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Abstract

Activity recognition has been a growing research topic
in the last years and its application varies from auto-
matic recognition of social interaction such as shaking
hands, parking lot surveillance, traffic monitoring and the
detection of abandoned luggage. This paper describes
a probabilistic framework for uncertainty handling in a
description-based event recognition approach. The pro-
posed approach allows the flexible modeling of composite
events with complex temporal constraints. It uses proba-
bility theory to provide a consistent framework for dealing
with uncertain knowledge for the recognition of complex
events. We validate the event recognition accuracy of the
proposed algorithm on real-world videos. The experimen-
tal results show that our system can successfully recognize
activities with a high recognition rate. We conclude by com-
paring our algorithm with the state of the art and showing
how the definition of event models and the probabilistic rea-
soning can influence the results of real-time event recogni-
tion.

1. Introduction

In the literature, many video event recognition systems
have been proposed. However, many challenging prob-
lems still remain to obtain a robust recognition because of
noise, illumination changes, segmentation issues and occlu-
sions. We propose a constraint-based approach for real-
world video interpretation based on probabilistic reasoning
for composite event recognition. The main goal is to im-
prove the techniques of video data interpretation taking into
account the imprecision and uncertainty of low level data.

The paper is organized as follows: In section 2, we re-
view the related work. In section 3 and 4 we describe the
proposed video interpretation framework for event recog-
nition. The experiments realized to evaluate the proposed
method are shown in section 5. Finally, we present the con-
clusion in section 6.

2. Related work
Automatic activity recognition is a very important and

active area of research [7], [5], [19]. Activity recognition
approaches can be divided into two main approaches: prob-
abilistic approaches and description-based approaches. The
probabilistic approaches include Bayesian Networks and
Hidden Markov Models. The main characteristic of these
techniques is to model explicitly the uncertainty.

Bayesian Network have been successfully applied to
person interaction [17] such as ‘shake hands’, parking lot
surveillance [13], traffic monitoring [8] and detection of left
luggage [11]. However, Bayesian Network are not adapted
to model temporal compositions of events. Temporal repre-
sentation is often done using a static representation, where
time points or time slices are represented as static processes.
HMMs and their extensions [16], [6], [4] have been widely
used. Their advantage compared to Bayesian Network is the
ability to recognize sequence of events. However HMMs
are limited in recognizing sequence of events which involve
several mobile objects because the probability of being in a
state for a mobile object has to be combined with the prob-
ability of being in another state for all other mobile objects.
These combinations lead the recognition process to a com-
binatorial explosion.

Description-based approaches have also been largely
used to recognize activities for few decades. Constraint
Satisfaction Problem (CSP) has been applied to model ac-
tivities as constraint networks [18]. Description-based ap-
proaches are suitable for recognizing high-level activities.
They can more easily incorporate human knowledge into
the systems and require less training data as pointed out by
many researchers [16], [14], [21]. But the formalism of the
event modeling and recognition is largely deterministic and
convenient mechanism to handle uncertainty and compen-
sate for the failures of low-level is generally unavailable.

The approaches combining logic and probabilistic rea-
soning have been designed to overcome the limitations of
the previous approaches. Ryoo and Aggarwal [22], [23]
have taken advantage of the concept of the hallucinated time
intervals, similar to the one used in [12] to deal with un-



certainty. Tran and Davis [24] have adopted probabilis-
tic graphical model, Markov logic networks (MLNs) to
probabilistically infer events in a parking lot. In [2] au-
thors have presented a probabilistic event logic (PEL) which
uses weighted event-logic formulas to represent probabilis-
tic constraints among events. However, they do not deal
with the low-level uncertainty and consider only the recog-
nition of primitive events of basketball game. Kwak et
al. [9] have adopted constraint flows to summarize the
combination of the primitive events composing a complex
event.But the complexity of the recognition algorithm is
not described. The logic-probabilistic combination is an
promising field of research. However, it has not been fully
explored and many efforts are still needed to provide a com-
plete framework for fully handling the uncertainty of recog-
nition. Thus, in this paper, we propose a new approach for
complex event recognition which combine logic and prob-
abilistic reasoning for a better performance of the recogni-
tion.

