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Abstract

This paper focuses on ensemble classifiers for pedestrian
detection. Ensemble learning is widely used in this field for
context disambiguation or via a cascade-of-rejectors. How-
ever, applying the typical, parallel, instance of it remains
disappointing in most cases. Our work studies the mecha-
nisms that hinder the efficiency of ensemble classifiers for
pedestrian detection, and, based on our findings, we intro-
duce a structured classifier ensemble that improves perfor-
mance without loss of speed. We also harness this principle
for context disambiguation via the application of a regres-
sor to pedestrian detection. Experiments on the INRIA and
Caltech-USA datasets validate the approach.

1. Introduction
Despite the constant advent descriptor efficiency, single

classifiers can only help distinguish pedestrians from the
vast amount of possible negative samples to some extent.
In particular when faced with small or blurry detections,
and cluttered scenes, the amount of available information
one can harness for this task gets scarce or the proportion of
outliers is important. [6, 39] further confirmed the impact of
this shortcoming on object detectors (for gradient features
only).

Therefore, to compensate for the inability of individual
classifiers under these circumstances, one can consider the
usage of ensemble classifiers, each component classifiers
dealing with a lower variability of data. So far, classifier
ensembles have been used for pedestrian detection in two
cases: cascade-of-rejectors and context enhancement.
The cascade-of-rejectors [5, 38] is a widely used technique

that consists of successive classifiers that iteratively filter
out more complex negative samples. The second type of
method uses context information to disambiguate appear-
ance inputs between pedestrian and the background. This
term covers common sense arrangement of things that we
all learned through experience. For instance, ”the sky is
above pedestrians” or ”a pedestrian cannot have the size of
a car tire”. The computer vision learning of this objects and
things coherent composition is based on interactions among

Figure 1: Difference between a typical classifier (left) and a classifier based
on regressor (right): A regressor give an estimate of the detection position.
The analyzed detection is in red. The confidence value associated to each
detection is displayed next to the bounding box. Best viewed in color.

objects [24, 16], or scene statistics [14, 28, 2].
However, only few approaches [6, 33, 34, 22] learn it with-

out use of pre-defined rules or database knowledge, and,
despite the clear need for a more generic usage of classi-
fier ensembles for pedestrian detection, most of them show
a performance increase with simple features only and at the
cost of significant extra computation.
This work gives a first answer to these moderate state-of-

the-art results. We highlight that the necessary partitioning
of the original training set on which the component clas-
sifiers are trained reduces their performance accordingly.
As a consequence, we introduce a new structured ensemble
learning to tackle this issue. Our algorithm expands each
component classifier training set to deal with the data short-
age issue and runs at the same speed as a typical cascade-
of-rejectors.

We also propose an automatic context learning method
based on a regressor [41]. A regressor is an ensemble of
classifiers learnt with a predefined offset from the optimal
object position. Therefore, each component classifier pro-
vides an estimate of the detection position instead of a sim-
ple binary Yes/No answer. As such, a bunch of them offer
an automatic way to identify confusing candidates and in-
corporate them in the training set to optimize detector capa-
bilities. Figure 1 illustrates this idea.

To summarize, our contribution is two-fold. First, the
upgrade of the classifier cascade into a structured classi-
fier ensemble that improves performance without loss of
speed. Second, the use of a regressor for pedestrian detec-
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tion within a Bayesian network to disambiguate false from
true positives and give a better localization of the laters.

The rest of this paper is organized as follows. Section 2
reviews the related work while Section 3 gives an overview
of our pedestrian detector pipeline. Section 4 and 5 respec-
tively motivate and detail our classifier ensemble approach
and the use of a regressor for pedestrian detection. Section
6 proves their efficacy through experimentation. Section 7
presents our conclusion and future directions.

2. Related Work
Ensemble classifiers can broadly be broadly categorized

in three groups: serial- or cascade-classifiers, parallel-
classifiers, and mixed- or structured-classifiers.

