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Abstract

This paper introduces a new channel descriptor for
pedestrian detection. This type of descriptor usually selects
a set of one-valued filters within the enormous set of all pos-
sible filters for improved efficiency. The main claim under-
pinning this paper is that the recent works on channel-based
features restrict the filter space search, therefore bringing
along the obsolescence of one-valued filter representation.
To prove our claim, we introduce a 12-valued filter repre-
sentation based on local binary patterns. Indeed, various
improvements now allow for this texture feature to provide a
very discriminative, yet compact descriptor. Filter selection
boasting new combination restrictions as well as a reverse
selection process are also presented to choose the best fil-
ters. experiments on the INRIA and Caltech-USA datasets
validate the approach.

1. Introduction
With the rise of automotive, the growing need for

behaviour-oriented surveillance and home-monitoring ap-
plications, pedestrian detection is one of the computer vi-
sion hot topics.
With over a third [5] of the pedestrian literature dedicated

to it, features largely contributed to the progresses in the
field. Integral channel features [14] are one of the key-
stones of this long, bumpy road. In their original work,
the authors employs integral images to integrate many cues,
such as gradients and colour. Each of these cue is dubbed
a channel. The final descriptor is obtained by convolv-
ing a set of patches (named filters) with the different cues.
By summarizing a swarm of channel region information,
it provides a robust and compact descriptor. Due to their
efficiency and reasonable detection time, channel features
quickly became a reference. Over the years, many exten-
sions were proposed, in terms of either speed [13] or per-
formance [11, 5, 52, 24, 28, 54].
In all these works, the response of one filter region is sum-

marized with one value, by averaging or subtracting means.
Despite their low discriminative power, one-valued filters

were originally chosen to explore more deeply the huge
amount of possible filters and select the best performing
ones. Indeed, the memory consumption bounds the process
and the size of the full descriptor is the number of filters
times their response size. So, the bigger the full filter re-
sponse will be, the harder it will be to search the feature
space for the discriminative filters. On the other hand, indi-
vidual filter responses would be more discriminative if char-
acterized by more values. Moreover, since channel features
were first introduced, heuristics [52, 5, 24, 28] have been
brought up to narrow down the filter search space.
Therefore, in this paper, we propose to study the trade-off

between these two factors and to show through the introduc-
tion of a new channel descriptor that several-valued filters
can now reliably be extracted.
This new LBP-based channel descriptor outperforms chan-

nel features [14] while requiring a fraction of the original
LBP memory footprint. Uniform patterns [29] and Haar-
based LBP [10] are employed to shrink the filter dimension
in accordance to our needs. Also, cell stacking and new fil-
ter combination restriction based on proposal window cov-
erage are successfully applied. Finally, a more reliable fea-
ture selection technique is introduced. Experiments on two
major pedestrian detection datasets demonstrate the robust-
ness and discriminative power of our LBP-channel descrip-
tor compared to the state-of-art.
Our contribution is 2-fold:

• The introduction of LBP-based feature channels. This
descriptor is one-of-a-kind in several respects. Its size
is drastically reduced via the use of uniform patterns
[29] and Haar-like descriptors [10]. Moreover, the us-
age of stacked cell sizes confers to the descriptor an
increased discrimination power without changing its
overall size.

• We introduce reversed feature selection to construct
a lower dimension final descriptor without harming
its discriminability. Also, new coverage-based restric-
tions of filter combination allow for a sharper search.

The rest of this paper is organized as follows. Section
2 reviews the related work. Section 3 describes in details



the LBP-channel feature while section 4 proves its efficacy
through experimentation. Section 5 concludes this docu-
ment.

2. Related Work
Since the Viola and Jones first pedestrian detector

[34], the most blatant progresses in pedestrian detection
concerns features. HoGs [12] are arguably the most promi-
nent. These gradient based descriptors, densely extracted
over the image at several scales are fast to compute and
particularly discriminative for the human detection task.
While the bulk of the literature uses this landmark feature,
other noticeable work has been produced.
Another section of the literature focuses on adding extra,

complementary features to the original HoG ones. In par-
ticular, the combination with colour is the first choice. Luv
colour patches [16] self-similarity on colour channels [45]
have been proposed, leading to substantial improvement.
The addition of flow features [45, 36, 54] has also shown
success.