3. Event Representation

We propose a generic event representation formalism
that is capable to represent all types of events used for
the automatic video recognition and that is able to manage
the uncertainty of recognition at the event modeling level.
This formalism contains the Event description Language
described in [25] which is declarative and intuitive, so that
the experts of the application domain can easily define and
modify it. The main limitation of this language is the lack
of mechanism to handle the uncertainty of recognition. For
this, we proposed 2 extensions, mainly, we propose (i) the
notion of ‘utility’ to deal with missed observations (see sec-
tion 3.1) and we propose (ii) a specific relation in the rep-
resentation of the event to manage the tracking identifier
maintenance (see section 3.2).

There are four types of activities going from simple to
more complex: primitive states, composite states, primi-
tive events and composite events. An event model is com-
posed of five elements:

• Physical objects: objects of interest involved in the
event. The type of the objects depends on the applica-
tion domain. Physical objects includes mobile objects
(e.g. person, vehicle), contextual objects (equipment,
zones).

• Components: the sub-events composing the event.

• Constraints: conditions between the physical objects
and/or the components including symbolic, logical,
spatial and temporal constraints based on Allen predi-
cates [1].

Figure 1. Event Models.

• Alarm: The alarm information describes the impor-
tance of the scenario model in terms of emergency (i.e.
not urgent, urgent, very urgent). The alarm level can be
used to filter the recognized events, for displaying only
important events to the user.

The figure 1 illustrates an event model example ‘Matching-
SheetssActivity’ and its sub-events. This activity is mod-
eled with the help of clinicians to define the cognitive func-
tioning status of patients and their motor skills. In this ac-
tivity, the patient is asked to match a set of sheets (named
A, B, C and D) in their specific placement dispersed over
the room. The patient have to move from the coffee corner
where there is the sheet named A, to the library (sheet B),
to TV zone (sheet C, D) and go back to coffee corner.

3.1. Missed Observation

Occlusion and bad imaging conditions (e.g. dark, shad-
owed areas of the scene) are common conditions that pre-
vent us from observing the occurrence of some events.
When we miss the recognition of one of the sub-events the
whole event is missed. To prevent from this, we propose
a notion of ‘utility’ in the definition of the event model by
associating a coefficient to each sub-event. Utility which is
defined by a human expert expresses the importance or pri-
ority of sub-events for the recognition of the whole event.
Its range is in the interval ]0,1], higher is the utility value
higher is the importance of the sub-event in the recognition
of the whole event. The value 1 means that the sub-event is
required for the recognition. Figure 2 shows that the util-
ity coefficient associated to ‘PersonSlumping’ is choosen
lower (i.e. 0.2) than the utility for ‘PersonStanding’ and
‘PersonSitting’ (i.e. 0.6). We make the choice to consider
that the detection the primitive state ‘PersonSlumping’ is
not mandatory for the recognition of the event. This choice



Figure 2. Utility coefficient associated to each sub-event of the
event model ‘PersonStandingUp-FromChair’.

can be explained by the fact that the posture algorithm is
more performant to detect ‘PersonStanding’ and ‘Person-
Sitting’ than ‘PersonSlumping’.

3.2. Identity Maintenance

Identity maintenance is necessary when there exist mul-
tiple identities that actually refer to the same mobile ob-
ject. It is caused by lack of visual information (appearance,
shape, etc.) to make unique identity connections across ob-
servation gaps. Identity maintenance is a primary source
of uncertainty for activity recognition. It affects more pre-
cisely the recognition of long-term events.

Our approach to solve this issue in the level of event
modeling is to propose the use of specific relation ‘equal’ in
the representation of the event. More precisely, the identifi-
cation whether the identifier of two objectsA andB refer to
the same object is represented by the relation equal(A, B).