Serial classifiers are also called cascade-of-rejectors
[5, 38]. The cascade-of-rejectors is an efficient strategy for
sieving out a large proportion of false positives. Despite
its improved performance, tuning this cascade of classifiers
remains problematic. First, the classifiers are prone to er-
rors that propagate along the cascade. Second, most au-
thors employing this technique solely reject negative data
after each classification step to avoid the creation of clas-
sifiers likely to reject positive data during the subsequent
stages, therefore leading to progressively more imbalanced
datasets. Fine tuning of the original positive versus negative
instances ratio is usually necessary to obtain satisfactory re-
sults. But balancing the dataset is proved [44] to be the best
performing strategy. To deal with these issues [15] proposes
a two-stage classification: The first one aims for a high re-
call whereas the second one focuses on precision.
Parallel classifiers combine a set of classifiers, called weak

classifiers into a more accurate strong classifier. They heav-
ily rely on two factors: The selection of appropriate subsets
of data on which to build the weak classifiers and the type
of strong classifier utilized [30, 29]. Its use for pedestrian
detection has so far mostly been restricted to context disam-
biguation via the integration of pre-defined rules or database
knowledge. The first one consists of semi-supervised user-
identification of disturbing elements, such as crowds [24] or
cars [16] that are further integrated in the training process
thanks to independent classifiers. The second type relies
on perspective information like the integration of ground
plane information, either through direct hyperplane estima-
tion [14, 28], the use of stixels [2], or occlusion detection
mechanism based on ensemble learning [21]. See [13] for a
review of context based techniques for object detection.

So far, few methods [22] automatically learn the im-
plicit relations between pedestrians and their various envi-
ronments. [6] simply added some background pixels around
the detection window. [33] proposed an efficient regression
technique based on background patches to model proba-
bilistic priors for pedestrian locations. [34] designed the
Local Response Context (LRC) that concatenates detections

around the window of interest in a single descriptor and uti-
lizes partial least square to determine each component re-
spective importance for classification. Therefore, parallel
ensemble classifiers do not offer better performance than
the cascade-of-rejectors whilst the necessary test of all clas-
sifier for any pedestrian proposal make them computation-
ally slower.

Structured classifiers can be viewed as a combination of
the previous two techniques. The pedestrian detector is de-
composed of several successive stages, each one of them
making use of several parallel classifiers. To the best of our
knowledge, few papers fall into this category. [43] proposed
a tree-structured set of classifiers, but their limited training
data, outdated Haar features and home-made dataset doesn’t
make the comparison with current methods meaningful.

3. Method pipeline
Our training protocol, illustrated in figure 2, extends a

cascade-of-rejectors of n classifiers into a structure ensem-
ble of classifier featuring k classifiers at each stage of the
cascade. In addition, each independent classifier is learnt
through bootstrapping [6, 12] to improve performance. The
issue of imbalance between the positive and negative data
that stems from the use of the cascade is solved by integrat-
ing the FairTrain [35] training set generation protocol in our
pipeline. Given a dataset D, and its subsets of positive and
negative data Pos(D) and Neg(D), this methodology aims
to enforce the following constraint for all classifier training
sets: |Pos(D)| = |Neg(D)| (1)
More practically, it decomposes in two distinct parts: The
initial training set generation and the classifiers training.
First, the initial training set generation carefully selects data
from a set of images while balancing negative and positive
sample cardinalities. And then, the key aspect being to re-
spect the constraint (1) all along the cascade, the minority
class is oversampled at each stage. See [35, 36] for de-
tails on FairTrain. The regressor is applied at the end to
prune out the hardest false positives. Its use as final classi-
fier greatly limits the extra computation cost it may induce.

4. Classifier ensemble
This section describes the ensemble of k classifiers uti-

lized at each stage of the cascade during the training and
testing phases.
The main hypothesis motivating the training of our parallel

classifiers (and demonstrated in the results section) is that
there are two important factors that drive the effectiveness
E of parallel ensemble classifiers within the field of pedes-
trian detection: The number k of component classifiers and
the average amount of training data |S| associated to each
one of them. Clustering the training set with a higher num-
ber of partitions k should theoretically improve the results,
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Figure 2: Ensemble classifier pipeline. Training pipeline. The initial training set generation selects data while balancing negative and positive sample
cardinalities. A cascade of classifiers is then trained on it, each stage being composed of k parallel classifiers learnt through bootstrapping. balanced positive
and negative sets is sought all along the cascade. Regressor classification is then applied. Each circle surface is proportional to the sets cardinality that it
represents. Best viewed in color.

