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Abstract—This paper tackles the problem of data selection for
training set generation in the context of near real-time pedestrian
detection through the introduction of a training methodology:
FairTrain. After highlighting the impact of poorly chosen data
on detector performance, we introduce a new data selection
technique utilizing the expectation-maximisation algorithm for
data weighting. FairTrain also features a version of the cascade-
of-rejectors enhanced with data selection principles. Experiments
on the INRIA and CALTECH datasets prove that, when finely
trained, a simple HoG-based detector can outperform most of its
near real-time competitors.

Index Terms—Data Selection, Dataset Optimization, imbal-
anced datsets, Computer vision, Pedestrian Detection, Real-Time
Application.

I. INTRODUCTION

Human detection is the keystone of many computer vision
applications that depend on the reliability of this important
first step. These applications, ranging from surveillance, queue
monitoring, retail data mining, and automatic pedestrian de-
tection in the automotive industry, have fueled research during
the last decade, leading to a soaring number of approaches on
the topic.

In a recent study [4], features, context, feature data, and
the combination of approaches have been identified as the key
performance elements for pedestrian detection. Roughly 30%
of approaches focus on developing, combining or adapting
features, and this direction has led to most of the break-
throughs over the past years, such as channel features [13],
or convolutional neural networks [36]. Context adaptation
[21], harnessing frequent geometry [26][40] or environment
patterns [38][53], also successfully received attention from the
community, but this algorithm adaptation is often application
or even dataset dependent. However, less progress has been
stated concerning feature data. Training sets are still generated
by applying the same techniques as a decade ago: Increasing
the data variability is done by blindly mixing datasets [4], and
Bootstrapping [11][17] remains among the preferred choices
for training set generation.

In this paper, we argue that data selection and adaptation
is an important area that deserves more attention from the
community. Training for pedestrian detection is, indeed, a
peculiar task. It aims to differentiate a few positive sam-
ples with relatively low intra-class variation and a swarm of
negative samples representing everything else present in the
dataset. Consequently, the training set lacks discrimination and

is highly imbalanced. Balancing these positive and negative
instances is a rarely addressed issue in the literature due to
the possible creation of noisy data while oversampling, and
the likely loss of information when undersampling.

Consequently, this works advocates for a training procedure
that bears two important data selection principles:

• Selecting more informative data.

• Balancing positive and negative instances all along the
training process.

After motivating the need for proper data selection through
experimentation, we will introduce FairTrain, a new training
methodology that brings up a two-component contribution.
First, it harnesses an expectation-maximisation scheme to
weigh important training data for classification. Second, it
improves the cascade-of-rejectors [58][5] classification by
enforcing balanced train and validation sets every step of the
way, and optimizing separately for recall and precision.

One key aspect of FairTrain is its genericity. It can easily be
applied with other features or feature selection methods. Also,
it differs from the state-of-the-art data selection methods by its
ability to create balanced (training and validation) sets while
avoiding over-generalisation. Experiments carried out on the
INRIA [11] and Caltech-USA [15] datasets, demonstrate the
effectiveness of the approach, leading a simple HoG-based
detector to outperform its near real-time competitors.

The rest of this paper is organised as follows. Section 2 re-
views the related state-of-the-art. Section 3 gives an overview
of the system. Section 4 covers our training set generation
technique whereas Section 5 details our classification scheme.
Section 6 reports our experiments and Section 7 concludes on
this work.

II. RELATED WORK

Data selection from imbalanced datasets has been a con-
cern for pedestrian detection since the birth of the field.
[28] proved that disproportioned datasets degrade SVMs pre-
diction accuracy, especially for non-linearly separable data.
Subsequent research on these experiments [54] showed that
best performance was obtained for approximately comparable
class cardinalities when over-sampling the minority set. This
principle was further applied todeep learning data [22].

Limited work carries out these issues. Bootstrapping
[11][17] is probably the most common adaptation to the
problem. This data training mechanism improves accuracy
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Fig. 1. FairTrain training pipeline. The initial training set generation selects data while balancing negative and positive sample cardinalities. A cascade
classifiers is then trained on it, each independent classifier being learnt through bootstrapping. balanced positive and negative sets is sought all along the
cascade. See text for full description.

