rotation of the X axis parallel to the 3D
vector from ”right hip” to the ”left hip”, and Y axis towards
the 3D vector from ”spine base” to ”spine”. At the end, we
scale all the 3D joints based on the distance between ”spine
base” and ”spine” joints. Thus the transformed 3D skeleton
vt at time frame t which is represented as [xr,t, yr,t, zr,t] for
r ∈ joints (J) and (x, y, z) being the spatial location of rth

joint is input to the LSTM at time stamp t. We normalize
the time steps in videos by padding with zeros. This is done
to keep fixed time steps in LSTM to process a video sample.

Traditionally, authors in [7, 32, 21] solve action recog-
nition problem as a many to one sequence classification
problem. They compute the loss at the last time step of
the video which is backpropagated through time. In this
work, we compare the LSTM cell output with the true label
of the video at each timestep. In this way we get time-step
sources to correct errors in the model (via backpropagation)
rather than just for each video (giving rise to the term deep-
temporal). Thus the cost function of the LSTM for videos
is computed by averaging the loss at each frame as follows

L = − 1

N

N∑
i=1

T∑
t=1

yi log(pit) (2)

where L is categorical cross-entropy computed for N video

samples in a batch over T frames, y is the sample label and
pit ∈ (0, 1) : Σt = 1∀i, t is the prediction for a video.
This loss L is back-propagated through time. Here, the
LSTM treats each temporal sequence independently as a
sample, whose prediction is again determined by the cur-
rent and previous gate states. This method provides better
performance compared to the minimization of the loss at
the last time step only due to better feedback backpropa-
gated through time. So, we extract the latent vectors from
every time step of the last layered LSTM using it as a fea-
ture extractor.
We train deep-temporal LSTM with parameters θh on the
input sequence V = {vt} with loss L resulting in a hid-
den state representation h = {ht}. Each element in ht is
again a latent vector represented as ht = {hj,t}, where
j is the index over the hidden state dimension. This la-
tent vector constituting h′i = hr represent the action dy-
namics at time instant r ∈ {1 · · ·T} for ith sample, qual-
ifying it as a representative vector over time. This latent
vector h represents a better and more complex represen-
tation of the long-term dependencies among the input 3D
sequential data. This temporal latent vector h is input to
a linear SVM classifier for action classification. The 3-
D matrix Hn = {h′1, h′2, · · ·h′n} for n training sample is
input to the SVM to learn the mapping X → Y, where
h′n ∈ X and y ∈ Y is a class label. The features X, ex-
tracted from trained LSTM are used to learn a classifier:
y = fSVM (h′n, α), where α, the parameters of the function
fSVM .

3.2. Pose based CNNs

In [4], the authors have used the concept of two streams
for recognizing actions on the different parts of the sub-
ject extracted from their skeleton joint information. This
inspires us to use the deep features from different body re-
gions of the subject to represent their appearance and mo-
tion features. The main objective behind using these fea-
tures is to model the static appearances along with encoding
the object information carried while performing the actions.
We extend [4] by invoking deeper networks for feature ex-
traction and employing a feature selection technique to se-
lect the best image region involved in the action dataset.
In our pose based action network, CNN features from the

left hand, right hand, upper body, full body and full images
from each frame are extracted to represent each body region
for the classification task as illustrated in fig. 2. Our exper-
imental studies show that this body region representation
leads to a lot of redundancy. Sometimes, wrong patches ex-
tracted due to side view actions which mislead the classifier
to select a wrong action. Thus we propose a technique to
select the best representation of the appearance feature by
focusing on the body region with the most discriminative
information. The patch representation for a given image-
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Figure 2. Each image frames are divided into five parts from their
pose information which are input to ResNet-152 followed by max-
min pooling. The classification from the SVM determines the part
to be selected. The figure is only depicted for RGB stream and the
Flow stream follows similar trend.

region i is convolutional network fg with parameters θg ,
taking as input a crop taken from image It at the position of
the part patch i:

zt,i = fg(crop(It, patchi); θg) i = {1, ..., 5} (3)

We use pre-trained Resnet-152 for fg to extract the deep
features from the last fully connected layer which yields
2048 values described as our frame descriptors zt,i. These
frame descriptors are aggregated over time using max and
min pooling so as to focus the most salient values on the
feature maps representing the video descriptors zi.
The feature selection is done by feeding these CNN
features zi to linear SVM for classification separately for
each patch i. These SVM produce classification scores on
cross validation set separately for each patch i. We select
the patch i of image-region with the best classification
score on validation set. This allows us to select the best
body region for characterizing the appearance feature. As
per our observation, these selected appearance features
not only represent the best static appearances but also
have the best combinational power with the motion based
information. Motion based information signifies the optical
flow information which is computed similarly using the
feature selection mechanism.

