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Abstract

In Intelligent Video Systems, most of the recent
advanced performance evaluation metrics perform a
stage of mapping data between the system results and
ground truth. This paper aims to review these metrics
using a proposed framework. It will focus on metrics for
events detection, objects detection and objects tracking
systems.

1. Introduction

Performance evaluation has become an increasingly
important topic when dealing with video intelligent
systems. However, while many concurrent metricstexi
they are not formalised in the same way which miake
difficult to compare them in a fair manner. For som
applications, metrics need to perform a mapping (an
assignment) between Result and Ground truth data.
This paper proposes, in a first step, to introdtie
class of metrics. In a second step, it reviews
successively existing metrics for event detectaiject
detection and object tracking systems. Finally it
concludes with a summary of the review and proposes
some guidelines for designing new metrics.

2. Evaluation metrics

Usually, during evaluation procedure of an
Intelligent Video System (IVS), a metric calculates
scores (SC) by comparing the IVS' Result (RS) w#ith
Ground Truth (GT) which is the expected correctiites
(often made by manual annotation).
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Figure 1. Performance evaluation framework.
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In most cases, RS is a set of several entities (e.g
events) that could differ (e.g. time, location,.pfcom
the GT because of possible errors of the RS (@g. n
detection). These errors could be qualitative af/an
guantitative. In the following section, we descrthese
two types of errors and some related scoring
techniques.

1) Qualitative errors come from qualitative pro@sss
such as classification (e.g. misclassification).efgv
process leads to practical decisions that can be
evaluated (“is this pixel part of the backgroundtioe
foreground?”). A GT lets you classify RS decisi@ss
correct or incorrect. When it is correct it is edll“true”
and when it is incorrect it is called “false”. The
comparison of RS and GT values entails four possibl
issues:

*True positives (TPs): RS confirmed by GT,

*False positives (FPs): RS not matched in GT,

*True negatives(TNSs):RS rejected and not part of GT

*False negatives (FNs): RS rejected but part of GT.

Note that in a detection problem, which is slightly
different from binary classification, “true posiis” are
typically named “correct detections”, “false posis”
are “false detections/alarms” and “false negativas
“non detections”. Some useful metrics derived from
TPs, FPs, FNs and TNs are important for gathering
information about the performances of a detection
system [Altman94]:

General name Function
Detection Rate (DR) or Sensitivity| N/(Ngp+Npm)
Classification:False Positiveae (FPR Ni/(Ngp+Nip)
Detection: False Alarm Rate (FARNj, per time units
Table 1. Derived values from the contingency table.

2) Quantitative errors are made by quantitative
processes. Typical errors affect position, the ctge
shape, the object’s speed or the delay/advanceiinea
stamp. To quantify these errors we use scoring
techniques that quantify the accuracy of the detear
the tracking algorithms. Examples are “average rarmb



of observations before tracking is initiated”; “sage
number of frames before tracking is terminated”,
Euclidean distance between the RS position anéthe
position of an object or the distance from nearest
segments in the two bounding boxes [Brémond97], etc
We formalise these scoring techniques as Entity
Precision Score (EPS) that evaluate a quantitatiselt

of features representing an entity such as timsifipa,
size, colour and shape, track and speed. EPS adlyisu
specific to an entity such as an object or evérgould

be assimilated as a result of similarity distariable 2
shows some generic examples.

Features Entity Precision Score (EPS)
Positon(cy) | J(%e =X + (Vo —Yg)®
; B,nB
Boundlng oo b e Intersection/overlap ratio
[Kasturi09] Bgt 0B,
Timet t, —tgt‘ ‘
Table 2. Examples of entity precision scores ffedént
features.

3) Dual qualitative/quantitative scoring techniques
exist becausdVS algorithms often make composite
gualitative and quantitative errors. Take the aypion
of face detection in images. In that case, err@s c
involve the detection of the face but also the isien
of the face’s position.

In the particular case of object tracking, the atigf
a tracking system is the set of trajectories okotg in
the scene. As described by Snéthal. [Smith05], there
are key properties for a good tracker, such as (i)
tracking objects well; placing the correct numbér o
trackers at the correct locations for each franig, (
identifying objects well; tracking individual objec
consistently over a long period of time. Typicaloes
are thus about locations and identities. When the
tracking system mismatches two objects because of a
inversion, this can be seen as an identificatioore©n
the other hand, when the position given by theesyst
differs slightly from the ground truth, it is codsred a
location error. Thus, visual tracking evaluatiorowsld
be made for both qualitative and quantitative exror
Figure 2 and Figure 3 show the two possible tydes o
error. Sometimes the error cannot be classifiedrigle
in a misidentification or location drift; it reallgepends
on the interpretation.