More recently, [14] proposed integral channel features.
This approach integrates many cues, like colour or gradi-
ents, within integral images, and describes any pedestrian
proposal with a swarm of convolved patch regions (named
filters) over these cues. Due to its success, this efficient
descriptor had many extensions. [13] improved its speed
considerably, [11] quantized the outcome of each filter
therefore reducing the final descriptor size while increasing
its summarization capabilities. Significant work also
focussed on selecting the best filters among the plethora
of possibilities. [5] used square filters, [52] combined
it with Haar-type filters and cleverly derived their filters
from pedestrian body parts templates to reduce the filter
search space. Correlation filters [24] efficiently dealt with
correlations in the frequency domain whereas [28] learnt
the filter bank as the base of a PCA over the training set.

Another recent class of approach [50, 26, 31, 1, 51, 8]
extracts features through the training of a deep neural
network. the significant performance increase that the
resulting features provide has led a drastic shift in the field
toward this deep learning approaches. In this domain as
well, researchers enforce contextual features learning in a
semi-supervised way. [50] use a set of activation maps to
learn each layer’s features. [26] train a Restricted Boltz-
mann Machine providing both, images and corresponding
labels as observed variables in a supervised manner.
Finally, [31], independently define and learn 4 distinct
pedestrian detection components: feature extraction, de-
formation handling, occlusion handling and classification.
Ensemble learning has also been harnessed to guide the
technique toward more meaningful features. Cascade of
deep networks [1], bootstrapped boosted forests [51] and a
pool of both, hand-crafted and CNN features [8] have been

employed for this purpose.

3. LBP-based channel extraction
This section describes how our LBP-channel descrip-

tor is extracted. We first recall the basics of the LBP de-
scriptor and its variants before explaining how we adjust
it to the specificities of channel-structured pedestrian de-
scription. Finally, the last subsection details our feature se-
lection methodology that minimizes the performance loss
while shrinking the descriptor size.

3.1. LBP descriptor

Local Binary Patterns are binary descriptors stemming
from texture analysis [38]. Despite their high memory im-
pact they became a state-of-the-art descriptor for pedestrian
detection [46, 38] due to their fast calculation and their good
performance for this task. Also, their ability to characterize
texture makes them complementary to the HoG edge de-
scriptor [46].
The LBP descriptor encapsulates the local intensity varia-

tions within the region to describe. Each local binary pat-
tern, in the original descriptor, quantizes the intensity val-
ues within regions {r} of 3×3 cells, comparing the 8 border
cells intensity values to the center one:

LBP (r) =
∑

i=1...8

S(I(C0)− I(Ci))2
i

S(x) =

{
1 if |x| > T

0 otherwise

(1)

with T a noise filtering threshold and I(C) the average
intensity over the cell C. The 8-bit pattern is then trans-
formed into a decimal by binomial weighting. Similarly to
HoG [12], an histogram represents the LBP pattern frequen-
cies within a block regions b:

h(i) =
∑

r∈b and LBP (r)=i

1 (2)

and the final descriptor concatenates all the histograms
computed over a grid of blocks. The original L1-square
block normalization works best for most of the applications
but is seldomly outperformed by the L2-norm [20].

This original descriptor has been improved in several re-
spects since its introduction in computer vision problems.
In order to extend the discrimination power of the descriptor
[40] extended the LBP to 3-values code. This local trinary
pattern (LTP) is respectively quantized to +1 or -1 depend-
ing on whether the compared pixel intensities are above or
below T ; its value remains 0 otherwise.

Memory consumption easily becomes large since there



are 256 possible values for a typical 8-bit pattern, there-
fore leading to 256-valued block histograms. Important
work has been achieved in reducing the number of avail-
able patterns without loss of discrimination. [29] stated that
most patterns occurring in natural images have at most two
transitions within their 8 values. They restricted the pat-
tern extraction to this LBP subset that they called uniform
patterns. [20] further reduced the number of available pat-
terns power by considering inverse patterns (with the excep-
tions of the informative 00000000 and 11111111 patterns)
identical. In [49], authors choose to decompose the neigh-
borhood in two sets: diagonal and horizontal plus vertical
comparisons. Each of these 4-valued components has only
16 possible values. They then build the two much smaller
histograms separately and concatenate them, for a total of
32 values. This strategy allows for a much more compact
descriptor with little loss of discriminability.
Inner LBP possible comparisons are not limited to the dif-