3.3. Fusing Geometric and Appearance-Motion
Features for Action Modeling

In this work, we propose to combine the discriminative
power of 3D skeleton sequences with RGB based appear-
ance and motion. Authors in [31, 33, 23, 8] attempts to
fuse the appearance from RGB information, poses and mo-
tion. Here, the novelty lies in an attempt to fuse features
from convolutional network and recurrent network in order
to encode spatial and temporal features together.
The body based CNN features model the salient features in
the global video. But these features are not discriminative
enough to model the difference between actions with less
intra-class variance. On the other hand, the features from

LSTM models the temporal evolution of the salient features
over the entire video. It captures the geometric evolution of
the activity performed by a subject. So, the idea in this pa-
per is to fuse the appearance based CNN features with the
temporal evolution of the body translated skeleton joints.
This is done by fusing the classification scores from SVM
trained on deep appearance features and SVM trained on
latent LSTM features.

4. Experiments
4.1. Dataset Description

For evaluating our framework, we use CAD-60 [25] con-
taining 60 RGB-D videos with 14 actions performed by 4
subjects, MSRDailyActivity3D [29] containing 320 RGB-
D videos with 16 actions performed by 16 subjects and
NTU-RGB+D [21] containing 56880 RGB-D videos with
60 actions performed by 40 subjects.
We evaluate CAD-60 and MSRDailyActivity3D by setting
up a cross subject training and testing validation set up. For
NTU-RGB+D, we follow the training/testing protocol men-
tioned in [21]. Our view transformation on 3D skeleton is
performed to handle the side view actions performed by the
subject on fixed camera, we are not focusing on Cross-View
problem. Hence, we have not evaluated cross-view accu-
racy on NTURGB+D dataset.

4.2. Implementation Details

We build our LSTM framework on the platform of
keras toolbox [5] with TensorFlow [1]. The concept of
Dropout [24] is used with a probability of 0.5 to eliminate
the problem of overfitting. The concept of Gradient clip-
ping [26] is used by restricting the norm of the gradient
to not to exceed 1 in order to avoid the gradient explosion
problem. Adam optimizer [10] initialized with learning rate
0.005 is used to train both networks.
4.3. Ablation Study

In this section, we present the performance and analy-
sis of the two cues used independently for action classifi-
cation. Table 1 shows the performance of different variants
of LSTM with skeleton joints as input, used in the state-
of-the-art. The performance of our proposed deep temporal
LSTM feature extractor followed by linear SVM classifier
outperforms the other LSTM variants. This is because of
considering the predictions at each time step of the video
sequence and classifying the latent representant of time for
a video sample, which improves the temporal modeling of
the classifier. This also opens a direction of using our ap-
proach with different input features and even with LSTM
variants proposed in the state-of-the-art for LSTMs.

Table 2 shows the effectiveness of our feature selection
mechanism on different image regions for modeling the ac-
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Method CAD-60 MSRDaily NTU-
Activity3D RGB+D

Traditional LSTM 64.65 80.90 60.69
Deep LSTM [21] - - 60.7
P-LSTM [21] - - 62.93
ST-LSTM (Joint-chain) [15] - - 61.7
Deep Temporal LSTM 67.64 91.56 64.49

Table 1. Comparison of different approaches with body trans-
lated skeleton coordinates on CAD-60, MSRDailyActivity3D and
NTU-RGB+D. The numbers here denote the accuracy [%].

tions. It confirms the presence of irrelevant features (due
to the combination of all body regions) which deviates the
classifier decision boundary from the ideal one. This is also
justified by the fact that some image regions may not be ex-
tracted correctly in some sequences and some may not have
any significance in modeling the action. For instance, ex-
tracting the features from right hand of a person drinking
water with left hand is of no significance.

Method CAD-60 MSRDaily NTU-
Activity3D RGB+D

P-CNN [4] 95.59 87.81 48.71
FS(P-CNN) 97.06 89.06 58.69

Table 2. Effectiveness of pose based CNN features with feature
selection mechanism on CAD60, MSRDailyActivity3D and NTU-
RGB+D. The numbers here denote the accuracy [%] and FS cor-
responds to the feature selection mechanism.