In dual qualitative/quantitative scoring techniguas
important issue is the mapping of RS and GT. It
consists of choosing matches between entitieseoR
and the GT. Since manual mapping of all the data

would take a lot of time, this should be handled
automatically by the evaluation metric. Indeed,esaV
approaches have been proposed [Senior01, Bruneaut05
Brown05, Smith05, Etiseo06, Manohar06,
Desurmont06, Bernardin08 and Kasturi09] to tackke t
mapping issue in different ways. In the following
section we review some of these metrics.

Figure 2. Location eFror between GT (continuous)liand
RS (dashed line).

Figure 3. Identity error between GT (coniinuoueﬁ)wand
RS (dashed lines).

3. Review of metrics with mapping

In order to review the metrics of the literatures w
need to formalize one concept: the “system behaviou
model” (SBM). Indeed a metric evaluates the resi
system according to an implicit model of that sy
behaviour. In that scope, the SBM describes the
possible errors the metric is able to cope withr Fo
example, in detection systems, a common SBM defines
that the system can produce the following errcasef
detection, non detection and jitter in the timaergieof
the detection.

We contend that evaluation problems are ill-posed a
they usually do not define the SBM clearly. This
sometimes induces inconsistence in the metric thigh
respect to the SBM. For example, with detection
systems, if the metric is not able to take accaafnt
“time-stamp jitter”, the metric will not be able tmunt
most correct detections because of impossibility of
matching events that are not exactly placed in Gd a
RS at the time-stamp.

In this section we try to highlight some problems
raised by various metric strategies in the litengtwith
focus on qualitative and quantitative errors: event
detection (time), object detection (space) and aibje
tracking (time, space and identities). We desctiilese
metrics by reviewing their SBMs, one-to-one EPS
processes and mapping processes and then highlight
possible drawbacks. Some metrics may have been mis-
interpreted due to their complexity and to the ladk
details provided by the available documents desayib
the metrics.



3.1. Event detection metrics

We propose investigating the different event
detection metrics using the toy example of Figure 4
representing a case in which there are three Gitgve
and four RS events. Note that in this example, ®ven
have a temporal duration and are represented iasea t
interval with a beginning and ending time. In that
example, experts usually consider RS1, RS2 andt®S4
be correct detections and RS3 as a false detection.

RS3

RS1L RS2 RS4
= Result
- Time
*~——o Groundtruth
GT1 GT2 GT3

Figure 4. Example of result evesground truth events.

1) Bruneautt al. [Bruneaut05] proposed a metric in
the framework of Challenge of Real-time Event
Detection Solutions (CREDS) in 2005. The SBM
handles temporal shifts. The EPS is a functionhef t
delay/anticipation and of duration ratio of RS dad
events. The CREDS metric defines how to compute
correct detections and false positive and falseatineg
detections. Then a weight is assigned to eachedeth
detections. The overall score for a given scenartbe
sum of all the correct, false and non detectiorresco
The metric matches events from ground truth andltres
with the handling of time shifts. A match is defihas
the first occurrence of a result event that ovexlap
ground truth event in time; it is considered a eotr
detection. If multiple result events overlap withet
same ground truth event then only the first (inejim
result event is matched, while the others are iflads
as false detections.

The major drawback of this method is when events
are so frequent that the possibility of early aethged
events entails the overlapping of several evelhiss t
resulting in wrong matches. Figure 5 shows assigisne
from the toy example where the GT3 event overlaps
with both the RS3 and then the RS4 event. The
evaluation matches RS3-GT3, i.e., events that do no
correspond! Moreover, the metric does not state v8ha
happening if a unique result event overlaps witlo tw
ground truth events. It is not clear which groungh
event should be matched.

