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Globality–Locality-Based Consistent Discriminant
Feature Ensemble for Multicamera Tracking

Kanishka Nithin and François Brémond

Abstract— Spatiotemporal data association and fusion is a1

well-known NP-hard problem even in a small number of cameras2

and frames. Although it is difficult to be tractable, solving them3

is pivot for tracking in a multicamera network. Most approachesAQ:1 4

model association maladaptively toward properties and contents5

of video, and hence they produce suboptimal associations and6

association errors propagate over time to adversely affect fusion.7

In this paper, we present an online multicamera multitarget8

tracking framework that performs adaptive tracklet correspon-9

dence by analyzing and understanding contents and properties10

of video. Unlike other methods that work only on synchronous11

videos, our approach uses dynamic time warping to establish12

correspondence even if videos have linear or nonlinear time13

asynchronous relationship. Association is a two-stage process14

based on geometric and appearance descriptor space ranked15

by their inter- and intra-camera consistency and discriminancy.16

Fusion is reinforced by weighting the associated tracklets with a17

confidence score calculated using reliability of individual camera18

tracklets. Our robust ranking and election learning algorithm19

dynamically selects appropriate features for any given video.20

Our method establishes that, given the right ensemble of features,21

even computationally efficient optimization yields better accuracy22

in tracking over time and provides faster convergence that23

is suitable for real-time application. For evaluation on RGB,24

we benchmark on multiple sequences in PETS 2009 and we25

achieve performance that is on par with the state of the art.26

For evaluating on RGB-D, we built a new data set.27

Index Terms— XXXXX.AQ:2 28

I. INTRODUCTION29

THE goal of this paper is to: 1) provide a real-time solution30

with good accuracy to estimate states of multiple targets31

relative to its complement in multicamera environment and32

2) conserve the identities of targets and produce unfragmented33

long trajectories under variations in appearance and motion34

over time. In spite of the number of solutions, real-time multi-35

target tracking across multiple camera network with reasonable36

overlap is still considered most challenging and unsolved37

computer vision problem. This is mainly due to placement of38

cameras, time asynchronous cameras, multicamera calibration,39
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distortions, parallelism, fuzzy data association, and fusion 40

across network of cameras. Despite challenges, multicamera 41

systems are crucial because they help in obtaining more visual 42

information about the same scene that complements each 43

other, thereby helping in overcoming traditional deficits of 44

single-camera object tracking and improving higher vision 45

tasks such as activity recognition and surveillance. 46

Offline and global association methods usually require 47

detection and tracking results for entire sequence prior to data 48

association. This leads to high computation due to iterative 49

associations across multiple cameras for generalizing globally 50

optimized tracklet association and fusion; therefore, they are 51

difficult to apply for real-time applications. Global approaches 52

are also more exposed to local optima solutions compared with 53

online methods, whereas our method performs online associ- 54

ations and fusion based on optimal frame buffer containing 55

the information gathered till the present frame. Hence, our 56

approach reduces the ambiguity in global associations and 57

it produces competing performance to the state of the art 58

while being suitable for real-time applications. As a byprod- 59

uct, shortcomings of online frame buffer-based tracking are 60

implicitly overcome by multicamera system setup. 61

Unlike some of works mentioned in Section II, the proposed 62

online multicamera tracklet association is designed consider- 63

ing two key criteria—inter- and intra-camera consistency and 64

discriminability of trajectory features. Our method incremen- 65

tally learns and updates the discriminative appearance model 66

belonging to each trajectory and ranks them based on consis- 67

tency and discriminancy of the candidate tracklets. We also use 68

3D projected geometric information in conjunction with long- 69

term appearance features for efficient data association even in 70

challenging situations. 71

In our approach, we use planar homography to establish 3D 72

common referential between cameras onto which the 3D points 73

of each tracklet from all cameras are projected. Dynamic 74

time warping (DTW) algorithm is used to find one-to-one 75

frame mapping between linear or nonlinear time asynchronous 76

cameras. DTW also selects candidate tracklets for association. 77

Tracklet association is modeled as a sequence of complete 78

bipartite graphs. Association score for each pair of tracklets 79

is calculated as ensemble of geometric and appearance fea- 80

tures weighted by globality–locality consistent discriminant 81

score (GLCDS). GLCDS is learnt as an estimate of discrimi- 82

nancy weighted consistency score. Discriminancy of individual 83

features is calculated as fisher score of that feature over entire 84

tracklets. Consistency of each feature is calculated as deviation 85
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of that feature over a distribution belonging to the tracklet86