Fig. 2. Influence of the validation set size on a HoG classifier (Experimen-
tation on the INRIA dataset). Expected performance is in dashed blue, actual
results in plain red. The used metric is the log-average miss rate (the lower
the better).

thanks to successive training set updates focusing on samples
difficult to classify. It is first initialised on uniformly drawn
negative samples. At each iteration, the negative training set
is augmented with the false positives of the previous iteration.
The process keeps repeating until the performance converges
or a memory threshold is reached. [47] further showed that
2 iterations lead to optimal performance. [20] adopted a
different practice for random forest. They first train t trees
with uniformly-drawn samples, use them to obtain harder
positive and negative sample to train the next t trees, and
iteratively repeat this process. Each tree group bears its own
bias, therefore improving the overall forest performance.

Generative techniques consider over-sampling the minority
class through artificial data generation. This type of approach
suffers from both, over-generalisation and the risk to create
erroneous data. The SMOTE algorithm [48] is probably the
most renowned one. It creates new data as the linear com-
bination of a randomly selected data point and one of its
(same class) k nearest neighbors. Borderline-SMOTE [23]
subsequently proposed to improve SMOTE through clever
selection and strengthening of weak pairs. ADASYN [24]
considered limiting the over-generalisation through density-
based data generation. In the same vein, [29] introduced
cluster-based oversampling, simultaneously tackling the intra-
and inter-class imbalance issue.

Cost sensitive learning methods [16][44][31] are an alter-
native to generative techniques that learn the cost of mis-
classifying each data sample. They optimise the classification
performance by up-weighting important data, either directly
or in the loss function, and provide a natural way to enhance
the minority class.

Finally, [27] highlighted and tackled the imbalance issue
with a two classifier cascade: The first one aims for a high

recall whereas the second one enhances precision.
An alternate strategy to deal with the excess of negative data

is to successively prune out easy-to-classify instances via the
use of several consecutive classifiers. This cascade-of-rejectors
[58][5] can also be considered to speed up the detection. The
technique, inspired by Viola & Jones face detector [46], builds
up a classifier cascade that consists of successive rejection
stages that get progressively more complex, therefore rejecting
more difficult candidates as the classifiers get more specialised.
[43] further upgraded the principle from features to data by
performing hierarchical clustering on the dataset, leading to
improved classification results. However, it requires, for each
new datum, to find the corresponding set of clusters it belongs
to. See [25] for more details on learning from imbalanced
datasets.

III. FairTrain OVERVIEW

The training procedure that this paper advocates for unfolds
as follows. After the initial data selection, we balance the
negative and positive sample cardinalities. Then, a set of n neg-
ative data rejectors are trained and identified negative data are
discarded. The validation set of negative samples are iteratively
oversampled after each training to ensure a balanced set. The
final classifier is learned after careful data selection. Figure
1 illustrates the process. The next two sections respectively
detail our data selection mechanism and our classifier training
methodology.

IV. TRAINING SET GENERATION

We conduct a simple experiment to illustrate the proposed
main idea for the generation of the training set. Figure 2
plots the performance on the INRIA dataset of a simple HoG
classifier in relation to the validation set size. The training set
(of size 10K) is determined using bootstrapping [11][17].

Performance should theoretically asymptotically increase
with the size of the validation set. This assumption, depicted
by the dashed curve on the Figure, corresponds to the common
belief that the dataset informative power is directly correlated
to its size. However, the results, plotted with the plain curve,
are quite different from our expectations. They show signifi-
cant irregularities as the dataset size increases; and the largest
datasets do not even provide the best results. This encourages
us to re-think about the way training data is considered:
Apt data selection may be more important than their simple
addition.

This is the principle underpinning our training set genera-
tion. The method is composed of several stages, detailed within
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Fig. 3. data generation example.

the body of this section. We first select insightful positive and
negative instances from the millions of extracted features. The
minority class is then oversampled to create balanced training
and validation sets. The third step generates an initial training
set utilizing boostrapping [11][17]. Finally, we optimise this
first set using an expectation-maximisation algorithm.

Throughout this paper, we will consider that a dataset is
divided in training and testing sets and that the training set
could further be divided in a training and validation set. The
sizes of the training and validation partitions are algorithm
dependent.

A. Instances selection

Ground truth positive examples are fed to the training set
and near positives (i.e. samples with a ground truth coverage
higher than 90%) are added to the validation set. For each
image, data negative samples are sorted according to their
similarity with positive examples and we then randomly select
m instances among the most similar half (based on euclidean
distance). A subset is added to the training set to match the
positive sample cardinality and the rest is left to the validation
set. This simple, yet efficient selection process focusses on
hard data near the categories border. At this stage, we have
constructed a tiny balanced training set and a large imbalanced
validation set. The next steps oversample the validation set
minority class and grows the training set.