4.4. Comparison with the state-of-the-art

Table 3 presents the state-of-the-art comparison of our
proposed fusion of depth based LSTM features and pose
based CNN features to classify actions. The complemen-
tary nature of the LSTM and CNN based networks are ev-
ident from the boosted performance for MSRDailyActiv-
ity3D and NTU-RGB+D on fusion. The presence of static
actions like cooking, talking on phone, relaxing on couch
and so on in CAD-60 do not enable the LSTM to recognize
the dynamicity of the actions. This explains the gainless ac-
curacy reported for CAD-60 on fusing the features. We out-
perform state-of-the-art results on CAD-60 and MSRDaily-
Activity3D. [33] and [2] outperforms our proposed method
using multi-stream 3D convolutions and attention mecha-
nism respectively. Such mechanisms are hard to train and
may not have consistent performance on smaller dataset.
We observe that in NTU-RGB+D, short term motion is im-
portant which can be modeled using dense trajectory fea-
tures [27](IDT-FV). Thus, we combine the IDT-FV features
using a late fusion of individual classification score signifi-
cantly boosting the performance over using individual fea-
tures only and resulting in state-of-the-art performance on

NTU-RGB+D.

Method Accuracy [%]
Object Affordance [13] 71.40
HON4D [20] 72.70
Actionlet Ensemble [29] 74.70
MSLF [12] 80.36
JOULE-SVM [9] 84.10
P-CNN + kinect + Pose machines [6] 95.58
Proposed Method 97.06
P-CNN + kinect + Pose machine [6] 84.37
Actionlet Ensemble [29] 85.80
RGGP + fusion [16] 85.60
MSLF [12] 85.95
DCSF + joint [30] 88.20
JOULE-SVM [9] 95.00
Range Sample [18] 95.60
DSSCA-SSLM [22] 97.50
Proposed Method 98.44
FTP DS [9] 60.23
Geometric features [32] 70.26
Enhanced skeleton visualization [17] 75.97
Ensemble TS-LSTM [19] 74.60
DSSCA-SSLM [22] 74.86
Chained Multistream Network [33] 80.8
STA-hands [2] 82.5
Proposed Method 74.75
Proposed Method + IDT-FV 84.22

Table 3. Recognition Accuracy comparison for CAD-60 (1st

section), MSRDailyActivity3D (2nd section) and NTU-RGB+D
(3rd section) dataset. Proposed Method signifies Deep-Temporal
LSTM + FeatureSelection (P-CNN).

5. Conclusion

In this work, we propose a deep-temporal LSTM which
models better temporal sequences as compared to the state-
of-the-art architectures on the same input features and ex-
tended the pose based CNN action network by employing
a feature selection mechanism. We also present the idea
of fusing the pros of 3D skeleton based geometric features
with appearance and motion based deep features to classify
daily living activities.
A future direction lies in exploring different efficient fea-
tures and variants of gating mechanism of LSTMs with our
proposed approach. In the appearance-motion stream, the
feature selection mechanism to select the appropriate image
region is globally decided over the dataset. An attempt to
select the appropriate feature for each sample and employ-
ing such a mechanism in the network itself is a direction to
be explored.
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[27] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action
Recognition by Dense Trajectories. In IEEE Conference on
Computer Vision & Pattern Recognition, pages 3169–3176,
Colorado Springs, United States, June 2011.

[28] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013.

[29] Y. Wu. Mining actionlet ensemble for action recognition
with depth cameras. In CVPR, 2012.

[30] L. Xia and J. Aggarwal. Spatio-temporal depth cuboid simi-
larity feature for activity recognition using depth camera. In
CVPR, 2013.

[31] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond Short Snip-
pets: Deep Networks for Video Classification. ArXiv e-
prints, Mar. 2015.

[32] S. Zhang, X. Liu, and J. Xiao. On geometric features for
skeleton-based action recognition using multilayer lstm net-
works. In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 148–157, March 2017.

[33] M. Zolfaghari, G. L. Oliveira, N. Sedaghat, and T. Brox.
Chained multi-stream networks exploiting pose, motion, and
appearance for action classification and detection. In Com-
puter Vision (ICCV), 2017 IEEE International Conference
on, pages 2923–2932. IEEE, 2017.

6