under consideration. Fusion is performed using confidence87

score-based adaptive weighting method. This enables correct88

and consistent trajectory association and fusion even if the89

individual trajectories have inherent noises, occlusion, and90

false positives.91

Our method has the following advantages.92

1) We integrated measures that account properties, nature93

of video, and its contents for online feature selection94

and combination. It automatically elects the best feature95

ensemble based on the video contents and properties.96

2) We lack real-time state-of-the-art approaches in multi-97

camera tracking. This is attributed to the heavy opti-98

mizers used in such approaches. Our method reduces99

the burden of relying on such heavy optimizers by100

concentrating on feature engineering. Our approach pro-101

duces state-of-the-art comparable performance in real102

time by avoiding computationally expensive optimiza-103

tion, metrics, and data-gathering (fusion) strategy, thus104

significantly influencing on the scalability of network as105

well.106

3) Our cost function allows us to efficiently model mul-107

tilevel relationship among tracklets such as a spread108

of global, local, and motion features used in our109

method.110

4) Our approach leverages depth information upon avail-111

ability to complement RGB data to overcome short-112

comings of RGB cameras and other issues like113

privacy.114

The reminder of this paper is divided into the following115

sections. In Section II, we review some significant previous116

work and how our method differs from them. In Section III, we117

review multicamera synchronization and multiview geometry118

used in our approach. Next, in Section IV, we discuss how119

we formulate trajectory association problem, followed by120

Section V that describes calculation of trajectory similarity121

metrics. Section VI briefs on consistency and discriminancy122

of cross-view tracklets and GLCDS calculation. Trajectory123

fusion is introduced in Section VII, the experimental results124

are presented in Section VIII, and finally, Section IX concludes125

this paper.126

II. RELATED WORK127

In recent years, there have been comparatively less mul-128

ticamera data association and tracking approaches proposed.129

Most of the multicamera approaches in recent times have130

concentrated mainly on offline approaches. On a general basis,131

approaches can be outlined based on: 1) fusion time—either132

early fusion [2] or late fusion [3] and 2) the search space—133

greedy, i.e., temporally local (online) or global optimization134

with longer temporal stride (offline) [4], [5].135

Approach [1] extends the work of [6] to jointly model mul-136

ticamera reconstruction and global temporal data association137

using MAP. They use global min cost flow graph for tracking138

across multiple cameras. Berclaz et al. [6] have detection based139

on probability occupancy map. They also use flow graph-140

based method for solving both mono-camera and multicamera141

setup within a restricted and predetermined area of interest. 142

The drawback of such min cost flow graphs that currently 143

own the state of the art is that they are not real time as 144

the complexity increases with more cameras in the network 145

since combinations of observations from multiple cameras 146

increase exponentially and the costs need to be predefined. 147

Min-flow graphs cannot work with higher order motion models 148

as their cost function cannot be factored into product or sum of 149

edges of adjacent nodes. Reference [19] solves the association 150

problem by first solving 3D hypothesis from multiple camera 151

object detection fusion and then by solving temporal data 152

association. The drawback is unnecessary overhead where 153

the problem is diversified into two separate problems of 3D 154

reconstruction fusion at central server and solving to assign 155

back the reconstructed fusion into 3D tracklets established by 156

individual sensors. 157

Evans et al. [7] use early fusion strategy for detection 158

inspired from [2] and extend it for multicamera tracking 159

and estimating object size in multicamera environment. Their 160

approach leverages multiview information into early stage 161

(detection) of pipeline to remove ghosts. Since the synergy 162

map they use for ghost suppression also suppresses existing 163

objects in the previous frame, they cannot perform tracking by 164

associating detections moment to moment. Multivariate opti- 165

mization is performed on object size together with probable 166

location of object in the next frame. The objective function 167

involves both object size estimate and tracking information, 168

and the solution may be suboptimal and is not real time. 169

By nature of their ghost suppression method that involves 170

intricate assumptions such as line of view from camera to 171

object assumptions, it makes it difficult to track objects in 172

cluttered or crowded environment. 173

Anjum et al. [8] have presented an unsupervised inter- 174

camera trajectory correspondence algorithm. For the asso- 175

ciation step, they propose a hybrid approach: project the 176

trajectories from each camera view to the ground plane in 177

order to find associations among trajectories, and then, make 178

image-plane reprojections of the matched trajectories. These 179

methods rely entirely on goodness of homography, smallest 180

margin of error in calibration gets added up during initial 181

projections and reprojections. Thus, these methods are suscep- 182

tible to introduce errors that end up being association errors. 183

Sheikh et al. [9] have proposed a target association algorithm 184

that addressed the problem of associating trajectories across 185

multiple moving airborne cameras with a constraint that at 186

least one object is seen simultaneously between every pair of 187

cameras for at least five frames. Since this method uses object 188

centroid as feature points to recover the homography and later 189

uses RANSAC to find out best subset of such points to find 190

correspondence, it works well when in sparse environment, but 191

in dense environment, it may fail. Their approach assumes that 192

all the objects to be tracked are on the common ground well 193

aligned with all the cameras present in the network. 194

To address the shortcomings of the methods discussed 195

above, we propose a framework that synthesizes local fea- 196

ture level information into the global object level based on 197

consistent discriminant election and weighting for multitarget 198

tracking. 199
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Fig. 1. Pipeline of our approach.