B. Minority class oversampling

We augment the validation set in order for the two opposite
classes to have the same cardinality. As the minority class is
always the positive one, this comes down to augmenting the
set of positive samples. For that purpose, we use a generative
sampling algorithm that takes advantage of the possibility to
geometrically locate the feature values within the bounding
box. The method is then restricted to feature types that are
geometrically structured, and have a precise location attached
to their values, such as HoG [11], DPM [18], or Haar-inspired
strategies [13].

The new data generation function f(.) unfolds as follows.
We randomly select 2 instances x1 = [x11, ...x1n] and x2 =
[x21, ...x2n] from the same class Si and create a new sample
with their lower and upper body features, while avoiding
doublons. Uniform sampling with replacement is employed.
More formally:

∀x1, x2 ∈ Si f(x1, x2) = [x11, ...x1n
2
, x2n

2 +1, ...x2n] (1)

So, a minority class of n samples can spawn a maximum
of n × (n − 1) new instances. This process doesn’t suffer
from the over-generalisation issue that mares other generative
techniques, like SMOTE [48] as data pairs are not necessarily
selected within the same neighborhood and the upper/lower
body dichotomy rule guarantees a valid datum.

Of course, other geometrical dichotomies can be thought
of as long as the final instance appearance, corresponding to
the selected data feature combination, is credible. Moreover,
vertical splits might be pointless, as lots of training data are
often vertically mirrored during pre-processing. We do not
normalise the final vector. In practice, this gives us slightly
better results than a re-normalisation. The process is illustrated
in the Figure 3.

C. Initial training set generation

We use bootstrapping [11][17] to augment the training set.
At each iteration, we incorporate the most badly classified
data from the validation set into the training set and retrain
the classifier. We aim to repeat this process until the training
set reaches its desired initial size T .

However, 2 iterations have been advised to avoid overfitting
[47]. Therefore, we modified the algorithm to deal with this
issue. Instead of simply selecting data from the validation set,
we generate it the same way as detailed in the minority class
oversampling section. Each new datum parent samples are
selected among the misclassified data. Weighted sampling is
utilised in this case, the probability of an instance to be drawn
being set in relation to the extent of the error. We iterate until
the desired training set size is reached or the validation set is
perfectly classified.

D. Training set Optimisation

The proper selection of an apt training set is paramount for
optimal classifier performance. Our purpose is to select the
core training set data that will lead to improved classification.
Our core idea is a typical machine learning one: Since we
can hardly define what makes a good training set, we will
let the algorithm learn it by itself. We utilise an expectation-
maximisation algorithm for this purpose.

The algorithm unfolds as follows. Weights, initialised equal,
are associated to the training data. At each iteration it, (M-
step) we randomly select Dit/2 positive and Dit/2 negative
data from the training set to respect the class equality rule [54],
the selection being guided by data weights. A new classifier
Cit is then trained on these Dit data, and tested on the
validation set. (E-step) Weights are updated according to the
classification performance score(Cit) of the classifier Cit. A
sample’s weight is set according to the average classification
performance over all the past runs for which it was selected.

W (xi) =

 ∑
Sxi

=[it|xi∈Dit]

score(Cit)

 /|Sxi | (2)

To further improve this algorithm, we set up a global
confidence value for each validation datum. This value is the
average confidence value for each datum over all the past



JOURNAL IEEE ACCESS, OCTOBER 2017 4

Data: - The training set t of cardinality |t|.
- |t| weights associated to training data.
- The validation set v of cardinality |v|.
- |v| confidence values associated to validation data.
- |v| global confidence values associated to validation
data.
- The percentage D of data selected for bagging.
- The percentage P of badly classified data kept.
- The maximum number m of iterations.
Result: Optimal training set o with |o| ≤ |t|
initialization;
Set weights to 1;
Set globalConfs to 1;
Set bestscore to minimal value;
for it=0; it<m; it++ do

// Randomly select D/2 positive and D/2 negative
data from the training set.