Good False
detections detection

LS /
RS1 RS4
Result
» Time
Groundtruth
GT1

Figure 5. Example of CREDS mapping between RS ahd G

2) The “Text REtrieval Conference” sponsors a
video "track" devoted to research in automatic
segmentation, indexing and content-based retrie¥al
digital video dubbed Trecvid. It proposes a metaic
evaluating event detection [Trecvid08] that is an
improvement of Bruneauwt al.’s proposal. This metric
works with GT and RS events defined with Viper XML
format with a start and end time. RS events shaldd
provide a decision confidence for the event. Th&ISB
handles temporal shifts, correct, false and non
detections. The EPS between two events is moressr |
proportional to the sum of the intersection of timee
interval and the decision confidence. Equations (1)
show a simplified version of the correspondencerimat
computation procedure. The latter uses an event
alignment procedure with a one-to-one mapping with
GT and RS using the Hungarian solution [Munkres57]
to the bipartite graph matching problem by modgllin
event observations as nodes in the bipartite grapa.
toy example with mapping is shown in Figure 6 and
Figure 7.

@ if Mid(RS) > End(GTj) + A,
Kernel (RS,GTj) =1 ¢ if Mid(RS) < Beg(GT]) - A,
1+ TC(RS,GTj)

Min(End(GTj), End (RS)) — Max(Beg(GTj), Beg(RS))

TC(RS,GTj) = End(GTj) - Beg(GT)) W

Beg( )= The beginning of event'’s time span
Mid()= The midpoint of event’s time span
End( )= The end of event’s time span
A, =05(s); a constant differentiating the mappable

and unmappable events

|
I = Mmi i
RS3 | Mid(Gti)

R:S]' Result

| » Time

! Groundtruth
GT1

Figure 6. Example of TRECVID mapping between RS and

GT.
1 M
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9 9 & ¢ M
Figure 7Kernel values and best mapping for Figure 6
example.

3) We note that, because of the definition of the
events’ score, the Trecvid and the CREDS metries ar
not able to evaluate events with no duration sueh a
systems that simply trigger off alarms. Desurmairdl
[Desurmont06] propose a metric to handle evaluatfon



these duration-less events. We use the toy example
shown in Figure 8: When looking at all the events o
the same timeline to analyse the system, one will
probably match them as &- B, C0 and thus
conclude that there are three good detectionsfaise
alarm (D) and a miss-detectioy).(

A C
Result | | | |
Ground truth| B

a

—>
time

Figure 8. Representation of events on a timeline.

The SBM assumes that the possible deviations in the
event detection system are a set of false posjtfaése
negatives, delays and advances for each potential
individual event. In practical terms, this meanatth
sometimes allows no match between events of GT and
RS and matches can also be made with events having
different time stamps. The aim of the approachois t
process a dynamic re-alignment of the system’'s RS
according to the GT in order to find the best magpi
by minimising an overall cost. The EPS is a cost
defined as an absolute difference of time between
events. Costs are also set to false positives (&pand
false negatives (FNDist). The global cost minimat
can be optimised with a dynamic programming
approach based on *“dynamic time warping” and
“sequence alignment” (Needleman/Wunsch
techniques). It then becomes a straightforwardenatt
counting the number of matches, the number of false
detections and the number of non-detections.
Computational complexity analysis: Let N be the
number of events in the ground truth and M the remmb
of events in the result. The algorithm of dynamic
programming used in this proposal is a complexity o
O(N xM). Itis lower than the Trecvid proposal, which
uses the Hungarian algorithm with @(maxN, M)?)
complexity.

Summary of event detection metrics reviewlhe
Trecvid approach is fully consistent. It proposes a
SBM and then the procedure chooses the mapping that
maximises an overall score. For duration-less eyent
the problem formalization of Desurmoettal is similar
as Trecvid but the implementation uses a faster
algorithm.

3.2.Object detection metrics

We propose investigating the different object dixbec
metrics using the toy example of Figure 9 représgnt
three cases of result objects given a ground tafith
three objects GT1, GT2 and GT3. An object is define

by a Bounding Box (BBOX) region. On the top a) we
can consider that there are three correct detectond
three result objects (RS1, RS2 and RS3) that imtérs
respectively with ground truth objects GT1, GT2 and
GT3 only. In the middle b) we can also considet tha
there are three correct detections but some minor
overlap problems, for results RS1 and RS2 overligp w
several ground truth objects. On the bottom c) ae c
consider that GT1 is detected with a fragmentation
problem (RS1 and RS2), GT2 is not detected and GT3
is partially detected by RS3.

e e e e e — — —

o
N
|

oo o -

— e — -y

[rRs3

Figure 9. Three examples of RS BBOXsa given GT.