Figure 3: Toy example of data partitioning according to 3 clusters. Positive data are in red; negative ones in blue. The dashed circles represent the belonging
to a given cluster and their centroid is depicted with a cross of the same color. Data points may belong to several clusters, leading to overlapping circles.
Clusters may also be divided, leading to several circles of the same color. Best viewed in color.

but it also yields smaller partitions, and the lack of training
data is detrimental to classifier performance. Therefore, this
typical strategy leads to the following paradox: To increase
E implies increasing k which implies reducing |S| which di-
minishes E.
To tackle the issue, we augment the cluster cardinalities

in several ways. We first adjust the parameters accordingly.
We tune the initial dataset size up to 350K samples and limit
the data loss from one stage of the cascade to another to
20%. Further expanding the initial dataset or reducing the
shrinking factor beyond this point have no influence on the
performance. Then, we adopt the subset creation strategy
illustrated in figure 3:

1. The negative data are divided in k subsets according
to a partitioning algorithm like k-means [26] or k-medoids
[17]. Given a distance function d(.), the hard-coding vari-
ants of these methods typically partition data in k clusters
represented with centroids µ and associates each datum xi

to one of them:
µ =

1

|C|
∑

xi∈C;i=1...|C|

xi (2)

∀x ∈ Ci,∀µj , d(x, µi) ≤ d(x, µj) (3)

2. We comply with the rule (1): For each cluster, the clos-
ests positive data are included until a balance between pos-
itive and negative data is reached. The centroids are reposi-
tioned accordingly.

3. The Ω percent closest data points are added to the clus-
ters to compensate for the training set shrink. The centroids
are repositioned accordingly.
4. (Optionally) For each cluster, the closest data are added

or removed to equalize the cardinality among them while
respecting the constraint (1).

This strategy allows us to extract meaningful data parti-
tions for training while keeping them populated enough to
be discriminative. It first focusses on negative data in step 1
where the bulk of the data variability stands before to equal-
ize the labels and inflate the clusters. It has the following
noticeable properties:
1. One datum may belong to several clusters, leading to

overlapping clusters.
2. Clusters may also be divided after step 2 depending on

the position of the closest positive data.
3. The condition (3) is not valid anymore after step 2-3.
4. Setting k = 1 boils down to running a typical cascade-

of-rejectors.
5. Only applying the step 1. on positive and negative data

is the vanilla data clustering.
Let µcli be the centroids associated to a classifier cli and
inversely clµi the classifier associated to the centroid µi.
During the testing phase, each new pedestrian proposal p

is first associated to its closest centroid

µ(p) = µi|d(µi, p) ≤ d(µj , p)∀j ∈ [1...k] (4)

3
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Figure 4: Regressor usage for pedestrian detection. The analyzed detec-
tion is in red, neighboring ones are in white. To each bounding box is
associated its maximal confidence value and its corresponding regressor
classifier (depicted by an arrow). Positive sample detections are reinforced
by local detection displacement information (a.). Negative examples lead
to low confidence scores (b.) or inconsistent positions (c.).

and only evaluated according to its associated classifier
P (p) = clµi

(p). This strategy leads to the use of only
one classifier at each stage of the cascade no matter what
the value of k is. Therefore, the computation time of our
structured ensemble classifier remains the same as a stan-
dard cascade-of-rejectors.

5. Regressor

A regressor (not to be confused with mathematical re-
gression) is a powerful tool for object detection related
tasks. It was first introduced in [41], and has mostly been
used for object tracking [41, 31]. [33] employed a some-
what similar strategy to model pedestrian background and
locate them in accordance to common landmarks (at the
base of a building, on a road...) but they modelled back-
ground and pedestrian separately.
During regressor training, samples labelled with displace-

ments from the target object (∆x,∆y) are provided. Dur-
ing testing, unknown sample appearance is used to infer a
possible nearby object position. Therefore, a regressor pro-
vides information about an object position instead of its sole
occurrence. For example, given a regressor trained on ex-
amples labelled within the [(5, -5); (5, 5)] range, testing a
sample located (-2,4) pixels away from the true target loca-
tion will return (-2,4). This contrasts with typical classifiers
outputting a binary Yes/No answer. This principle is illus-
trated in figure 1. The combination of local surrounding
displacements may also indirectly model related deforma-
tions.

We apply this idea to pedestrian detection by consider-
ing the regressor as an ensemble of classifiers. Given m
regressor classifiers trained on m surrounding positions of
the ground truth detection, we treat each regressor classifier
applied to one of the m positions as a weak classifier. The
strong classifier is obtained by fusing their m × m scores
through a bayesian network.