ferences with the center cell. A significant number of al-
ternate neighborhood topologies have been explored, their
efficiency depending on the application tested on. Center-
symmetric [55, 21] patterns highlight symmetry, center-
surround patterns [41] deal with their neighborhood out-
skirts and direction. Finally, [22] combined several of them.
The original LBP cell size is 1×1 pixels. We found few au-

thors experimenting with different cell sizes [20], and none
actually stacking the information of several cell sizes within
the block histograms.

LBP-channel descriptors have also been proposed. [22]
explored it with a variety of color and contrast channels, as
well as different topologies. Their use however provided
a limited success compared to channel features [14] as the
amount of channels and topologies they could search was
limited by the high memory size of the descriptor. This
shortcoming was emphasized by the high sparsity of the
initial descriptor and a fixed block grid topology. mCEN-
TRIST [49] is another multi-channel LBP-based descriptor
that tried to capture the complementary information across
channels.

3.2. LBPchannel descriptor

This work gets down to developing a light-weight, al-
though more discriminative, channel-based LBP descriptor.
Its extraction pipeline is presented in figure 2. As the LBP
large memory size impacts the feature exploration capaci-
ties, several actions are undertaken to shrink the possible
number of patterns. First, we use the Haar-like descriptors
[10] topology to LBPs. The feature is composed of 4 cells
of size (w, h) instead of the 9 original LBP cells. The
feature is then calculated as the concatenated quantization
between all adjacent vertical and horizontal cells:

Figure 1: Haar−LBP pattern divided in 4 cells. The arrows
depict the 4 operation used to computer the Haar-LBP de-
scriptor.

Figure 2: LBP Channel features pipeline.

HLBP (r) =
∑

q=0...3

S(I(Ci)− I(Cj))2
q

S(x) =

{
1 if |x| > T

0 otherwise

(3)

With only 16 possible patterns, this more compact repre-
sentation allows for a lower memory footprint. This type of
topology also allows smaller regions (with a minimal size
of 2 × 2 pixels), making it a better fit to characterize small
pedestrian proposals. Uniform pattern [29] restrictions are
systematically applied to further reduce the number of pos-
sible patterns to 12, therefore producing a descriptor of di-
mensionality similar to HoG [12].

We also substantially improved the descriptor robustness
by stacking the frequencies of cells Ci with various dimen-
sions within the block histograms. A block histogram bin
value is then defined as:

h(i) =
∑

i=0...n

( ∑
rCi ∈ b

and HLBP (rCi) = i

1

)
(4)

As shown in the experiment section, this modification



Figure 3: Training pipeline. The initial
training set generation selects data while
balancing negative and positive sample car-
dinalities. A cascade of classifiers is then
trained on it, each independent classifier be-
ing learnt through bootstrapping. balanced
positive and negative sets is sought all along
the cascade. Each circle surface is propor-
tional to the set’s cardinality that it repre-
sents.

deals efficiently with the pattern deformations within
each block, therefore reinforcing the overall descriptor
robustness.

For each channel, the feature is computed on a lattice of
blocks. An histogram of pattern frequencies is further cal-
culated for each block. All the block histograms are finally
concatenated to form the final descriptor. The best results
are obtained by performing a L1 square normalization on
blocks and a L2-normalization on the final histogram.

3.3. Training protocol

Training is performed according to the FairTrain [42]
training set generation protocol. The methodology, illus-
trated in figure 3, decomposes in two distinct parts: The
initial training set generation and the classifier training.
The initial training set generation carefully selects data
from a set of images while balancing negative and positive
sample cardinalities. We then train a cascade of 1 to n clas-
sifiers. This cascade could include a cascade-of-rejectors
[11, 56, 6, 39, 44], a soft cascade [30], or both. In addition,
each independent classifier is learnt through bootstrapping
[12, 19] to improve performance. One key aspect is to seek
balanced positive and negative sets at all time. Hence, all
along the cascade, the minority class is oversampled to
create balanced positive and negative sets. See [42, 43] for
details.