Bagging(weights, t, D);
// Train a classifier Cit with the D data.
Cit = Train(d);
// Test the classifier on the validation set.
{Score, confs} = classify(Cit, v);
// Update weights and global confidence values.
Update(weights, score);
Update(globalConfs, confs);
// Saving best training set.
if Score > bestscore then

bestscore = Score;
SaveClassifier(Cit);

end
if it%(m/10) == 0 then

// Randomly generate P data among the most
consistently badly classified.

p = Generate(globalConfs, v, P);
// and add them to the training set
t += p;

end
end

Algorithm 1: Training set generation algorithm.

iterations. Every m/10 iterations, this global confidence values
are L1-normalised and utilised as probabilities to randomly
generate new data based on the most badly classified data. In
other words, we create additional data in areas of the feature
space where extra information is required, like near the border
between categories. This active learning mechanism improves
the quality of the training set the same way bootstrapping
[11][17] does. Consequently, the algorithm gives a better
outcome when associated with a large validation set that will
limit overfitting.

D is set low at the beginning (i.e 5% of the training set)
and progressively increased as the iterations unfold until the
desired training set size is reached. This allows the algorithm
to focus on the core samples withholding the classifier first,
before refining the set for optimal classification. Also, running
the bulk of the iterations with small training sets speeds up
the algorithm and allows us to run the numerous iterations

necessary for its reliability. The algorithm pseudo-code is
depicted in algorithm 1.

Obviously, a large number of iteration is necessary for the
algorithm to produce good results. For our experiments, we set
m = 5000 when the algorithm is a standalone, and m = 1000
when it is used as the cascade-of-rejectors final classifier (see
section V). The training takes 16 hours to complete with 200K
data using 12 cores; 6 hours for 10K data.

V. CASCADE-OF-REJECTORS

The cascade-of-rejectors is an efficient strategy for siev-
ing out a large proportion of false positives, and has been
applied several times in the context of pedestrian detection
[10][58] [5][43][46]. However, tuning this cascade of classi-
fiers remains problematic. First, the classifiers are prone to
errors that propagate along the cascade. Second, most authors
employing this technique solely reject negative data after each
classification step to avoid the creation of classifiers likely to
reject positive data during the subsequent stages. However,
this leads to progressively more imbalanced datasets. Fine
tuning of the original positive versus negative instances ratio is
usually necessary to obtain satisfactory results (a 2 to 4 times
bigger negative set is the common practice). But this strategy
is still under-optimal as balanced datasets are proved [54] to
be the best performing ones.

To deal with these issues, we propose a new cascade-of-
rejectors. Our approach borrows [27]’s main idea with a two-
stage classification: The first one aims for a high recall whereas
the second one focuses on precision.

The first stage embodies a cascade of n − 1 rejectors. To
avoid increasing the false negative rate, these n − 1 initial
classifiers enforce a high recall, moderately optimizing the
performance on the precision. The metric formalises as:

M = (TN ×WTN + TP )/(P +N) (3)
with P,N, TP, TN , and WTN being respectively positive,
negative, true positive, true negative instances, and the weight
associated to TN . WTN is set at WTN = 0.5. Its parametri-
sation has no influence on the results, when set low enough,
which enforces a perfect or near perfect recall. Negative data,
with a confidence below 0.5, are rejected at each stage. Nega-
tive data over-sampling is then undertaken to avoid emptying
the validation set. When insufficient to match the positive
instances cardinality, random positive data under-sampling
is then considered. We employ Adaboost as classifiers for
this part. These decision trees have demonstrated compet-
itive performance whilst retaining computational efficiency
[51][34]. During testing, typically over 95% of the data are
safely discarded after 4-5 iterations. This cascade-of-rejectors
guaranties a high recall, increased performance induced by
balancing the datasets at each iteration, and few parameters to
tune.

The second stage performs a finer classification, aiming for
high precision results. Since the bulk of the data have been
removed, more demanding computation can be performed at
this stage without slowing down the detector. We employ a
dense forest classifier, that has shown [4] giving slightly better
performance than its counterparts on pedestrian detection. We
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optimise for the log-average miss rate [39].
The only parameter that requires careful tuning is the

rejection threshold T value during the testing phase. Since
the method optimises for the recall, the large majority of
data around the separating border between the two classes
are negative ones. It is then sensible to set T > 0.5. The two
employed classifiers in this work are typical Adaboost [52] and
random forest [6]. See the experiment section for a thorough
evaluation of this parameter impact on performance.

VI. EXPERIMENTS

This section, dedicated to our experimental validation,
breaks down into four sub-parts: dataset presentation, experi-
mental setup details, results and related comments, and finally
parameter discussion.