In this work, the evaluation of this relation is done us-
ing appearance matching (e.g. 3D height, 3D width, etc).
This logic relation is very useful in the case where the vi-
sion algorithm (i.e. tracking algorithm) fails to match and
maintain the tracking identifier of the detected mobile ob-
ject. Many other identifying contextual cues about identi-
ties can be discussed in the litterature. These cues are based
on the individuals belongings, closed place activity, knowl-
edge and appearance as pointed in [24].

4. Event Recognition: a Generic Framework

For the recognition process, an event model tree is com-
puted as described in[25]. The tree defines which sub-event
triggers the recognition of which event: the sub-event which
happens last in time triggers the recognition of the global
event. The first step of the event recognition process is
to recognize all the possible primitive statesby instantiat-
ing all the models with the detected objects. The second
step consists in recognizing complex events according to
the event model tree and the simple events previously rec-
ognized. The final step checks whether the recognized event
at time t has been already recognized previously to update
the event end-time or create a new event instance.

4.1. Probabilistic Elementary Event Recognition

The observations are inherently uncertain, hence a for-
mal probabilistic approach is needed to reason under uncer-
tainty. We propose to compute the conditional probability
of the recognition of the event instance e belonging to an
event model Ω given that the mobile physical objects in the
model Ω have been observed and given that the constraints
in the model Ω are satisfied by the observation O.

P (e ∈ Ω|ζ(Ω, O), VΩ = poOe )

=
P (ζ(Ω, O)|e ∈ Ω)× P (VΩ = poOe |e ∈ Ω)× P (e ∈ Ω)

P (ζ(Ω, O), VΩ = poOe )
(1)

• e ∈ Ω, e is an instance of event model Ω.

• ζ(Ω, O), the constraints of event model Ω are satisfied
by observation O.

• VΩ = poOe , the tracked physical objects in the obser-
vation O correspond to physical object variables V in
the model Ω of event instance e.

P (e ∈ Ω) is the prior probability that a certain scenario
model Ω is detected. We can assume that all scenarios in a
certain universe are equally probable, so as not to favor any
scenario just because it happens more often. For example,
the universe of the scenario models that describe a person
posture is: (PersonStanding,PersonSitting and PersonBend-
ing).

P (e ∈ Ω) =
1

Nbr.ScenarioΩUniverse
(2)

P (ζ(Ω, O)|e ∈ Ω) is the probability that the constraints
of the event model are verified given that the event e is true.
This probability is computed as following:

P (ζ(Ω, O)|e ∈ Ω) =
n∏
i=1

](ζ(Ω, O)i ∧ e ∈ Ω)

](e ∈ Ω ∧ V ζi

Ω ∈ poOe )
×P (ζi(Ω, O))

(3)
The term ](ζ(Ω, O)i ∧ e ∈ Ω) implies that only frames
where event e have been identified (i.e. annotated) as an
instance of Ω are considered, and for each constraint of
event model Ω, the number of frames where it is satisfied
are counted. The term ](e ∈ Ω ∧ V ζi

Ω ∈ poOe ) indicates that
we only consider the frames of the training dataset where
the event e is annotated and the physical objects are cor-
rectly tracked. The computation of P (ζi(Ω, O)) is detailed
in section 4.3. P (VΩ = poOe |e ∈ Ω) is the probability that
the physical object variables in the event model Ω have been
detected given that e is an event instance of the event model



Ω. This probability is provided by the tracking algorithm as
described in[3].