3.4. Reversed feature selection

Filters are determined according to a pre-defined dense
lattice of regularly spaced positions {(xi, yi)}, as well as
sets of width {wj} and heights {hk}. The filter set is
the combination of all possible positions and dimensions
{[(xi, yi), wj , hk]} with respect to a 3/1 or higher aspect ra-
tio.
To search this vast amount of possible filter positions and

dimensions {[(xi, yi), wj , hk]} is a complex, often under-
optimal task, and experience has shown that heuristics
[52, 5, 24, 28] can help narrow down this search to the
most discriminant ones. One key insight in this paper is
drown from the following observation: The retained filter
set always covers over 95% of the proposal window sur-
face. Hence, To drastically restrict the possible number of
filter combination to explore, we enforce a filter repartition
across the positions {(xi, yi)}. More precisely, with |N |
and |P | respectively being the desired number of filters and
the number of positions, the amount of filters extracted per
position is within the range [1, (|N |/|P |) + 2].

Filters are typically selected using the soft cascade [30].
This algorithm trains a cascade of n classifiers Ci, each of
them being trained by adding the best filter to the feature
set. In this paper, we claim that, despite its efficiency, the
soft cascade is intrinsically flawed [43]. Indeed, classifiers
with few descriptor values lack robustness and adding iter-
atively the best features may lead to an under-optimal final
descriptor as the combination of features might be more im-
portant than their individual efficiency. So, in this work, we
instead optimize for the best filter combination. To this end,
we build the soft cascade in a reverse way. Let’s define F
and Ni as, respectively, the full filter set and the retained
filter set for classifier i. We first train the final classifier
harnessing Nn filters and iteratively train the previous clas-
sifiers by reducing the retained filter set |Ni−1| = |Ni|/2
and updating the full set F = Ni.

When training each classifier Ci, the best filter combina-
tion Ni is determined through an expectation-maximisation
(EM) algorithm. Weights, initialized equal, are associated
to each filter. At each EM iteration it E-step, the used filter
set N it

i is determined as a weighted draw without replace-
ment over the full filter set F . During the M-step, a clas-
sifier is trained on these features and validated on a third
party set. The weights of the tested filters are then updated
according to the classification score. For a given iteration,



a filter’s weight is then the average classifier performance
over all the past runs for which it was selected:

W (xi) =

 ∑
Sx=[it|x∈Nit

i ]

score(Cit
i )

 /|Sx| (5)

Unlike the soft-cascade that selects features one by one,
this algorithm selects them ”as a all” and, as shown in the
experiment section, leads to more robust feature selection.
Pseudo-code 1 details the algorithm mechanism.

Data: - A full set of filters S
- The desired number of filters to retain N
- The number of classifiers n in the cascade
Result: trained classifiers Ci and selected filter Ni

for i=1...n
determine the filter set S;
|Nn| ← N ;
// Reverse training of n classifiers.
for i=n; i>0; i– do

Ni ← EM train(Ci, Ni, F );
|Ni−1| ← |Ni|/2;
F ← Ni;

end
// E-M training of classifiers Ci for |Ni| filters with

filter set F .
Function EM train(Ci, Ni, F )

Set weights to 1;
for j=n; j<#It; j++ do

// E-step
Ni← draw filters(F , Ni, W );
score← train(Ci, Ni);
// M-step
update weights(score, W );

end
return Ni;

Algorithm 1: Reverse filter selection algorithm.

implementation details: Compared to soft-cascade
training, where each cascade stage adds one feature to the
feature pool, our approach trains many full-feature size de-
scriptor, which is time consuming and wouldn’t be track-
table on large datasets. So, to speed-up the EM-process,
the first iterations are trained with a limited number of trees
and bootstrapping data addition and these two parameters
are quadratically increased along the iterations until the de-
sired number of trees and data addition is reached for the
last iterations. More specifically, these parameters are mul-
tiplied by (j/#It)2, with j the current iteration and #It the
total number of iterations. Moreover, the process is multi-
threaded for further boost. All these improvements acceler-
ate the algorithm by 2 order of magnitude.

4. Experiments
This section, dedicated to our experimental validation,

breaks down into several sub-parts. After presenting the
datasets and the experimental setup details, we run individ-
ual experiments on the LBP-channel main parameters. The
last part compares our work to the state-of-the-art.