III. PROPOSED METHODOLOGY200

General system architecture and pipeline can be seen in201

Fig. 1. Multiple worker threads process each camera in a202

network at the same time. All threads perform detection and203

tracking as independent worker nodes. After a buffer time,204

these threads synchronize to push their data onto the master205

thread where all key multicamera-related work is done, i.e.,206

building online tracklet appearance models, local features, 3D207

projection, online learnt feature ensemble, association, and208

fusion.209

IV. MULTICAMERA SYNCHRONIZATION210

AND MULTIVIEW GEOMETRY211

Elementary and most key settings for our multicamera212

tracking system are as follows.213

1) The cameras in the network need to be time synchro-214

nized with respect to reference camera C ref . Here by215

reference camera, we mean a chosen camera onto which216

the geometric data from other cameras in a network are217

projected to.218

2) Individual camera calibration for projection onto a 219

3D world W Ck belonging to that camera. 220

3) Multiview homography that establishes a mapping 221

between world of camera k W Ck and world of reference 222

camera W ref
223

Most of previous approaches assume that cameras are time 224

synchronized, but we also handle the case of linear and non- 225

linear asynchronization between the cameras. If the cameras 226

are linearly asynchronous, we need to map each frame in 227

camera Ck to corresponding frame in reference camera C ref . 228

We accomplish this task using linear regression. Given a set of 229

values, the linear regression model assumes that the relation 230

between the dependent variable FCk
and T Ck

variable is linear. 231

FCk
are frames from camera k, and T Ck

are timestamps T 232

from camera k. The relation between both variables can be 233

approximated as linear as 234

FCk = tCk

0 + slopeCk × T Ck
(1) 235

where Ck is the kth camera. For simplicity, we assume 236

constant tCk

0 = 0. 237

In order to find a relation between each video, we can equate 238

the timestamps of both cameras T Ck = T C ref
239

T Ck = FCk

slopeCk = T C ref = FC ref

slopeC ref . (2) 240

After if we know the parameters slopeCk
and slopeC ref

, we 241

can map from the frame of one camera to the other. This 242

parameter can be obtained from expressions 243

slopeCk = �FCk

�T Ck . (3) 244

Then the camera with lower frame rate is taken as reference, 245

and the synchronization for the camera Ck is calculated as 246

FCk = slopeCk

slopeC ref × FC ref
. (4) 247

If the cameras are nonlinearly asynchronized, we use DTW 248

as a way to establish approximate frame-to-frame correspon- 249

dence between them. Here DTW also doubles as a dynamic 250

programming approach to speed up the process of finding 251

geometric similarity between the tracklets that need to be asso- 252

ciated. More details on DTW and the process are explained 253

in Section V-A. 254

A moving person viewed from different points of view 255

results in different trajectories. The estimation of the homogra- 256

phy between these views is the key in establishing association 257

between them. Our multiview calibration is based on planar 258

homography. 259

Points projected on a 3D world W Ck from the kth view 260

may be related to the corresponding image points in the 3D 261

world W ref in reference view using planar homography. The 262

idea is to project the trajectory points from all cameras under 263

consideration onto the common referential world. In our case, 264

common referential is reference camera coordinate system. 265

Given a point X in the kth view, the problem consists in finding 266
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Fig. 2. Projective transformation of tracklet points belonging to Trk−1
1 ,Trk−1

2
between images from camera k−1 and image plane of reference camera using
homography H induced by that plane. The same happens with camera k + 1
and so on.

Fig. 3. Corresponding projections on reference image plane. Left: reference
image plane. Blue lines represent the projection of points from nonreference
camera to the image plane belonging to reference camera.

the corresponding point X ′ in the reference view. The relation267

between the first and the second view is given by268

X ′ = Hπ · X. (5)269

Once we found the homography between views, we can270

project the trajectories from one camera view to the other one271

as shown in Figs. 2 and 3.272

V. MULTIVIEW TRAJECTORY ASSOCIATION273

Generalized maximum /minimum clique problem or274

K-partite problem, where finding the clique with maximum275

score or minimum cost is an NP-hard problem as shown276

in [20]. Since there is no polynomial time solution to this prob-277

lem, we breakdown the problem by reducing it to sequential278

bipartite matching problem between reference camera and any279

other camera Ck in the network. Let us say we have K cameras280

{C ref ,C1,C2 . . .Ck}, and we reproject all the trajectories281

from cameras {C1,C2..Ck} to reference camera C ref and282

perform trajectory association, similarity calculation on C ref .283

The associated tracklets between the reference camera and the284

kth camera are accumulated until tracklet associations for all285

{C ref ,Ck} pairs are solved. Once all the tracklet associations286

from each camera pair are available, the fusion is done in the287

reference camera C ref . By doing this way, it leads to estimation288

of optimal solution for NP hard problem in polynomial time.289

Fig. 4. Two tracklets in common subintervals between two cameras in the
time interval [tA, tB ].