The probability P (ζ(Ω, O), VΩ = poOe ) is computed
based on the following equation (4):

P (ζ(Ω, O), VΩ = poOe ) =

P (ζ(Ω, O), VΩ = poOe |e ∈ Ω)× P (e ∈ Ω)+

P (ζ(Ω, O), VΩ = poOe | ee ∈ Ω
′
)× P (ee ∈ Ω

′
)

(4)

4.2. Probabilistic Complex Event Recognition

The probabilistic recognition of complex event is defined
as a hierarchical Bayesian inference. The objective is to rec-
ognize the complex event e given an observation O. What
we want to calculate here is :
‘The probability to recognize a complex event instance e
belonging to an event model Ω given that the components
(sub-events) in the model Ω are observed and the constraints
in the model Ω are satisfied in the observation’. The pro-
posed way of calculating this is:

P (e ∈ Ω|SE(Ω, O), ζ(Ω, O))

=
P (SE(Ω, O)|e ∈ Ω)× P (ζ(Ω, O)|e ∈ Ω)× P (e ∈ Ω)

P (SE(Ω, O), ζ(Ω, O))
(5)

• SE(Ω, O), the components (sub-events) of the model
Ω are observed in O.

The different probability terms are calculated in the same
manner that for the primitive event case.

4.3. Probabilistic Constraint Verification

In this work, we consider the spatial constraints related
to the mobile object speed, position and closeness to a given
contextual objects (e.g. person near TV), the constraints re-
lated to the posture (e.g. person is sitting) and we use the
Allen[1] temporal constraints. A main problem is the im-
precision and uncertainty in the detection of the location of
mobile objects due to low level detection errors (e.g. reflec-
tions, shadows or occlusions). Thus the verification of the
constraint may fail. A solution to cope with this problem is
to propose a probabilistic verification of the constraint. In
the process of spatial constraint verification, we take into
account (i) the geometrical uncertainty which is related to
the verification of the constraint (e.g. verifying the spatial
constraint ‘person-inside-zone’ consists in the geometrical
computation whether a point representing the person is in-
side a polygon representing the zone). The first step con-
sists in computing the distance dist of the person to the
contextual objects (i.e. zone), the second step is to find a
probability distribution function (PDF) that maximize the
value of probability when the distance dist is small and a

minimum value when the distance dist is big. We validate
experimentally that the distribution of the distances fit into
the Gaussian distribution denoted by N (µ, σ) (Eq. 6), the
mean µ and the standard deviation σ are learned off-line.

N (µ, σ) =
1√
2πσ

exp(− (dist− µ)2

2σ2
) (6)

We take also into account (ii) the uncertainty of the attribute
values due to noisy data and low-level algorithm errors.
This type of uncertainty handling is described in section 4.4
by proposing a new dynamic model for the re-estimation of
the attribute values to deal with noisy data..

4.4. Dynamic Model for temporal attribute filtering

Observations with real video sequences can be corrupted
by noise, thus our goal is to estimate more accurately an
attribute value given its observed value. The proposed pro-
cess of the temporal filtering of attributes works in two steps
as described in [20]:
- The first step (1) consists in computing the expected value
aexp of an attribute a at the current instant tc given the esti-
mated value of a and its velocity at the previous time tp.
- The second step (2) is to compute the estimated value aest
of the attribute based on the previous one.
- The final value ā of the attribute is the mean between the
expected and the estimated values of the attribute weighted
by the expected and estimated reliability values

4.5. Dealing with the Tracking Identifier

The recognition of an event over time needs the main-
taining of the same identifier for each mobile object when
recognizing its sub-events, otherwise it will be considered
as a different object. To deal with this tracking error at the
event detection level, we propose the use of the recognition
history of an event e, {e1, ..., et−2, et−1}: the recognized
events over time are stored in a buffer and for each time
t, and for each detected event e, we propose to look at the
change of its physical objects identifier. If the identifier of
a physical object changes suddenly and/or for a short pe-
riod of time, we do not consider the new identifier and we
maintain the last identifier of the physical object.