A. Datasets

We experimented on the INRIA and Caltech-USA datasets.
The INRIA [11] features high resolution pictures mostly
gleaned from holidays photos. The training set consists of
2416 cropped positive instances from 614 images and 1218
images free of persons. The test set contains 1132 positive
instances from 288 images and 453 person free images for
testing purposes. This is among the most widely used dataset
for person detector validation and comparative performance
analysis.
The Caltech-USA [15] dataset consists of 2.3 hours of video

recorded at 30fps from a vehicle driving various Los Angeles
streets. It totals 350000 images and 1900 unique individual
pedestrians, 300 large groups, and 110 hard to distinguish
pedestrians. Despite some annotation errors [57], its large size
along with crowded environments, tiny pedestrians (as low
as 20 pixels), and numerous occlusions probably make the
Caltech-USA dataset the most widely used one. Annotations
allow to experiment on 2 different sets. Contrarily to the ”full
set”, the ”reasonable set” restricts algorithms to pedestrians
over 50 pixels in size and a maximum of 35% occlusion.
With respectively a large variability and tiny occluded detec-

tions, everyday pictures and automotive application, these two
datasets offer complementary settings for our experiments.

B. Experimental setup

We experimented with HoG [11] and Haar-LBP [9] features.
HoGs are configurated with 12× 6 cells, 2× 2 blocks and 12
angle orientations, for a total of 2640 values. Block as well as
full histogram normalisation are performed. The LBP descrip-
tor follows the same structure, features a value per channel
for each cell, and non-uniform patterns are pruned out [35].
Candidates are selected using a multi-scale sliding window
approach [58] with a stride of 4 pixels. Approximately 60%
are loosely filtered according to ”edgeness” and symmetry.
No background subtraction or motion features are employed
on the Caltech dataset. The training set size is up-bounded
at 12K samples. Increasing this threshold doesn’t improve
performance.

We also clean the data based on Tomek links [45]. We

employ euclidian distance and restrict the deletion to negative
data to spare the scarce minority class. Approximately 0.1% to
0.2% of the negative data are removed this way. No generative
resampling is performed. The model height is set to 100 pixels
for the INRIA dataset, 50 pixels for Caltech.

We also implemented a cascade-of-rejectors baseline with
the commonly used settings: Rejector optimisation is done
according to the log-average miss rate metric. We tested this
baseline with a typical initial validation set containing 4 times
more negative samples than positive ones. To compare with
the common multi-dataset training technique, we also used
an augmented version with PETS2009 [19] positive samples.
This set gathers 50K positive instances from both datasets and
110K negatives from the sole INRIA benchmark.

We utilised the openCV implementation for the Adaboost
and random forest classifiers. Random forest parameter set
includes the number of decision trees, the number of sampled
feature dimensions and the max tree depth. They were selected
by measuring out-of-bag errors (OOB) [6]. It was computed as
the average of prediction errors for each decision tree, using
the non-selected training data. Adaboost is initialised with a
tree depth of 2 and 256 weak classifiers. Each extra run adds
64 weak classifiers. This is a low number of weak classifiers
compared to typical settings (i.e. [1024, 2048]). However, in
practice, increasing this value leads us to lower performance
and speed.

We use a variant of the threshold non-maximum suppres-
sion (t-NMS) [7] that groups the detections according to the
bounding boxes overlap with the group d best candidate, keeps
the d candidates with highest confidence for each group, and
builds the final candidate position with the group mean border
positions. We set the overlap threshold to 0.6 and d = 3 for
all our experiments. Log-Average Miss Rate (LAMR) [39] is
employed as metric for all runs.

C. Results

Detailed method results on the INRIA dataset, including the
influence of its various components and settings are reported
in Table I. The expectation-maximisation (EM) training leads
to an average 6% improvement over simple HoG-based
classification, or 2.3% over the common cascade-of-rejectors.
This demonstrates the importance of proper data selection.
The main boost is obtained by our modified version of the
cascade-of-rejectors, with a minimum 24% performance
increment. Finally, the combined algorithms lead to a further
3% improvement. To sum up, FairTrain gives a simple HoG
based detector an impressive 27% boost, therefore competing
with state-of-the-art real-time references. It significantly
outperforms the usual blend of datasets strategy (see Table I
- run 3), scoring only 42.44%.