The association problem in general is related to the need of 290

establishing correspondences between pairwise similar trajec- 291

tories that come from different overlapping cameras. 292

The association or correspondence may be modeled as a 293

sequence of bipartite graph matching problem in which each 294

set Sk has trajectories that belong to camera k. For example, for 295

a reference camera C ref and any other overlapping camera Ck , 296

a set of trajectories Sref and Sk is defined. 297

A bipartite graph is a graph G in which the vertex set V 298

can be divided into two disjoint subsets Sref and Sk such 299

that every edge e ∈ E has one end point in Sref and the 300

other end point in Sk . Each object being tracked is denoted 301

by TOi in the resulting observation (i.e., a track point) of 302

the multitarget tracking algorithm. The tracked objects have 303

been synchronized in terms of frame number F , and they have 304

2D space coordinates (x, y). Thus 305

TOt = (F, (x, y))t . 306

Let TOi represent the i th tracked object that belongs to the 307

trajectory TrCk

i observed in the camera Ck where k = l, r . 308

Thus, each trajectory is composed by a time sequence of 309

3D points of physical objects 310

TrCk

i = {
TOi

0,TOi
1,TOi

t , . . . ,TOi
ni

}
(6) 311

where ni is the length of the above trajectory. Consequently, 312

each camera Ck has a set of N and M trajectories belonging 313

to sets Sref and Sk 314

Sref = {
TrC ref

0 ,TrC ref

1 ,TrC ref

2 , . . .TrC ref

N

}
(7) 315

Sk = {
TrCk

0 ,TrCk

1 ,TrCk

2 , . . .TrCk

M

}
. (8) 316

We abstract the trajectory association problem across mul- 317

tiple cameras as follows. Each trajectory TrCk

j is a node of 318

the bipartite graph that belongs to the set Sk linked with 319

the camera Ck . A hypothesized association between two 320

trajectories is represented by an edge in the bipartite graph. 321

The goal is to find the best match in the graph. 322

A. Time Overlapping Trajectories 323

For each hypothetical association, we first filter and remove 324

the associations of trajectories that do not overlap in time. 325
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In the case of time overlapping trajectories, we take the326

intersecting time interval between them, that is, the lower and327

the highest time value between both trajectories to get a new328

time interval in which both trajectories are contained. In the329

example of Fig. 4, we have two trajectories TrCl
i ∈ Sl with330

0 < i < N and TrCr
j ∈ Sr with 0 < j < M , and the result-331

ing overlapping time interval is �t = [TrCl
(t0), T rCr

(t f )].332

In order to apply DTW, we need trajectories of the same size333

to be compared frame by frame. The gaps or missing points334

(due to miss detections or occlusions) are completed with local335

linear interpolation and smoothing for the mentioned time336

interval �t .337

B. Linear Interpolation and Smoothing338

Object detection is not perfect due to occlusions, visibility,339

density of crowd, and placement of camera, and thus, a linear340

interpolation is applied in order to reach a more complete341

trajectory. We assume that a person follows uniform linear342

motion between the next and the previous frame. Based on343

that, a linear interpolation is performed in order to correct miss344

detections of time length equal to � frame(s) at a time. In our345

experiments, we heuristically limit usage of interpolation up346

to � = 4, and more than four missing detections would be347

treated as disappearance of object. To perform this correction,348

position of the person in the current frame is estimated as349

TrCk

i (t) = TrCk

i (t − 1)− TrCk

i (t +�)