1) Nascimentoet al. [Nascimento04] suggest a
method for object detection evaluation. The SBM
includes correct detection, false detection, non
detection, merge, split and split-merge. The EPS
between one GT region and one RS region is birfary:
if there is a spatial intersection, 0 if not. Thethod
accounts for a correct detection when the RS region
matches one and only one GT region, false detection
when the RS region has no correspondence with the
GT, non detection when the GT region has no
correspondence with the RS, merge region when $e R
region is associated with several GT regions, split
region when the GT region is associated with sévera
RS regions and finally split-merge region when the
region is at the same time a split and a mergeidmeg
The drawback of the mapping procedure is that the
spatial noise in RS regions entails inconsistentrime
scores. In the example of Figure 9, b) should be
considered to be three correct detections with Ismal
spatial deviation while the proposed metric conside
to be two splits and two merges while c¢) should be
considered a miss-detection of GT2 and over-
segmentation of GT1 and GT3 but the proposed metric
considers it two splits and two merges. Thus b) @nd
are scored the same by the proposed metric while th
RS in ¢) should be considered worse than the R$. of

2) The Etiseo project [Etiseo06] proposes a deatacti
metric that counts correctly detected, misdetected
falsely-detected objects. EPS between objects dhmil
chosen between several ones like the overlappiig ra
or the maximum deviation. The issue of matchingsai
of RS and GT data is done by first computing a wRe-
one EPS. Second some matches are done when the
measurements are above a threshold. Thus this
matching is neither unique nor optimal. In Figurecp
RS1 and RS2 are matched with GT1 and GT2 (RS1-
GT1, RS1-GT2, RS2-GT1, RS2-GT2) and thus no
misdetection is detected.

3) Manoharet al. [Manohar06] propose a frame-
level measurement of object detection (FDA) that
accounts for the objects correctly detected, miss-
detected and falsely-detected. The EPS betweeutsbje
consist of computing the spatial overlap (see ayerl
ratio in Table 2) between ground truth and result
BBOX of two objects matched by a mapping
procedure. Then the sum of the overlaps of objiscts
normalised over the average of the number of ground
truth and result objects in order to build the FDA.

The mapping of object pairs is built using the
“Hungarian algorithm” [Munkres57] with the criterét
FDA maximisation. The mapping procedure entails a
uniqgue comprehensive score. However, one

disadvantage is that there is no minimum for the

overlapping ratio between matched objects, so that
objects are sometimes matches despite having only a
very narrow intersection. In the toy example ofUf&

9, a) the mapping will be GT1-RS1, GT2-RS2 and

GT3-RS3, b) the mapping will be also GT1-RS1, GT2-

RS2 and GT3-RS3, and c¢) GT1-RS1, GT2-RS2 and
GT3-RS3. Thus GT2-RS2 is wrong.

Summary of object detection metrics review:
Manohar's approach seems interesting because it is
consistent with its defined SBM. Others methods can
produce inconsistent scores.

3.3. Object tracking metrics

We propose investigating some object tracking
metrics using the toy example of Figure 10: Three
objects appear at time t1 and are correctly dedecte
(GT1-RS1, GT2-RS2, GT3-RS3) and tracked until time
t3, when GT2 and GT1 cross each other’s path, egusi
a tracking error, and then RS3 is wrongly attacteed
GT1. At time t4, GT2 and GT3 are near, which causes
some position errors for RS2 and RS3. Then thexe ar
no more errors until the end of the sequence & tén

Space

Ground truth object GT1
Ground truth object GT2
Ground truth object GT3

<> Result object RS1
Xt Result object RS2
Time XX Result object RS3
t‘l t‘2 t‘3 t‘4 t‘5 t‘6 o
Figure 10. Toy example of object tracking for ingating
tracking evaluations.

We can divide the methods of object tracking
evaluation roughly into two groups. The first group
proposes to map tracks from GT and RS in a sharing
strategy, that is, each track in the ground trih be
assigned to one or more tracks from the resultsvared
versa. In our example this means that GT1 can be
matched with RS1 and RS3 at the same time (at times
t3 and t4).

1) In Senioret al.’s proposal [Senior01], the metric
that matches system tracks to ground truth traicks f
computes the EPS from the distance (based on kpatia
proximity and the overlap duration) between each
possible pair of tracks from GT and RS, then a
correspondence matrix is constructed using thek trac
distance measure and finally track correspondence



mapping is established by thresholding this matrix.
Each track in the ground truth can be assignedoone
more tracks from the results but not vice versas Th
accommodates fragmented tracks but then the méhod
not able to state anything about some problems
encountered by tracking algorithms (e.g. in Figl®eat
time t4, t5 and t6 the method may interpret RS1-@32

a fragmentation of RS2-GT2 whereas it is clearly a
“merge error”).