More specifically, training is achieved by learning
the set S of m classifiers C(∆x,∆y) within the range

[(−X,−Y ); (X,Y )]. Each classifier C(∆x,∆y) estimates
the confidence of a pedestrian to be located (−∆x,−∆y)
pixels away from any given location (x, y). They are trained
with positive data shifted with a corresponding displace-
ment (∆x,∆y) from the ground truth location, and the
closest negative samples augmented with the m possible
displaced data. The height and width of these augmented
data remain the same as their original data. Note that
S = {(0, 0)} trains a vanilla classifier. During testing, each
candidate is augmented by a set D of m nearby locations
within the predetermined range [(−X,−Y ); (X,Y )]. Their
local appearance descriptor is extracted and each classifier
is tested on it. This yields a score matrix C of [m posi-
tions × m classifiers] for each candidate. We then utilize a
Bayesian network to fuse the outcome of each classifier into
one single confidence value. Be C(∆x,∆y, x, y) the out-
put of the classifier with displacement (∆x,∆y) on position
(x, y). We first calculate the probability of a pedestrian to
be located at each position P(i,j) as the combination of the
classifiers indicating this position:

P (i, j) =
∏

(∆x,∆y)∈S

(x,y)∈D

(∆x,∆y)+(x,y)=(i,j)

C(∆x,∆y, x, y) (5)

This probability is eventually normalized to insure the
same number of classifier involved at each position (i,j). We
then relocate the analyzed candidate (x,y) to its most confi-
dent location (xmax, ymax) such that

P (xmax, ymax) = max(i,j)∈DP (i, j) (6)

with new confidence value:

C(x, y) =
max(i,j)∈DP (i, j)∑

(i,j)∈D P (i, j)
(7)

It is assumed that, in the occurrence of negative samples,
either most of the classifiers will display a low confidence,
either no clear consensus on its position will arise, as shown
in figures 4.b. and 4.c.

To limit the computation cost, the regressor is only used
as final ensemble-classifier of the cascade, to tell apart true
from false positives. A key parameter is the displacement
(∆x,∆y) at which classifiers are learned. A too small
translation will lead to classifier appearances similar to the
main candidate one and further confusions. On the contrary,
a big offset will create an unreliable appearance model, cov-
ering too much background. The number of classifiers and
positions m also influence precision and processing time.

6. Experiments

This section presents the datasets and the experimental
setup details, and compares our work to the state-of-the-art.
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6.1. Evaluation protocol

Candidates are selected using a multi-scale sliding win-
dow approach [48] with a stride of 4 pixels. Approximately
60% are loosely filtered according to ”edgeness” and sym-
metry. No background subtraction or motion features are
employed on the Caltech dataset.

The training set size is up-bounded at 12K samples. In-
creasing this threshold doesn’t improve performance. No
generative resampling is performed. The validation set in-
cludes 350K samples for all experiments. The model height
is set to 120 pixels for the INRIA dataset, 100 pixels for
Caltech.

Following the standard parametrisation [35, 36], we
trained a cascade of 6 Adaboost classifiers, with a tree depth
of 2, and a constant threshold of 0.54. We utilised the
openCV implementation for the Adaboost classifiers. Best
performance is obtained with 256 weak classifiers, each ex-
tra run adding 64 weak classifiers.

We use the threshold variant of non-maximum suppres-
sion (t-NMS) [4]. We set the overlap threshold to 0.5 and
d = 3 for all our experiments. Log-Average Miss Rate
(LAMR) [25] is employed as metric for all runs.
Pedestrian candidates are described with the LBP-Channel

features [37], using the full setting for all our-experiments:
For each detection proposal window, the LBP descriptor
blocks are spaced out over 8×16 positions along the x and y
axis, leading to 128 different possible positions. The possi-
ble filter dimensions wj and hk is restricted to 2W/7, with
W the detection window width. In addition to that, filters
covering the head, the torso, the legs and the entire body
are extracted based on edge templates [46]. With this set-
ting, 133 filters, totalling 1596 feature values, are extracted
per channel. L1 square block as well as L2 full histogram
normalisation are performed in every case. We employed
{(1,1); (1,2); (2,1); (2,2); (1,3); (3,1); (4,4)} as cell dimen-
sions and the following 3 channels: graylevel intensities I ,
gradient magnitude M , gradient along x and y axis Gx and
Gy , as well as the L color channel of the Luv color space.
We experimented on the INRIA [6] and Caltech-USA [10]

datasets.

6.2. Comparison with the stateoftheart

Comparison with the state-of-the-art is presented in ta-
ble 1. For fair comparison, methods using optical flow fea-
tures [47], are reported without optical flow or left out of
this evaluation. We used the {k = 9;Ω = 100%;∆ =
50%;m = 8} parameter set for these experiments.