�
(9)350

where � is the difference between the previous and the next351

available detection’s frame number. TrCk

i (t) is the position of352

tracked object at time t , TrCk

i (t − 1) is the position of tracked353

object at time (t − 1), TrCk

i (t +�) is the position of tracked354

object at time (t +�), and Ck is the camera number.355

The 2D space of the trajectories that belongs to the kth356

camera is projected to 2D space of re f camera in order to357

compare and find similar trajectories. During this task, some358

noise can arise. Thus, in order to deal with this noise, we359

smooth the trajectory for better results. At this time, we are360

almost ready to compute the trajectory similarity. However, the361

common tracklets between both trajectories need to be found.362

C. Find Tracklets in Common Subintervals363

Fig. 4 shows a graphic illustration of two overlapping364

trajectories in time interval [tA, tB ]. The x and y axes cor-365

respond to geometric space, i.e., geometric x, y coordinates,366

and t-axis corresponds to time. The two trajectories have two367

tracklets in the subintervals [t0, t1], [t2, t3] ⊂ [tA, tB ] belongs368

to trajectories TrCl

i , TrCr

j , two tracklets in the subintervals369

[t3, t4], [t5, t6] ⊂ [tA, tB] belongs to TrCr

j . Finally, one tracklet370

in [t1, t2] ⊂ [tA, tB ] belongs to TrCl

i .371

Later on, a trajectory similarity algorithm is applied for372

every pair of tracklets in common subintervals among both373

trajectories. It is important to note that now the tracklets have374

the same length and have been synchronized.375

VI. TRAJECTORY SIMILARITY CALCULATION 376

The comparison of two temporal sequences invariant to time 377

and speed (e.g., trajectory) and their similarity measurement 378

is done using DTW. There are several trajectory similarity 379

measurements in the state of the art. Two similarity models 380

draw our attention: longest common subsequence described 381

in [10] and DTW introduced in [11]. Among these, we choose 382

the latter as it offers enhanced robustness, particularly being 383

sensible to noisy data. As our goal is to associate trajectories, 384

we need a local measurement for trajectories’ comparison that 385

is being done using DTW. 386

A. Time-Invariant Tracklet Alignment and Similarity 387

DTW is a distance measure for measuring similarity 388

between two temporal sequences that may vary in time or 389

speed. DTW-based similarity measure works well between 390

cameras having both linear and nonlinear FPS mapping. 391

As a first step in DTW, we place the trajectories in a 392

grid in order to compare them, and initialize every element 393

as ∞ (represent ∞ distance). Each element of the grid 394

is given by d(TrCl

i (ti ),TrCr

j (t j )) representing Euclidean dis- 395

tance that is the alignment between two trajectories’ points 396

TrCl

i (ti ),TrCr

j (t j )∀ti ∈ [0...n],∀t j ∈ [0...n], where n is the 397

length of the shortest trajectory. 398

Many paths connecting the beginning and the ending point 399

of the grid can be constructed. The goal of DTW is to find the 400

optimal path that minimizes the global accumulative Euclidean 401

distance between both trajectories of size n 402

D
(
TrCl

i ,TrCr

j

) = min

⎡

⎣
N∑

ti ,t j =1

d
(
TrCl

i (ti ),TrCr

j (t j )
)
⎤

⎦ (10) 403

D(n,m) = d(TrCl

i (n),TrCr

i (m)) 404

+ min

⎧
⎨

⎩

D(n − 1,m)
D(n − 1,m − 1)

D(n,m − 1)

⎫
⎬

⎭
. (11) 405

The warping path point predecessor of D(n,m), denoted 406

by α, is selected as the one that gives the smallest accumulative 407

distance of the three neighbors as 408

α(t + 1) = min

⎧
⎨

⎩

D(n − 1,m)
D(n − 1,m − 1)

D(n,m − 1)

⎫
⎬

⎭
. (12) 409

Finally, the optimal warping path is a sequence of accumu- 410

lative distances from the first element of each trajectory until 411

the end 412

ά = α(t0), α(t1), . . . α(ti ), . . . , α(tN ). (13) 413

We can see in Fig. 5 that the tracklets are very similar from 414

frame 65 to 82, but after seem like they start to be unequal. The 415

further close the optimal path wanders around the diagonal, the 416

more the two sequences match together. 417

We could use the immunity/invariance DTW has for time 418

misalignment in time series sequences while aligning the 419

tracklets from different cameras. We use this property of DTW 420

and try to infer a statistic, which could help us approximate 421
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Fig. 5. DTW results for tracklet 1 of two trajectories’ comparison.
In X and Y , the frames are shown. The optimal path is represented in green,
and the DTW result is shown in red.

