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Abstract

In this paper, we address detection of activities in long-
term untrimmed videos. Detecting temporal delineation of
activities is important to analyze large-scale videos. How-
ever, there are still challenges yet to be overcome in order to
have an accurate temporal segmentation of activities. De-
tection of daily-living activities is even more challenging
due to their high intra-class and low inter-class variations,
complex temporal relationships of sub-activities performed
in realistic settings. To tackle these problems, we propose
an online activity detection framework based on the dis-
covery of sub-activities. We consider a long-term activity
as a sequence of short-term sub-activities. Then we utilize
a weakly supervised classifier trained on discovered sub-
activities which allows us to predict an ongoing activity be-
fore being completely observed. To achieve a more precise
segmentation a greedy post-processing technique based on
Markov models is employed. We evaluate our framework on
DAHLIA and GAADRD daily living activity datasets where
we achieve state-of-the-art results on detection of activities.

1. Introduction

With the proliferation of video recording devices captur-
ing countless hours of videos on a daily basis, automatic
content analysis is in a high demand. Since most of the
recordings are untrimmed, it is the objective of activity de-
tection to detect various occurrences of activities that hap-
pen throughout these long-term videos. Given an activity,
the detection algorithm should localize it both in time and
space providing an answer to ”what is the activity?” and
”where it happened in the video?” questions. Although nu-
merous methods have been proposed [26, 5, 24] trying to
improve activity recognition in videos, activity detection
has become a more elusive target to achieve and the most
crucial step in video activity analysis. Activity detection
is more challenging since long-term untrimmed videos cre-

ate larger and more versatile spatiotemporal volumes result-
ing in a higher search space. A favorable activity detec-
tion algorithm detects activities of interest while maximizes
the temporal overlap of the ground-truth and its intersection
with the detected boundaries.
Offline activity detection methods first potentially localize
the activities in temporal domain by processing the whole
video. Then to recognize the activities in the temporally de-
tected intervals, a trained classifier based on extracted fea-
tures across video frames is applied to form the final detec-
tion result. On the other hand, online approaches that are
intrinsically unable to have access to the whole video in the
first place, are compelled to perform both localization and
classification steps simultaneously. In the case of daily liv-
ing activities (ADL), the intended activity can go on for a
long time. In addition to the original challenges, an early
detection has to take place before the activity is fully ob-
served. To be capable of this, online solutions should also
cope with the issues regarding processing time complexity
in order to produce real-time predictions. Therefore, reli-
able yet costly features cannot be directly applied due to
these real-time processing requirements.
Previously, many methods have been proposed [6, 10, 14]
to generate precise localization and well-anchored tempo-
ral segmentation of activities. In spite of these efforts,
the small size of available datasets with a limited number
of samples was an important issue hindering these chal-
lenges from being effectively resolved. In recent years,
this problem is adequately remedied with the introduction
of new challenges and large-scale datasets. For example,
THUMOS’14 dataset [11] recollected a large number of
untrimmed Youtube videos from 20 different activity cat-
egories providing a long-term and diverse set of activities.
Similarly, ActivityNet [7] comprises 203 activity classes
where each class includes an average of 137 untrimmed
videos. Equipped with such datasets, the research commu-
nity has become more motivated to work on the activity de-
tection problem. Unlike general activity detection datasets
that use videos from the web, there is another category
of datasets that in particular focuses on activities of daily-
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living [25, 12, 13] (e.g. cooking, reading, answering the
phone, and etc.). Such datasets introduce new challenges
since the complexity of ADLs goes beyond activities from
the web which have a high inter-class variability. Usually,
diverse ADLs are performed with very similar motion pat-
terns (even with no motion such as in reading) which makes
them hard to discern. This leads to low inter-class vari-
ability and a vague boundary between person and the back-
ground due to the subtle variation of consecutive frames.
For online detection of activities, conventional sliding win-
dow approaches group sub-parts of activities with various
granularities to generate proposals that fit activities with
varying lengths. Inspired by these approaches, we propose
a novel framework to precisely detect temporal boundaries
of ADLs in long-term untrimmed videos with a two-phase
algorithm. In the first phase, the candidate sub-activities of
each activity class in the dataset are generated by clustering
which employs aggregated frame-level features of a fixed
window size. The goal is to train a classifier for each activ-
ity to recognize its sub-activities. The second phase refines
noisy detections at the activity boundaries to improve the
precision of temporal segmentation.
Our contributions can be summarized as follows:

• We introduce a new online frame-level activity de-
tection pipeline which uses single-sized window ap-
proach. A weakly supervised classifier is trained di-
rectly on sub-activities discovered by clustering and
operates on test videos to capture sub-activities of long
videos within a fixed temporal window.