The main factor responsible for the cascade-of-rejectors
significant results is the balanced generative dataset. Max-
recall optimisation also has a slight, but steady influence on
performance, with an average 0.51% better score. Similarly,
we found random forest to outperform Adaboost as final
classifier by approximately 0.4% on all EM runs. Finally, in
accordance with the literature [10][58][5], we observed that
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Run Validation Set Size #Rejectors Final Classifier Optimization LAMR Performance
1 180K (INRIA) 0 A n.a. 46.03%
2 180K (INRIA) 5 A n.a. 43.38%
3 160K (INRIA+PETS) 5 A n.a. 42.44%
4 180K (INRIA) 0 EM training(A) n.a. 39.72%
5 180K (INRIA) 0 EM training(RF) n.a. 40.34%
6 180K (INRIA) 5 A LAMR/Recall 21.64% / 21.09%
7 180K (INRIA) 5 RF LAMR/Recall 21.34% / 20.98%
8 180K (INRIA) 5 EM training(RF) LAMR/Recall 20.39% / 20.15%
9 220K (INRIA) 5 EM training(RF) LAMR/Recall 20.25% / 19.68%

10 250K (INRIA) 5 EM training(RF) LAMR/Recall 20.54% / 19.67%
11 300K (INRIA) 5 EM training(RF) LAMR/Recall 19.52% / 19.01%
12 220K (INRIA) 6 EM training(RF) LAMR/Recall 19.82% / 19.38%

TABLE I
LOG-AVERAGE MISS RATE RESULTS (THE LOWER THE BETTER) OF FairTrain WITH VARIOUS COMPONENTS AND SETTINGS ON THE INRIA DATASET WITH HOG FEATURES.
BASELINES ARE IN BOLD. A - ADABOOST. RF - RANDOM FOREST. EM - EXPECTATION-MAXIMISATION. LAMR - LOG-AVERAGE MISS RATE. BASELINES ARE IN BOLD.

Method INRIA Speed(CPU/GPU)
HoG [11] 46% 0.5fps
HoG-LBP [49] 39% Not provided
MultiFeatures [50] 36% < 1fps
FeatSynth [1] 31% < 1fps
MultiFeatures+CSS [47] 25% No
Channel Features [13] 21% 0.5fps
FPDW [12] 21% 2-5fps
DPM [18] 20% < 1fps
RF local experts [33] 15.4% 3fps
PCA-CNN [30] 14.24% < 0.1fps
FairTrain - HoG 19.01% 4/60fps
VeryFast [2] 18% 8/135fps
WordChannels [10] 17% 0.5/8fps
crossTalk cascades [14] 17% 30-60fps
FairTrain - LBP 17.28% 3.7/54fps
FairTrain - HoG+LBP 17.08% 2.6/39fps
FRCNN [42] 13% 7fps
RPN+PF [55] 7% 6fps

Method CALETCH Speed(CPU/GPU)
HoG [11] 69% 0.5fps
DPM [18] 63.26% < 1fps
FeatSynth [1] 60.16% < 1fps
MultiFeatures+CSS [47] 60.89% No
HoG Caltechx10 59.68% 0.5fps
FPDW [12] 57.4% 2-5fps
Channel Features [13] 56.34% 0.5fps
Roerei [3] 48.35% 1 fps
MOCO [8] 45.5% < 1fps
JointDeep [37] 39.32% < 1fps
InformedHaar [56] 34.6% < 0.63fps
katamari-v1 [4] 22.49% < 1fps
FRCNN [42] 56% 7fps
CrossTalk cascades [14] 53.88% 30-60fps
FairTrain - LBP 51.12% 3.6/54fps
FairTrain - HoG 45.4% 3.9/58fps
FairTrain - HoG+LBP 45.2% 1.8/27fps
WordChannels [10] 42.3% 0.5/8fps
SSD [32] 34% 56fps
RPN+PF [55] 10% 6fps

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART. NEAR REAL-TIME METHODS ARE SEPARATED FROM OTHERS. Ours IS IN BOLD. DEEP LEARNING TECHNIQUES ARE IN RED.

COMPUTATION TIMES ARE CALCULATED ACCORDING TO 640×480 RESOLUTION FRAMES. Gx + Gy + L CHANNELS ARE EMPLOYED FOR THIS EXPERIMENT. THE USED

METRIC IS THE LOG-AVERAGE MISS RATE (THE LOWER THE BETTER). BEST VIEWED IN COLOR.

optimal results are obtained for 5 iterations of the rejection
cascade, the addition of extra iterations being impactless, as
shown in Table I - run 12.