the nonlinear mapping between certain time asynchronous422

cameras in network. We process the shape of the DTW423

warping path (red as shown in Fig. 5) to retrieve information424

on complementary frame pairs belonging to warping path.425

In other words, we decode the DTW warping path in terms of426

frames. The extracted complementary pairs act as one-to-one427

frame mapping between the cameras under consideration.428

VII. ONLINE LEARNT GLOBALITY–LOCALITY429

FEATURE ENSEMBLE430

The core idea of our approach is ranking and selection431

of global–local features to form an ensemble that is crucial432

for tracklet association while giving good inter-camera dis-433

criminability between tracklets. Using only local association434

information leads to produce shorter fragmented fused trajec-435

tories. This may even cause the fusion to drift when one of436

the cameras has lot of occlusions as it is based on frame-437

to-frame information. Using only global information leads to438

more iterative associations as global information induces more439

confusion. Associations are unreliable when there are lots of440

distortions existing between cameras. Thus, it is important to441

strike a balance between these informations while extracting442

the most consistent and discriminate of them for calculating443

association. This helps in compensating for the limitations of444

each feature for a given video.445

It is a known fact that feature combinations capture more446

underlying semantics than single feature patterns. But using447

less influential pattern combination may not improve the448

performance of a tracker mainly due to limited discriminability449

of individual feature. Trajectory similarity is calculated as a450

two-stage approach (local and global). An ensemble of local451

and global features is used for determining similarity score.452

The electing weights that decide the ensemble are learnt online453

based on the consistency and maximum discriminability of the454

feature distributions.455

A. Local Tracklet Similarity456

At local stage, importance is given to local frame-to-frame457

geometric information. From DTW results, we calculate some458

statistics like proximity.459

Proximity as Euclidean Distance Mean: From DTW results, 460

we calculate normalized pixel Euclidean distance mean for 461

each trajectory comparison and each edge of the bipartite 462

graph. To normalize the DTW results, we divide by the 463

maximum possible distance between both trajectories, that is, 464

the size of the image 465

EDM = D
(
TrCl

i ,TrCr

j

)
/n. (14) 466

B. Global Tracklet Similarity 467

At global stage, information pertaining to overall appear- 468

ance of the object throughout the tracklet is taken into account 469

for determining the similarity between tracklets. Feature pat- 470

terns used for determining an overall appearance score are 471

updated online regularly for the entire trajectory. A global 472

matching score (GMS) quantified from features below rep- 473

resents global tracklet similarity. 474

Global Matching Score: Appearance-based cues have 475

played a vital role in tracklet association rule mining. Given a 476

set of appearance cues, we create an ensemble of high-quality 477

ones for effective discrimination between tracklet association 478

candidate matches. We extend mono-camera tracklet reliability 479

descriptor work in [12] to suit our approach. We use k=7 cues 480

for our work. 481

1) 2D Shape Ratio (k = 1) and 2D Area (k = 2): Shape 482

ratio and area of an object are obtained from respective 483

bounding boxes, and within a temporal window, they are 484

immune to lighting and contrast changes. Thus, they are 485

one of the good cues to use. 486

2) Color Histogram (k = 3) and Dominant Color (k = 4): 487

It is basically a normalized RGB color histogram of 488

pixels inside bounding box of moving object. Dominant 489

color descriptor is used to take into consideration only 490

important colors of object. 491

3) Color Covariance Descriptor (k = 5): Color covariance 492

descriptor is a covariance matrix that characterizes the 493

appearance of regions in image and is invariant to size 494

and identical shifting of color values. Therefore, color 495

covariance descriptor resists to illumination changes. 496

4) Motion Descriptor (k = 6): Depending on the context, 497

constant velocity model or Brownian model is used to 498

describe motion represented by Gaussian distribution. 499

It is useful when objects have a similar appearance. 500

5) Occlusion (K = 7): Occlusions significantly degrade the 501

performance of tracking algorithm, and we progressively 502

analyze occlusion by exploiting the spatiotemporal con- 503

text and overlap information between the tracked object 504

and other objects. 505

We define tracklet Tr p as an overlapping tracklet of tracklet 506

Tri if tracklet Tr p has at least one frame overlap with tracklet 507

Tri ( called as temporal overlap) and the 2D distance of both 508

tracklets is below a predefined threshold (called as spatial 509

overlap). We define tracklet Tr j as candidate matching tracklet 510

of tracklet Tri if it satisfies temporal constraint like the last 511

object detection of Tri must appear earlier than the first object 512

detection of Tr j and a spatial constraint like that the last object 513

detection of Tri can reach the first object detection of Tr j after 514

a number of frames of potential misdetection with the current 515

frame rate. 516
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To ensure reliable tracklet association, [12] weights the517

discriminative appearance and motion model descriptors and518

generates a GMS. The GMS of tracklet Tri with each tracklet519

in its matching candidate list (Tr j ) is520

GMS
(
TrCl

i ,TrCr

j

) =
∑6

k=1 w
i j
k · DSk

(
TrCl

i ,TrCr

j

)