• To alleviate the noisy detections especially in ac-
tivity boundaries, we propose a novel greedy post-
processing method based on Markov models.

• We have extensively evaluated our proposed method
on untrimmed videos from DAHLIA [12] and
GAADRD [25] datasets and achieved state-of-the-art
performances.

2. related Work
For a long time, there were many approaches pro-

posed to solve the problem of temporal activity detection
[14, 6, 10, 23]. However, some approaches required cer-
tain constraints and used limited data, for example, the au-
thors in [14] focused only on the detection of “drinking”
activity in movies, and used one movie for training and an-
other one for testing. In [6] depending on movie scripts,
the authors used a weakly-supervised clustering method to
segment actions in videos. In [10] the authors proposed a
framework for joint video segmentation and action recog-
nition, the recognition model is trained using multi-class
SVM, and segmentation is done using dynamic program-
ming. In [21] the authors used improved dense trajectories

and multi-scale sliding window approach with many differ-
ent window sizes for detection. The method proposed in
[16] depends on 1D temporal convolutional layers to di-
rectly detect action instances in untrimmed videos. In [2]
the authors proposed an end-to-end deep recurrent architec-
ture that outputs action detections directly from a single-
pass over the input video stream. In [27], an end-to-end Re-
gion Convolutional 3D Network was introduced, it encodes
the video streams using a 3D convolutional network, then
generates candidate temporal proposals followed by clas-
sification. Action tubes [8] was one of the successful ap-
proaches for activity detection, the authors used a two-stage
approach to first select the regions which contain human
motion, and extract spatial and temporal features from these
regions along all frames, followed by SVM classification to
label each activity.
For daily-living activities, fewer methods and datasets for
detection were introduced. In [1] the authors used a sim-
ple method for detection depending on the person’s motion;
they segment chunks for successive frames that contain mo-
tion, then pass it to action recognition stage. The authors in
[15] proposed an end-to-end Joint Classification Regression
architecture based on LSTM network for both classification
and temporal localization. In [20, 19] unsupervised method
was used to detect the activities depending on the trajectory
of people representing their global motion inside scene re-
gions, the proposed unsupervised model defines these zones
automatically during training and use it in test time to detect
the activities.
Recently, the DAily Home LIfe Activity Dataset (DAHLIA)
was published [25], which is by far the biggest public
dataset for detection of daily-living activities. Various
methods have been applied to this dataset providing base-
lines: Online Efficient Linear Search (ELS) [18] utilized
the sliding window approach along with features from 3D
skeletons in each frame to form a codebook then train SVM
classifier. Max-Subgraph Search [4] represents action se-
quences as a space-time graph, then try to identify the
max-subgraphs that represent video subsequences having
an activity of interest. Deeply Optimized Hough Trans-
form (DOHT) [3] utilized a voting based method. Each
frame codeword has a certain weight to vote for the label of
neighboring frames, and the weighting function is learned
using a new optimization method (mapped to a linear pro-
gramming problem). In our work, we used DAHLIA as
the main dataset to test our proposed approach, along with
smaller dataset such as GAADRD [12] to show robustness
of the framework when different types of descriptors (hand-
crafted or deep) are used. Our approach overcomes the is-
sue of using multiple-scale window proposals and utilizes
the idea of sub-activity discovery for early detection of long
activities which is more useful for real-life applications.
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Training sub-activity detector

Cooking activities in Training set
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Figure 1. The process of extracting PC-CNN features and training of a weakly supervised sub-activity detector for the ”Cooking” activity.