4.1. Datasets

We experimented on the INRIA and Caltech-USA
datasets. The INRIA [12] features high resolution pictures
mostly gleaned from holidays photos. The training set con-
sists of 2416 cropped positive instances from 614 images
and 1218 images free of persons. The test set contains 1132
positive instances from 288 images and 453 person free im-
ages for testing purposes. This is among the most widely
used dataset for person detector validation and compara-
tive performance analysis. Despite its small size compared
to more recent benchmarks, the INRIA dataset boasts high
quality annotations and a large variety of angles, scenes, and
backgrounds.

The Caltech-USA [17] dataset consists of 2.3 hours of
video recorded at 30fps from a vehicle driving various Los
Angeles streets. It totals 350000 images and 1900 unique
individual pedestrians, 300 large groups, and 110 hard to
distinguish pedestrians. Despite some annotation errors
[53], its large size along with crowded environments, tiny
pedestrians (as low as 20 pixels), and numerous occlusions
probably make the Caltech-USA dataset the most widely
used one. Annotations allow to experiment on 2 different
sets. Contrarily to the ”full set”, the ”reasonable set” re-
stricts algorithms to pedestrians over 50 pixels in size and a
maximum of 35% occlusion.

With respectively a large variability and tiny occluded
detections, everyday pictures and automotive application,
these two datasets offer complementary settings for our ex-
periments.

4.2. Evaluation protocol

Candidates are selected using a multi-scale sliding win-
dow approach [56] with a stride of 4 pixels. Approximately
60% are loosely filtered according to ”edgeness” and sym-
metry. No background subtraction or motion features are
employed on the Caltech dataset.

The training set size is up-bounded at 12K samples. In-
creasing this threshold doesn’t improve performance. No
generative resampling is performed. The validation set in-
cludes 240K samples for all experiments. The model height
is set to 120 pixels for the INRIA dataset, 80 pixels for Cal-
tech.

We train a cascade of 6 Adaboost classifiers with a con-
stant threshold of 0.56 and a tree depth of 2. We utilised the
openCV implementation for the Adaboost classifiers. Ad-
aboost is initialised with 256 weak classifiers. Each extra



Channel LAMR
Gx +Gy 18.8%
Gy + L 16.7%
Gx +Gy + I 15.8%
Gx +Gy + I +M 15.9%
Gx +Gy + L+ U + V 15.6%
Gx +Gy + L 14.3%
Gx +Gy + L+ U 14.1%

Table 1: Full LBP-descriptor log-average miss rate perfor-
mance (the lower the better) on the INRIA dataset when us-
ing various channel combinations. I - Grayscale intensity.
{Gx, Gy} - gradients respectively along x and y axis. M -
gradient magnitude. {L, U, V} - Luv color channels.

Cells LAMR
{(3,1); (1,3); (4,4)} 16.3%
{(1,1)} 16.0%
{(1,2); (2,1); (2,2)} 15.4%
{(1,2); (2,1); (2,2); (3,1); (1,3)} 15.2%
{(1,1); (1,2); (2,1); (2,2)} 14.7%
All 14.1%

Table 2: Full LBP-descriptor log-average miss rate perfor-
mance (the lower the better) on the INRIA dataset when
using various cell set. Gx +Gy + L+ U channels are em-
ployed for this experiment.

run adds 64 weak classifiers. This is a low number of weak
classifiers compared to typical settings (i.e. [1024, 2048]).
However, in practice, increasing this value leads us to lower
performance and speed. When employed, reverse feature
selection applies to the first 2 classifiers of the cascade, their
number of trees being then learnt during training.

We use the threshold variant of non-maximum suppres-
sion (t-NMS) [7] that groups the detections according to the
bounding boxes overlap with the group d best candidate,
keeps the d candidates with highest confidence for each
group, and builds the final candidate position with the group
mean border positions. We set the overlap threshold to 0.5
and d = 3 for all our experiments. Log-Average Miss Rate
(LAMR) [33] is employed as metric for all runs.