∑6
k=1 w

i j
k

(15)521

where wi j
k are corresponding weights of each feature descrip-522

tors DSk(TrCl

i ,TrCr

j ) calculated online by modeling them523

directly proportional to descriptor similarity of a tracklet with524

its matching candidate and inversely proportional to descriptor525

similarity of other overlapping tracklets.526

If (Tri ,Tr j ) are matching candidates, (Tri ,Tr p) are other527

overlapping tracklets, and their discriminative descriptor528

weight is calculated as529

w
i, j
k = ζ [DSk(Tri ,Tr j )−X̃(DSk(Tri ,Tr p))−1] (16)530

where ζ = 10 determined experimentally and X̃ is the median531

of the similarities between tracklets (Tri ,Tr p). The advantage532

of the median is that its value is not affected by a few of533

extremely big or small values. The discriminative weight for534

motion cue alone is calculated as535

w
i, j
6 = 0.5 − 0.5 max

k=1...5

(
w

i, j
k

)
. (17)536

C. Globality–Locality Consistent Discriminant Score537

A cost matrix A is built to represent the cost of association538

between two tracklets (TrCl

i , TrCr

j ). Each element of such an539

association cost matrix represents GLCDS weighted sum of540

Euclidean distance and GMS between the two trajectories.541

An entry in association cost matrix A can be defined as542

A
(
TrCl

i ,TrCr

j

) = λm(Tri ) · EDM
(
TrCl

i ,TrCr

j

)
543

+ (1 − λm(Tri )) · GMS
(
TrCl

i ,TrCr

j

)
(18)544

where λm is GLCDS learned to obtain appropriate ensem-545

ble feature combination and is discussed further later546

in Section VI-D.547

Now the bipartite graph is complete and the weight Wij548

of each edge e ∈ E in G = (V ; E) is A(TrCl

i ,TrCr

j ) given549

by (18).550

λm helps to decide a tradeoff between local information551

extracted from frames or global appearance information from552

tracklets. The learnt weight helps in better feature selection553

and combination to enhance inter-tracklet discrimination and554

also cope up with intra-tracklet variations. In this approach,555

both local geometric and global appearance feature patterns556

complement each other and are impactful in situations where557

the data set involves significant appearance changes across558

object pose, illumination, viewing angle, and different camera559

parameters.560

1) Color Calibration Across Cameras: To calculate con-561

sistency and discriminative power of tracklet features across562

cameras, we need to color calibrate the cameras for accounting563

color distortion between them. Therefore, as a preprocessing564

step before validating discriminability and consistency, we565

perform histogram specification and histogram matching, i.e.,566

we project and transform the histogram of any camera Ck onto 567

histogram of reference camera C ref . Level of color distortion 568

after specification is validated by comparing the transformed 569

histogram and reference histogram using correlation-based 570

histogram matching. 571

Even if appearance model of a tracklet is discriminative, it 572

makes sense to weight them high only if the features in the 573

model are consistent and vice versa. Thus, λm is calculated 574

as an estimate of discriminant score weighted consistency of 575

individual features. 576

D. Discriminative Power of Tracklet Features 577

Discriminative power of the GMS features is calculated as 578

a mean of normalized fisher scores of individual GMS tracklet 579

features. Fisher score is a quantitative measure popularly 580

used in statistics for numerically solving maximum likelihood 581

problems. In computer vision, fisher score is used to rank 582

the best set of features, such that in the space spanned by 583

selected features, the distances between datapoints of different 584

classes are as large as possible, while distances between 585

datapoints of the same class are small. Reference [13] uses 586

fisher score to compare one feature subset with another one in 587

order to find the most discriminating set of feature instances. 588

Reference [14] has used fisher score for online selection of 589

most discriminative set of tracking features. Since ours is 590

a multicamera setup, we need to adapt this fisher score to 591

avoid certain undesirable scenarios from affecting the final 592

discriminant score. Constraints we lay on fisher score are as 593

follows. 594

1) In a multicamera tracking problem, the discriminating 595

power of tracklet features should be measured across 596

cameras and not intra camera. Thus, in (19), instead 597

of calculating the mean over all tracklets over both 598

cameras, we calculate mean only on the camera with 599

candidate matching tracklets. 600

2) Online descriptor weight w f of the f th feature obtained 601

while calculating GMS specifies the robustness of that 602

feature. While calculating mean and the variance of the 603

f th feature of the i th tracklet, we use w f to weight 604

that mean and variance of the f th feature to specify the 605

influence of such features on fisher score. 606

Let k be the set of all features, individual fisher score for 607

any feature fk∀k ∈ [1 . . . |k|] is calculated as 608

δ( fk) =
∑N

i=1 w fk

(
μi fk − μCr

fk

)2

∑N
i=1 w fk

(
ρ2

i fk

) (19) 609

where μi fk and ρi fk are the mean and the variance of the kth 610

GMS feature of the i th tracklet, N is the number of tracklets 611

in camera Cl , w fk is the descriptor similarity weight of the 612

kth feature, and μCr

fk
is the mean of the kth GMS feature of 613

overall candidate tracklets belonging to complementary pair 614

of camera Cr . 615

Normalized fisher score for the kth GMS feature is calcu- 616

lated as δ′( fk) 617

δ′( fk) = δ( fk)
∑|F |

z=1 δ( fz)
. (20) 618
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Fig. 6. Associations of each trajectory after Hungarian algorithm.

1) Consistent Discriminancy of Tracklet Features: An indi-619

vidual consistency score is obtained for each feature fk in620

GMS metric over the entire tracklet (Tri ) as621

υ( fk,Tri ) =
√∑nk

t=0( fk(TOi
t )− fk(Tri ))

2

nk
(21)622

where fk(TOi
t ) is the kth feature extracted from the i th tracked623

object TOi at time t , fk(Tri ) is the kth feature mean over624

trajectory of tracked object TOi , and nk is the total number625

of detections.626

Normalized individual consistency score υ ′( fk ,Tri ) of the627

kth feature υ ′( fk,Tri ) is calculated as628

υ ′( fk ,Tri ) = υ( fk)
∑|F |

z=1 υ( fz)
. (22)629

GLCDS of features on an entire tracklet is calculated by630

taking square root of sum of weighted consistency score of631

individual features over a tracklet Tri632

λm(Tri )633

=
√
δ′( f1)·υ ′( f1,Tri )2 + ..+ δ′( f|F |) · υ ′( f|F |,Tri )2

|F | .634

(23)635

E. Hungarian Algorithm636

The task at hand is finding the maximum matching of G.637

Formally, maximum matching is defined as a matching with638

the largest possible number of edges; it is globally optimal.639

The goal is to find an optimal assignment, i.e., find the640

maximum matching in G. We apply the Hungarian algorithm641

defined in [15] given the cost matrix built with the Aij values.642

After applying the Hungarian algorithm to matrix A, we get643

the maximum matching as shown in Fig. 6. The red lines644

specify the established associations between tracklets across645

cameras as a result of the Hungarian algorithm.646

VIII. TRAJECTORY FUSION647

Trajectory confidence score RTO can be intuitively inter-648

preted as how well tracklets’ fusion from individual cameras649

can match the original trajectory of target. We calculate650

individual tracklets confidence based on the following.651

1) Length: Long trajectories are more reliable, and there-652

fore trajectories below a handpicked short length are653

unreliable.654

2) Geometric Coherence Score: Assuming that the varia- 655

tion of tracklet features follow a Gaussian distribution, 656

the coherence score is calculated as follows. 657

From (6), TOi
t is the position of object TOi at time t and 658

TOi
t−1 is previous position of object TOi . The coherence 659

score 
 is defined as 660


 = 1
√

2πσ 2
i

e
− (di −μi )