3. Proposed method
3.1. Overview

Our framework produces frame-level activity labels in
an online manner by two major steps followed by a novel
greedy post-processing technique. In order to handle long
activities, the activities are decomposed into a sequence of
fixed-length overlapping temporal clips. We then extract
deep features from the clips. In order to characterize each
activity with constituent sub-activities, we use K-means to
cluster that activity’s clips and construct a specific sub-
activity dictionary. Therefore, we will have one sub-activity
dictionary for each one of the activities. We represent an
activity sequence with sub-activity assignments using the
trained dictionary. Then, for each activity class, we train
a binary SVM classifier (one versus all) based on its sub-
activities. The trained classifiers are then simultaneously
used to produce frame-level activity labels with the help of
a sliding window architecture. It should be noticed that un-
like multi-scale sliding window methods [23, 21], we only
use a single fixed-size temporal window thanks to recogni-
tion of fixed length sub-activities. Finally, a greedy, Markov
model based, post-processing technique is used for refine-
ment of the obtained activity boundaries.

3.2. Feature Extraction

To align with the requirements of an efficient online de-
tector, instead of applying feature extractors in a holistic
manner, we use a local feature extractor. To avoid redun-
dancy of holistic methods that misleads the classifier, we
use a person-centric approach that rather than extracting not
so useful static background features at every frame, focuses
on the spatial context of a person in the scene. This ap-
proach not only helps the framework to obtain the best dis-
criminative representation of the activities but also reduces
the processing cost of expensive yet powerful CNN features
by focusing on smaller patches. Inspired by CNN features
introduced in [5], we name our feature Person-centric CNN

or PC-CNN features (Fig. 1). Meanwhile, our framework is
designed to be generic toward different feature types where
the performance of the framework can be improved by re-
placement or modification of the features. To extract the
features, first, Single Shot MultiBox Detector (SSD) [17] is
used to get a bounding box around the person. SSD detector
is used because of its accuracy and real-time performance
without requiring region proposal network. The bounding
box is extended by 20 pixels in the right, left and bottom of
the box and resize to 244x244 in order to capture contextual
information of the scene around the person. The resized im-
ages are fed to ResNet-152 [9] and deep features from last
flatten layer are extracted resulting in a feature vector of
size 2048. The temporal context of the videos is handled by
the aggregation operator using max and min pooling. The
frame descriptors are combined over time where the pool-
ing mechanism helps to choose more salient values of the
feature maps.

3.3. Sub-activity Recognition

Activity detection in long-term videos such as in ADLs
is challenging due to temporal evolution of the activities. In
particular, it is critical for an online framework to be able
to detect an activity segment just by observing a fraction of
a long activity. For instance, it is not efficient to wait until
the end of “Cooking” activity to detect it. While Recurrent
Neural Networks (RNN) are popular for predicting activi-
ties at each time by considering the observation at that time
and previous hidden states of the model and model temporal
progression of activities, these models fail due to not prop-
erly penalizing the incorrect predictions. In order to incor-
porate such properties in an activity detection framework,
different from these methods, we use a weakly supervised
classifier to discover sub-activities and predict the intended
activity.
Consider a collection of V videos collected from “Cook-
ing” instances in a dataset where each video consists of F
frames (Figure 1). First, we decompose all the videos to a
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Figure 2. Visualization of temporal detection before and after post-processing for Subject 36 from camera view 1 in DAHLIA dataset
(S36 A1 K1). First row is ground truth, second is online recognition, and finally the post-processed result.

sequence of fixed-size segments (250 frames). There is 50
frames overlap between adjacent segments. Although there
might be some redundant segments without containing any
semantic interpretation, most of the segments will include
meaningful sub-activities of the main activity. Moreover,
clustering process handles the redundancy of the segments
by assigning them to the main sub-activity clusters. We then
extract PC-CNN features from the obtained segments that
result in a pool of features (f = {P (t)}t=1:250 where P is
the PC-CNN feature extractor). The final feature vector Fall

is a concatenation of the features of the obtained segments.
In order to build the sub-activity representation of the main
activity, we run K-means to group the feature segments and
produce sub-activity dictionary where the cluster centers
represent discovered sub-activities. Using the sub-activity
dictionary we can assign clusters to the video segments and
represent a long video as a sequence of sub-activities. This
is done by mapping the segments to the nearest sub-activity
in the dictionary. We have selected K-means clustering al-
gorithm to discover sub-activities:

argmax
C

K∑
j=1

∑
Pall(i)∈Cj

(‖ Fall(i)− µj ‖2) (1)

where C = {C1, . . . , CK} is a set of clusters represent-
ing sub-activities and µj is the mean of the feature com-
ponent values in cluster Cj . Therefore, given a certain
value K, we use K-means algorithm over spatiotempo-
ral features to generate the set of discovered sub-activities
(ψ = {ψ0, . . . , ψK−1}. The exact number of the sub-
activities is not known since the sub-activities are not la-
beled in the evaluated datasets. Therefore, to infer the ideal
number of sub-activities (k) automatically Bayesian Infer-
ence Criterion (BIC) model selection is utilized [22]. To
calculate the BIC score, assume the featuresFall and a set of
alternative models are given. To chose the best model BIC
score representing the posterior probabilities of the models

are calculated:

BIC(Mj) = l̂j(Fall)−
pj
2
.logR (2)

l̂j(Fall) is the log-likelihood of the jth model. pj is the
number of parameters in Mj and R is the total number of
data points belonging to the centroids under consideration.
The model with the highest BIC score is selected as the
best model and its k value is taken as the ideal number of
sub-activities for a given activity. The sub-activity dictio-
nary generated with the ideal K is used for assigning sub-
activities to the video segments. In order to recognize sub-
activities, we train an SVM classifier using PC-CNN fea-
tures of the training segments and the assigned sub-activity
cluster codes as their labels. Give a test video segment,
the classifier can infer what sub-activity it contains. In the
training process of the classifier, the segments from a tar-
get activity are taken as positive samples and conversely, all
the other segments are considered as negative samples. The
same sub-activity discovery process is repeated for all other
activities in the dataset to learn their sub-activities. The ob-
tained set of classifiers are used in an online sliding window
configuration with fixed length and stride to recognize sub-
activities of a given test video. In the sliding windows, the
previous n frames (n=250) are employed to label the current
frame (frame-level labeling).

3.4. Post Processing

Refinement of the composed activities by the sub-
activity proposals is crucial to develop an efficient activity
detection framework. While sub-activity detector uses local
window information to generate frame-level recognition, a
refinement process can consider the context of the whole ac-
tivity. After prediction of the frame-level sub-activity pro-
posals, we link them to form the spatiotemporal sequence of
sub-activities that helps to detect the entire video. Usually,
false detection of sub-activities either occurs in the activity
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(a) Cooking (b) Working (c) Prepare Drink (d) Watering Plant
Figure 3. Instances of daily activities provided in DAHLIA (a and b) and GAADRD (c and d) datasets.

boundaries where the borders are vague or in the middle of
longer activities where common sub-activities are confused.
This is mainly because of similar sub-activities co-exist in
different activities. For example, the sub-activity detector
can get confused between “Using Sink” sub-activity which
is possessed in common between “Cooking” and “Washing
Dishes” activities.
A greedy post-processing approach benefiting from dura-
tion (average duration of activities obtained from training
instances) and temporal progression information of activi-
ties is adopted to resolve this issue. We can assume that
usually there is a temporal order among the sub-activity
sequences of a realistic ADL. For example, there is a
high probability that the “Eating” activity is followed by
a “Washing Dishes” activity. Markov models are suitable to
model temporal sequences. We train a model that learns the
sub-activity links from the training data. First, the model
generates a stochastic Matrix M where each entry Mi,j is
a probability showing that activity i is followed by activity
j. Then, during post-processing, the Markov matrix is used
to check all consecutive activities and if the probability of
Mi,j is less than a certain threshold, activity j is considered
as false detection and takes the same label of activity i (Fig-
ure 2).