4.3. LBP channel setup

For each detection proposal window, the LBP descriptor
blocks are spaced out over 8×16 positions along the x
and y axis, leading to 128 different possible positions.
This lattice allows blocks to be placed approximately
every 2 pixels for the smallest Caltech detections and such
precision is not useful for bigger pedestrian. The possible
filter dimensions wj and hk are {2W/7, 3W/7, 4W/7},
with W the detection window width. In addition to that,
filters covering the head, the torso, the legs and the entire

feature selection # Features LAMR Speed(CPU/GPU)
unselected features 373 41.0% 0.3fps
soft-cascade 50 39.9% 2.2fps
soft-cascade 100 39.8% 1.5fps
soft-cascade 150 39.3% 1.2fps
undirected selection 150 37.6% 0.7fps
reverse selection 50 39.8% 0.8fps
reverse selection 100 37.1% 0.8fps
reverse selection 150 35.9% 0.7fps

Table 3: Comparison of soft-cascade with reverse feature
selection on the LBP-descriptor. Results are in terms of log-
average miss rate performance (the lower the better) on the
INRIA dataset. Gx + Gy + L channels are employed for
this experiment. See text for the methods description.

body are extracted based on edge templates [52], leading
to a total of 373 possible filters per channel. In these
experiments, the full descriptor will refer to the full set of
filter positions with the smallest dimensions 2W/7 only.
With this setting, 133 filters, totalling 1596 feature values,
are extracted per channel. L1 square block as well as L2

full histogram normalisation are performed in every case.
On the Caltech dataset, the training of the full descriptor

and classifiers takes 14 hours; the training of the reduced
descriptor takes 17-24 hours with 12 cores assigned to the
process. reversed feature selection runs for 200 iterations.

We tested the LBP-channel descriptor with the following
7 channels: graylevel intensities I , gradient magnitude M ,
gradient along x and y axis Gx and Gy , as well as the L,
U and V color channels. We purposely added gradient
channels to explicitly counterbalance this descriptor’s
known weak characterization of edges. The combination of
various channel has been a assessed on the INRIA dataset.
Also, The L, U and V channels are considered separately.
Results are displayed on table 1. The gradients Gx, Gy ,
L, and U channels stand out as the most discriminative.
It also confirms that the grayscale intensity bears much
less information than the Luv color channel. The gradient
magnitude M and the V color channel are apparently
detrimental to the classification.
In our implementation, we experimented with the follow-

ing cell dimensions: {(1,1); (1,2); (2,1); (2,2); (1,3); (3,1);
(4,4)}. and ran experiments with different combinations
of them. Results are displayed on table 2. Of course
the more patterns, the better the performance. But this
experiment also reveals that the smallest cells are more
discriminative, with the detection rate being almost the
same when using {(1,1); (1,2); (2,1); (2,2)} cells or the
full pattern set. This is sensible as they are the majority to
be extracted within small detections, few of their bigger
counterparts then fitting within the reduced-sized filters.
Finally, it demonstrates the efficiency of stacking cells,



Method INRIA Speed(CPU/GPU)
HoG [12] 46% 0.5fps
HoG-LBP [47] 39% Not provided
MultiFeatures [48] 36% < 1fps
FeatSynth [2] 31% < 1fps
MultiFeatures+CSS [45] 25% No
Channel Features [14] 21% 0.5fps
FPDW [13] 21% 2-5fps
DPM [18] 20% < 1fps
RF local experts [27] 15.4% 3fps
PCA-CNN [23] 14.24% < 0.1fps
CrossTalk cascades [15] 18.98% 30-60fps
VeryFast [3] 18% 8/135fps
WordChannels [11] 17% 0.5/8fps
SSD [25] 15% 56fps
LBP-Channels full 14.3% 0.5/7.5fps
LBP-Channels selected 13.6% 0.7/10fps
FRCNN [37] 13% 7fps
RPN+PF [51] 7% 6fps