5. Experimental Results
We have evaluated the event recognition accuracy of

our algorithm on two real world health care applications
(Tab.1and Tab.2) and have compared our results with the
approach proposed in [25] (Tab.3). For the first dataset,
Video recordings of 37 patients are used to assess the
proposed framework performance. These patients are
part of a clinical trial for Alzheimer’s study and they
are asked to perform a set of activities. The length of
each video sequence is about 12(±5) min, 8 fps. The



Events GT % R FP FN
Person sitting 21 76.2 6 5
Close phone 14 85.7 0 2
In coffee Corner 51 98 3 1
In reading zone 28 100 5 0
In zone library 19 95 2 1
In zone TV 14 100 2 0
Move from coffeeCorner to reading zone 17 100 0 0
Move from reading zone to coffeeCorner 15 100 2 0
Move from coffeeCorner to library zone 11 90 2 1
Move from library zone to coffeeCorner 10 100 0 0
Person reading 14 92 2 1
MatchingSheetssActivity 31 58 1 13

Table 1. Recognition Results of the proposed algorithm: the recognition rate (% R), the false positive (FP) and the false negative (FN). 37
patients, 12(±5) min, 8 fps.

Figure 3. Activity detection evaluated on Health care videos.

video dataset will be soon public. The second dataset
consists in monitoring elderly observed in an experimental
laboratory during 4 hours, the data is available on www-
sop.inria.fr/members/Francois.Bremond/topicsText/gerhome
Project.html.

Table. 1 shows that we manage to successfully recog-
nize primitive states (e.g. ‘Close phone’: 85.7%, ‘In coffee
Corner’: 98%) with a low false detection rate. By avoiding
miss detections of primitive states and using a flexible event
description, the proposed system recognizes the complex
events with a recognition rate about 58% for the ‘Matching-
SheetsActivity’ event and 100% for the event ‘Move from
reading zone to coffeeCorner’(Tab. 1).

The comparison (Table 2) shows that the recognition rate
of the complex event MatchingSheetssActivity in the case
of the proposed algorithm (58%) is higher than the deter-
ministic algorithm [25] (38%). This can be explained by

Events GT % R FP FN
In Kitchen 12 100 7 0
In LivingRoom 12 91 6 1
Close Armchair 9 88 1 1
Person sitting 4 100 7 0
Sitting at armchair 4 100 7 0
Move-kitchen-LivingRoom 4 100 3 0
Move-zone-LivingRoom-kitchen 6 100 2 0

Table 2. Recognition Results of the proposed algorithm on Ger-
home dataset: the recognition rate (% R), the false positive (FP)
and the false negative (FN). The ground truth GT corresponds to 4
videos sequences, with a total of 9452 frames, 8 fps.

the fact that the deterministic algorithm fails to recognize
some primitive states because the person was not correctly
detected. However, the proposed algorithm manages to rec-
ognize the primitive state and as a consequence the complex
event. It can also be explained by the fact that the algorithm
[25] does not manage the loss of tracking identifier which
can deeply affect the recognition of long-term events even
though its sub-events are detected.

We have evaluated also our approach on the ‘Building
Entrance’ real world videos of ETISEO [15] dataset (fig.4).
We have selected this public dataset because it has been
used previously in several work [10].

6. Conclusions
We have proposed a description-based event recognition

approach to describe and recognize video activities. The
proposed approach allows flexible modeling of activities
and manages the uncertainty of recognition. We have de-
tailed the conditional probability estimation of activities as
a Bayesian process. We have presented how we manage



Figure 4. Illustration of the Etiseo activity detection.

Algorithm GT % R FP FN
Approach [25]

MatchingSheetssActivity 31 38 0 19
Proposed algorithm
MatchingSheetssActivity 31 58 1 13

Table 3. Comparison of recognition rate (% R), the false positive
(FP) and the false negative (FN) of the proposed algorithm with
the state of the art algorithm. The ground truth GT correspond to
31 videos sequences (12(±5) min, 8 fps)

low level uncertainty at the level of event modeling and
at the level of event recognition. The proposed approach
recognizes successfully activities of real world videos. We
have finally compared our approach with the state of the
art showing how the fexible modeling and the probabilistic
reasoning can improve the results of real-time event recog-
nition.
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