4. Experimental Results
The performance of the proposed framework is evaluated

on two public daily living activity datasets. The DAHLIA
[25] consists of 153 long-term videos (51 videos recorded
from 3 different views) recorded from 44 people perform-
ing ADLs. The average duration of the videos is 39 minutes
with 7 different actions (and Neutral class). The consid-
ered ADLs are: cooking, laying table, eating, clearing ta-
ble, washing dishes, housework, and working (3 a,b). The
GAADRD dataset [12] consists of ADLs performed by 25
older adults. It includes 7 ADLs: reading article, water-
ing plant, preparing drug box, preparing drink, turning on
radio, talking on phone and balancing account with no neu-
tral class (Figure 3 c,d).
The evaluations carried out following cross-subject pro-
tocol. In order to evaluate the proposed approach, met-
rics based on frame level accuracy have been used for the
evaluation purposes. For each class c in the dataset, we

assume TPc,FPc,TNc and FNc as the number of True
Positive, False Positive, True Negative and False Negative
frames respectively. Therefore, Frame-wise accuracy is de-
fined as: FA1 =

∑
c∈C TPc∑
c∈C Nc

where Nc is correctly labeled
frames compared to the ground-truth. F-Score is defined
as: F − Score = 2

|C|
∑

c∈C
Pc×Rc

Pc+Rc where P c and Rc are
precision and recall metrics of class c respectively. We also
define Intersection over Union (IoU) metric as:

IoU =
1

|C|
∑
c∈C

TPc

TPc + FPc + FNc
(3)

where C is the total number of action classes.
Tables 1 and 2 show the results of applying the developed
frameworks on GAADRD and DAHLIA respectively. It can
be noticed that in DAHLIA dataset we significantly outper-
formed state-of-the-art results in all of the categories ex-
cept in camera view 3 when the F-Score metric is used
(we underperformed by a small margin of 1%). While we
surpass ETS [18] and Max Subgraph [4] methods with a
big margin, the closest performance to ours is DOHT [3]
which utilizes both skeleton and dense trajectory descrip-
tors. Obtaining similar results from different camera views
highlights the robustness of our method to viewpoint varia-
tions and different types of occlusion. In order to compare
the performance of our framework using hand-crafted and
deep features, we reported the results of GAADRD dataset
with the two types of features. As it can be seen, even with
hand-crafted features our framework produces comparable
results. GAADRD dataset is more challenging for activ-
ity detection since the videos are not long enough and the
frame rate is very low (e.g. “Preparing drug box” and “Wa-
tering Plant” activities have instances with only 5-10 frames
long). This makes sub-activity discovery and refinement
process very challenging. Moreover, as it is recorded from
real patients, the temporal order of activities are arbitrary
and unpredictable (even sometimes some sub-activities are
forgotten).

Method FA 1 F score IoU
simple sliding window(HOG) 0.68 0.52 0.40
simple sliding window(PC-CNN) 0.61 0.55 0.44

Table 1. Detection results obtained on the GAADRD dataset.
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ELS [18] Max Subgraph Search [4] DOHT (HOG) [3] Sub Activity
FA 1 F score IoU FA 1 F score IoU FA 1 F score IoU FA 1 F score IoU

View 1 0.18 0.18 0.11 - 0.25 0.15 0.80 0.77 0.64 0.85 0.81 0.73
View 2 0.27 0.26 0.16 - 0.18 0.10 0.81 0.79 0.66 0.87 0.82 0.75
View 3 0.52 0.55 0.39 - 0.44 0.31 0.80 0.77 0.65 0.82 0.76 0.69

Table 2. The activity detection results obtained on the DAHLIA. Values in bold represent the best performance.

5. Conclusion
In this paper, we proposed a novel framework capable of

temporal segmentation and classification of daily activities
in long-term untrimmed videos. We suggested a person-
centric feature (PC-CNN) based on SSD detector that sat-
isfies required processing efficiency of online systems. We
then proposed a weakly-supervised method for discovery of
sub-activities of long-term activities which benefited from
clustering and model selection methods to find the optimal
sub-activities of the given activities. Finally, assuming tem-
poral progression of sub-activities, we developed a greedy
algorithm based on Markov models in order to refine noisy
sub-activity proposals in middle and boundary regions of
long activities. We evaluated the proposed method on two
daily-living activity datasets and achieved state-of-the-art
performances. In future work, we are going to improve
the sub-activity discovery algorithm by making it capable
of distinguishing similar sub-activities in two different ac-
tivities.
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