While running at a similar speed, our multi-classifiers
method greatly outperforms the common classifier-
ensemble pedestrian detectors [24, 16, 21], scoring respec-
tively 13.2% and 35.8% log average miss rate on the IN-
RIA and Caltech datasets. Overall, our method ranks on par

or better compared to state-of-the-art pedestrian descriptors
in terms of performance/speed ratio, except for [45]. The
improvement of using our structured classifiers and regres-
sor method over the LBP-channels [37] is 1.1% on the IN-
RIA dataset and 3.3% on the Caltech dataset. Deep learning
technique [19, 32] often perform better but are slower. The
regressor gives better results on the Caltech dataset, which
is sensible since, compared to the higher variation INRIA
dataset, this benchmark always deals with the same kind
of scenery and always features the same contextual outliers
(car, signs, newspaper boxes...).

As a reference, on the Caltech dataset, the classifier
training takes 34 hours on one core to learn 18 classifiers
(k = 3), and 51 hours for 30 classifiers (k = 6) but with
the appropriate memory resources, the process can easily
be parallelised. If the training of so many classifiers is long,
the detector speed at testing time remains the same as for
a cascade of single-classifiers. Our detector test speed is,
of course, largely influenced by the descriptor parameters,
which are the number of filters and channels.

7. Conclusion
This work stressed out an classifier ensemble paradox:

To increase parallel classifier efficiency implies increasing
the number of weak classfiers which implies reducing the
cardinality of each weak classifier set which diminishes
parallel classifier efficiency. Through the design of a new
structured cascade-of-rejectors, and introducing the regres-
sor to human classification, this work tackles this issue and
demonstrates that ensemble classifiers can be a useful assis-
tance to the community for the pedestrian detection task.
The next stage is, of course, the application of this method-

ology to CNN features. Also, more experiments are re-
quired to clearly study the appropriate selection of data for
parallel classifiers.
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INRIA
Method LAMR Speed(CPU/GPU)
HoG [6] 46% 0.5fps
HoG-LBP [40] 39% Not provided
MultiFeatures [42] 36% < 1fps
FeatSynth [1] 31% < 1fps
Channel Features [8] 21% 0.5fps
FPDW [7] 21% 2-5fps
DPM [11] 20% < 1fps
Occlusion handling [21] 19.13% Not provided
RF local experts [20] 15.4% 3fps
PCA-CNN [18] 14.24% < 0.1fps
CrossTalk cascades [9] 18.98% 30-60fps
VeryFast [3] 18% 8/135fps
FairTrain+LBP [35] 17.8% 3.7/54fps
WordChannels [5] 17% 0.5/8fps
SSD [19] 15% 56fps
LBP-channels [37] 14.3% 0.55/8fps
structured cascade 13.3% 0.55/8fps
regressor 13.9% 0.51/7.5fps
struct cascade+regressor 13.2% 0.51/7.5fps
FRCNN [32] 13% 7fps
RPN+PF [45] 7% 6fps

CALTECH
Method LAMR Speed(CPU/GPU)
HoG [6] 69% 0.5fps
DPM [11] 63.26% < 1fps
FPDW [7] 57.4% 2-5fps
Channel Features [8] 56.34% 0.5fps
multi-classifier [24] 43% < 1fps
MT-DPM [16] 41% < 1fps
JointDeep [23] 39.32% < 1fps
MT-DPM + context [16] 38% < 1fps
InformedHaar [46] 34.6% < 0.63fps
Spatial pooling [27] 29.2% < 1fps
Checkboards [47] 24.4% < 1fps
FRCNN [32] 56% 7fps
CrossTalk cascades [9] 53.88% 30-60fps
FairTrain+HoG [35] 45.4% 3.9/58fps
WordChannels [5] 42.3% 0.5/8fps
LBP-channels [37] 39.1% 0.55/8fps
structured cascade 36.5% 0.55/8fps
regressor 37.7% 0.51/7.5fps
struct cascade+regressor 35.8% 0.51/7.5fps
SSD [19] 34% 56fps
RPN+PF [45] 10% 6fps

Table 1: Comparison
with the state-of-the-art.
Near real-time methods
are separated from
others. Ours is in
bold. Deep learning
techniques are in red.
Computation times are
calculated according
to 640×480 resolution
frames. The used metric
is the log-average miss
rate (the lower the
better). Best viewed in
color.
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