Method CALETCH Speed(CPU/GPU)
HoG [12] 69% 0.5fps
DPM [18] 63.26% < 1fps
FeatSynth [2] 60.16% < 1fps
MultiFeatures+CSS [45] 60.89% No
FPDW [13] 57.4% 2-5fps
Channel Features [14] 56.34% 0.5fps
Roerei [4] 48.35% 1 fps
MOCO [9] 45.5% < 1fps
JointDeep [32] 39.32% < 1fps
SquaresChnFtrs [5] 34.8% < 1fps
InformedHaar [52] 34.6% < 0.63fps
Spatial pooling [35] 29.2% < 1fps
Checkboards [54] 24.4% < 1fps
FRCNN [37] 56% 7fps
CrossTalk cascades [15] 53.88% 30-60fps
WordChannels [11] 42.3% 0.5/8fps
LBP-Channels full 39.1% 0.5/7.5fps
LBP-Channels selected 35.9% 0.7/10fps
SSD [25] 34% 56fps
RPN+PF [51] 10% 6fps

Table 4: Comparison with the state-of-the-art. Near real-time methods are separated from others. Ours is in bold. Deep
learning techniques are in red. Computation times are calculated according to 640×480 resolution frames. Gx + Gy + L
channels are employed for this experiment. The used metric is the log-average miss rate (the lower the better). Best viewed
in color.

results improving from 16.0% to 14.3% when adding extra
cells to the (1, 1) base one.

4.4. Results and analysis

Reverse feature selection is compared to soft-cascade in
table 3. The main difference with typical feature selection
in our case is that 12-valued feature blocks are selected. We
select the filter across channels rather than for one channel,
which gives us a better performance in practice. The full
set of unselected features is provided as baseline and scores
41.0%. During the training phase, the best reverse selec-
tion results (reported in this table) are often obtained for
the highest number of trees and amount of data added dur-
ing bootstrapping, which confirms the common sense ad-
vocating for more trees and data for better performance. If
the soft-cascade is faster (running up to 2.2 fps) than re-
verse feature selection, it doesn’t provide as discriminative
features as the reverse feature selection, with only 1.7% im-
provement over the baseline. Comparatively, reverse feature
selection provides at best a 5.1% performance boost while
running at 0.7 fps. The ”Undirected selection”, referring to
the same strategy crippled of the EM-algorithm, shows the
overall positive impact of directing the selection process to-
ward the best feature blocks, with a 1.8% performance in-

crease. Overall, this strategy seems to learn a better infor-
mation structure since the performance steadily increases
with the addition of features, contrarily to the soft-cascade
that quickly reaches a plateau (around 50 features). How-
ever, this is a rather small improvement compared to other
channel feature selection methods [5, 52, 35, 54]. We be-
lieve that substantial further improvement can be obtained
in that direction. The computation time gain remains low
even for few features selected because most of the compu-
tation lies in the integral channel calculation.
Comparison with the state-of-the-art is presented in table

4. For fair comparison, methods using optical flow features
[5, 45, 36, 54], are reported without optical flow or left out
of this evaluation. Gx +Gy +L channels are employed for
this experiment, giving us a better performance/speed ratio.

While running at a similar speed, LBP-channel (full)
features greatly outperforms the common channel features
[14], scoring 7% better on the INRIA dataset and 16.2%
better on the Caltech dataset. Besides the predominance
of our descriptor, it shows that one-valued filter responses
should not be the de facto choice: A balance between the
amount of filters and their response size must be struck. Our
reverse feature selection scheme (using 150 feature blocks
across channels) further improves the results down to 13.6%
on INRIA and 35.9% on CalTech while making it slightly



faster.
Overall, LBP-channels ranks on par or better compared

to state-of-the-art pedestrian descriptors in terms of perfor-
mance/speed ratio, except for [51]. Deep learning technique
[25, 37] often perform better but are slower. The detector
speed is, of course, largely influenced by the descriptor pa-
rameters, which are the number of filters and channels.

5. Conclusion
In this work, we have presented a new channel descrip-

tor based on LBPs. Stacking various cell dimensions and
wise channel choices demonstrated the improved descriptor
robustness and discriminability. Also, reduced block his-
togram size as well as a reverse feature selection alternative
to the soft cascade allowed us to efficiently yield a robust
set of features. Experiments show that LBP-Channels out-
perform their main competitors while still producing a fast
and compact descriptor.
Through the introduction of this new descriptor, this paper

suggests that there is a balance to strike between the number
of feature values used as filter response and the size of the
filter space to search. Thorough study should be undertaken
to determine what the appropriate trade-off is. These first
feature selection results compared to the state-of-the-art im-
ply that further research in this particular direction may lead
to improved performance.
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