We have tested this algorithm for various validation set
sizes (see Table I - runs 8 to 11) to replicate the section IV
theoretical experiment (see Figure 2). Results show much
more stable performance, therefore validating our primary
assumption as well as the approach stemming from it.

Table II shows our method’s ranking compared to the
state-of-the-art, in terms of performance and speed. When
comparing methods, note that some methods [4], [47], [41]
get increased results thanks to optical flow features. T=0.58
is used for these runs. This work compares favorably to the
state-of-the-art. While not being the best detector on the
market, with respectively 17% and 45% log-average miss rate
on the INRIA and Caltech datasets, FairTrain ranks on par
or better compared to state-of-the-art pedestrian descriptors
in terms of performance/speed ratio, except for [55]. For
instance, it scores better than the famous DPM [18] and
similarly to the integral channel features [12] while running 4
times faster. VeryFast [2] and the crosstalk cascades provide
a viable alternative in terms of speed while displaying lower
performance. Finally, deep learning techniques [32], [42]
often perform better but are slower.

LBP is the best descriptor on the INRIA dataset, while
HoGs show the best performance on Caltech. We assume

that the numerous little pedestrians on the latter impact the
texture descriptor more strongly than the gradients. As extra
validation experiment, we also compared our method with
the caltechx10 training set extracting 10 times more positives
(i.e. every 3 frames) on the eponymous dataset [12]. This run,
reported under the name of HoG Caltechx10, shows much
lower performance than FairTrain. The HoG and LBP fusion
yields little improvement.
Packed crowds, teensy pedestrians and awkward poses remain

the main failure cases. For a near optimal parametrisation of
T , pruning out approximately 70% of the data during the first
iteration, the succession of classifiers overall multiplies by 1.4
the computation load. The end-to-end system processes 3 to
4 fps on an Intel Xeon 2.1GHz CPU, calculated over frames
of 640×480 pixels in size. Further speed up is possible when
using a GPU, leading our detector to perform in real-time.
This makes FairTrain one of the best performing real-time
pedestrian detector to date.

Figure 5 shows some examples taken among the most
challenging ones. Packed crowds, teensy pedestrians and
awkward poses remain the main failure cases.

D. Parameter Sensitivity
The rejection threshold T from the cascade-of-rejectors has

a critical influence on both, results and computation time.
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Fig. 4. Influence of the rejection threshold T on performance. The blue and
red curves respectively depict versions with Adaboost and an EM trained
random forest as final classifiers. Log-average miss rate is used as metric (the
lower the better) and rejector optimization function.

Indeed, the more data are removed at each classification
step, the faster the detector will be. Also, since there is a
high imbalance of positive/negative instances during testing,
it is sensible to yield better results for T > 0.5. Moreover,
optimizing rejection cascade classifiers for a high recall further
accentuates this bias. Figure 4 plots its influence on the results
when optimizing for log-average miss rate with two different
final classifiers: Adaboost and EM-optimised random forest.
We observe that the results are more stable across the param-
eter range when the expectation-maximisation optimisation of
the training set is employed. This further validates the use
of this algorithm. The optimal testing confidence threshold
is within the range [0.58, 0.6] for all tests whether we are
optimizing for log-average miss rate or to the recall. For
all runs, a low standard deviation is observed within this
optimal range (typically, .5%). This demonstrates the stability
of this parameter. We explain the similar parameter setting
(and performance) of the two optimisation techniques with
their overall similarity. Indeed, log-average miss rate also
intrinsically optimises for recall. Even though it provides lower
performance in our case, an automatic threshold estimation of
T for each separate classifier may theoretically lead to further
improvement.

VII. CONCLUSION

This paper explored data selection mechanisms for near
real-time pedestrian detection. Via FairTrain, we introduced an
expectation-maximization data weighting scheme for enhanced
training set generation. We also improved the cascade-of-
rejectors by enforcing balanced datasets at every step of
the classification and separately optimizing for recall and
precision. The method showed competitive results compared
to the state-of-the art and major performance boost when
compared to original features.

By proving that blind data addition is not the best way
to enhance a training set, this work brings up an important
questions: What makes a good training set? Or even a good
training datum? Future experimentation aims to provide re-
sponses to these core interrogations. Also, the addition of more
recent features and further work on classifier combination is
envisioned.
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