2) Brown et al. [Brown05] propose to enhance
Senior's proposal with a two pass match between
results tracks and ground truth tracks in a “system
track-matching” and a “GT-track-matching” but made
with local criteria with possibilities of multiple
matching for a unique track (see Figure 11). Howeve
this method has the same drawback as Senior’s
proposal when it comes to misinterpreting some
split/merge problems.

1. System-Track-Matching — for every system
track find all “GT-matches”

“GT-match” = Temporal-Overlap
Spatial-Overlap
Temporal-Overlap = overlap/(system duration)

Spatial-Overlap = GT centroid inside

E1% enlarged system bounding box

If cumulative temporal/spatial overlap <
T1, then system track has

insufficient matches and is labelled as
FP.

If multiple GT-matches, then this system
track has merge error = # matched GT tracks

AND

2. GT-Track-Matching — for every GT track find

all “system-matches”
“System-match” =

Spatial-Overlap

Temporal-Overlap AND

Temporal-Overlap = overlap/(GT
duration)
Spatial-Overlap = system  centroid

inside E2% enlarged GT bounding box

If cumulative temporal/spatial overlap <
T2, then GT track has

insufficient matches and is labelled as
FN.

If multiple system-matches, then this GT
track has fragmentation error =

# matched Sys tracks

Figure 11. GT/RS Matching procedure for trackingpmsed
by Brownet al.

The second group of methods for object tracking
evaluation proposes mapping between tracks from GT
and RS that are chosen over a large set of matching
possibilities using the maximisation of a criterion

3) Manoharet al. [Manohar06] propose a tracking
metric similar to their object detection evaluation
scheme but in which “objects” are changed by “tsdck
They try to match tracks from results and grounudhtr
in order to maximise the spatial overlap (whictthis

EPS) as a whole, again using the “Hungarian
algorithm”. However, the underlying SBM does not
integrate the notion of misidentification of thadking
algorithm. (e.g., in Figure 10 the mapping will B&1-
RS1, GT2-RS2 and GT3-RS3 and the misidentification
that starts at time t3 is not detected and jush ssea
location error). Furthermore, as shown by Bermeetli

al, this kind of approach can become non intuitive
[Bernardin08], e.g. Figure 12: For Case 1, RSl
matched with GT1, causing 2 mismatches at timentll a
t2; for Case 2, RS1 matched with GT1, yielding 1
mismatch at time t1; and for Case 3, RS2 matchéd wi
GT1, causing 2 mismatches at times t5 and t6. The
three error’s cases are semantically similar buegric

that matched a unique GT track to a unique RS track
would give a better score for Case 2.

Space
Case 1: B——Hﬂ
t t f } + t >
tl t2 t3 4 t5 t6
Space
Case 2: 0 E—H’H Ground truth object GT1
} % T t % % » O Result object RS1
T O Result object RS2
Space
Case 3: —0
—— LS

0 5 ot 6 6
Figure 12. Three different cases of a similar idgrstvap
error during tracking.

4) Bernardin et al. [Bernardin08] propose the
CLEAR MOT Metrics based on two values: MOTP
(Multiple Object Tracking Precision) (2), which
measures, as EPS, the error of positions of tracked
objects, and MOTA (Multiple Object Tracking
Accuracy), which measures the number of occurrences
of errors such as loss of tracks and mismatchesy Th
count mismatches errors only once at the frame avaer
change in GT-RS mapping is made (when each
mismatch starts). The SBM thus handles problemis suc
as misidentification that can occur at anytingk. is the
distance between a result object and its corrafipg
ground truth object at timd. C, is the number of
matches found for timé. The matching is driven by
chronological order. When new tracks start they are
mapped with the “Hungarian algorithm” but only for
this first frame of the tracks. Thus it is not thest
possible matching in terms of MOTP maximisation on
the overall time sequence. Figure 13 shows an ebeamp
Following the mapping procedure we have
MOTP=10.83. Now, if we reverse all the positions of
objects between time t3 and t1, we hal@®TP=15.16

(the computation can be found in [desurmont09].QsTh
we have two different MOTP for two semantically
similar cases.
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Space
Ground truth objectGT1
Ground truth object GT2
O Result object RS1
QO Result object RS2
] ] |Tlm£
t1 t2 t3
Time | Ground truth Time | Ground truth Time | Ground truth
tl 1 2 t2 1 2 t3 1 2
R R R
Rlal o |21 | |B]s] 2 |20 [§]2] 23] 4
S S S
vl2]22] 8 vl2l 22| 3 el2l 2 |21

Distance between ground truth objects and result objects

Figure 13. Example of tracking that shows a probienthe
MOTP metric.

Summary of object tracking metrics:Manohar’s
approach achieves the best matching of RS and &T bu
the underlying SBM output does not allow any
statements about misidentification. In contrast,
Bernardin’'s approach takes account of
misidentification, but the procedure for findingeth
“best” mapping is not optimal: the score is maxixis
but only frame-by-frame, not for the whole sequence
Such state-of-the-art approaches highlight the tlaat
there is no consistent object tracking evaluati@trim

4. Conclusion of metrics proposals’ review

We reviewed and analysed some evaluation metrics
highlighting some underlying concepts that we tried
formalise. Indeed the analysis was conducted with
regard to four important aspects, namely, the metri
type, the EPS (entity precision score), the SBN\tgay
behaviour model) and the procedure to choose a
mapping for GT and RS.

We summarise our review in Table 3. Three
reviewed metrics produce consistent scores in asg c
(with respect to their SBM): Trecvid08's proposal f
event detection with interval duration, Desurmorg06
proposal for duration-less event detection and Mano
et al.’s proposal for object detection. We haven't found
any object tracking metric that is fully consistent

We don't claim that any metric is good or bad.
Indeed for some reviewed metrics, the SBM is very

complex and thus it is difficult to build an evatioa
algorithm that avoids any inconsistency. It maywbg
there is no consistent metrics for object tracking
systems. Moreover some reviewed metrics may have
been mis-interpreted due to their complexity anthto
lack of details provided by the available documents
describing the metrics.

Based on our review, we propose some guidelines
when designing a new metric:

« Define clearly the SBM with the real possible
errors of any system that could be evaluated,

e Define clearly the rules of possible match
between entities of RS and GT,

« Define a deterministic score for each possible
local error (EPS and qualitative score),

* (Optional but useful for practical reason) find
an optimised fast way to browse all possible
mappings and related global scores to find the
optimal solution (e.g. with dynamic
programming algorithm.)

Next generation metrics may include all ideas ef th
reviewed metrics in order to cope with the compiexi
of all applications as well as the need of objextwnd
consistent evaluation.
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System Behaviour Model Comments about the

Reference Metric type Entity Precision score (EPS) (SBM) mapping procedure
Function of the
CREDS, Event delay/anticipation and of ~ Temporal shift, correct, fals Not fully defined, can
Bruneaut05 detection duration ratio of RS and GT and non detection produce inconsistent scores
events.
Sum of the intersection of tim . Uses optimal one-to-one
Trecvid08 e, interval and decision INEMMEIENE S, COUTEES, il matching [Munkres57]:
detection ' and non detection 9l '
confidence consistent
Duration-less . Uses dynamic time warping
. . Temporal shift, correct, falst :
Desurmont06 event Absolute time difference : optimal one-to-one
q and non detection o -
detection matching:consistent
NascimentoO Object Binary: 1 if there is a spatial I STl colrrect, 1l Can produce inconsistent
; . . - and non detection, merge,
4 detection intersection, O if not . . scores
split and split-merge
Etise006 Object gggﬁ;al ﬁ’ﬁﬁgg'?ﬁgﬁig Spatial shift, correct, false =~ Can produce not optimal
detection pping ratio, and non detection scores
deviation, etc.
. . . Uses optimal one-to-one
Manohar06 Obje?t Spatial overlap ratio IPEE ST correct, lilize matching [Munkres57]:
detection and non detection .
consistent
. Spatial proximity and the Spatial shift, correct, false . .
Senior01 Obje?‘Ct overlap duration between eac  and non detection, split of CEID [TEE e MeemekiEt
tracking . ; scores
possible pair of tracks tracks
. Spatial proximity and the Spatial shift, correct, false does misinterpret some
Object : ; : X
Brown05 : overlap duration between eac and non detection, split anc  split/merge problems, can
tracking . : ) .
possible pair of tracks merge of tracks produce inconsistent scores
Manohar06 Object Spatial overlap ratio for the  Spatial shift, correct, false = Can produce inconsistent
tracking objects along the track and non detection scores
Munkres57 one-to-one
! tracking Tracking Precision (2) ' ' P

Bernardin08

misidentification for the whole track, can

produce inconsistent scores

Table 3. Summary of reviewed metrics according étrimtype, EPS and SBM.