2

2σ2
i (24) 661

where di is the 2D distance between TOi and TOi
t−1, 662

μi and σi are, respectively, the mean and standard 663

deviation of frame-to-frame distance distribution formed 664

by a set of positions of object TOi . 665

3) Appearance Coherence Score: Similar to geometric 666

coherence score, but here we account for an array of 667

appearance features. Here di represents the distance 668

between feature descriptors at TOi and TOi
t−1 669

Confidence score RTO of a tracklet is the mean of all the 670

above coherence scores. 671

As part of the fusion task, a merged trajectory with the 672

information coming from both views is built. To fuse two 673

trajectories coming from two different cameras at a time t , 674

e.g., Tri ∈ Sl with 0 < i < N and Tr j ∈ Sr with 0 < j < N 675

into a global one TrGi,G j , we apply an adaptive weighting 676

method as 677

TrGi,G j (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ1TrCl
i (t)+ ψ2TrCr

j (t) if TrCl
i (t),TrCr

j (t)

overlap over time t

TrCl
i (t) if only TrCl

i (t) exists at time t

TrCr
j (t) if only TrCr

j (t) exists at time t

678

(25) 679

where ψ1 and ψ2 are the weights calculated as in (26). Each 680

tracked object has a reliability attribute RTO with values [0, 1], 681

and the weighed function is defined in terms of its RTO value 682

as 683

ψ1 = RTOi

RTOi + RTO j

ψ2 = RTO j

RTOi + RTO j

(26) 684

where RTOi and RTO j are the reliability attributes of tracked 685

object from camera Cl and Cr , respectively. 686

The fused trajectory is not smooth. In order to get a 687

better and smoothed one, we apply a simple moving average 688

technique (also called moving mean). 689

IX. EVALUATION 690

Our RGB approach is evaluated on publicly available 691

PETS2009 data set [16]. We choose to evaluate on View 1, 692

View 3, View 5, and View 7 in S2.L1 scenario. There is one 693

static occlusion in View 1, namely, a pole with display board, 694

and View 3 is quite challenging as a tree occupies significant 695

area in the right side of video. Also there is substantial color 696

tone variation between the views, making it hard for color- 697

based cues. For this reason, most of the methods avoid this 698

combination of view. To show the effectiveness of GLCDS, we 699

take up this challenging view as it more resembles real-world 700

scenario. 701
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TABLE I

RESULT COMPARISON IN PERCENTAGE. THE BEST CONFIGURATION OF OUR SYSTEM IS MARKED WITH THE BLUE BACKGROUND

For evaluating our work, we use the following metrics:702

CLEAR [17] metrics, namely, multiple object tracking accu-703

racy (MOTA) and multiple object tracking precision (MOTP),704

identity switches (IDS), track fragments, mostly tracked (MT),705

partly tracked (PT), and mostly lost (ML) from [18].706

Table I summarizes comparison between our method and707

other multicamera approaches on PETS2009 data set. Unlike708

other methods that use heavy computation and optimization709

for best results as a tradeoff over real-time performance,710

our objective was to make the algorithm more real time711

making minimal sacrifice on the accuracy. This is achieved712

as our method uses computationally efficient and in-complex713

optimization technique with dynamic feature ranking and714

election for an effective ensemble. We use buffer frame715

size = 20 frames in a temporal sliding window pattern to716

be able to perform association and fusion online.717

We experiment our method with four different system718

configurations:719

1) C1: without online learnt feature ensemble selection720

(GLCDS based);721

2) C2: without online learnt tracklet appearance models;722

3) C3: without locality-based features;723

4) C4: with full configuration.724

The evaluation results of each configuration (C1–C4) show725

us how much impact each part has on the proposed method.726

C4 is our entire system with fully loaded configuration and727

is expected to improve the performance to maximum. From728

Table I, we can see that the absence of GLCDS and online729

appearance models has introduced the only ML entry among730

the pool of configurations symbolizing the significance of731

online learnt feature ensemble. Configurations C1 and C2732

produce IDS stressing on the impact of online appearance733

models on the framework. Since Views 5 and 7 give a closer734

view at the overlapping area, appearance features from these735

views play a vital role. C4 altogether produces reliable long736

trajectories, thereby improving fragmentation, ML, and PL,737

and also suppresses IDS. We can see that our method surpasses738

the state of the art in IDS and produces more or less similar739

results on various other metrics while remaining a real-time740

online approach.741

For evaluating on RGB-D data, we select five videos from a742

private data set, in which participants with Alzheimer disease743

aged more than 65 years are recruited by the memory center744

Fig. 7. One of the frames during the evaluation of the RGB-D video.

TABLE II

COMPARISON OF MULTICAMERA RGBD TRACKER VERSUS

MONO-CAMERA RGB TRACKER

of a collaborating hospital. The clinical protocol asks the 745

participants to undertake a set of physical tasks and instru- 746

mental activities of daily living in a hospital observation room 747

furnished with home appliances. Experimental recordings use 748

two RGB-D cameras (Kinect) with 640 × 480 pixels of 749

resolution and nonlinear time synchronization between them. 750

Each pair of videos has two different views of the scene, lateral 751

and frontal, with a maximum amount of two people per view. 752

A sample frame form the video is shown in Fig. 7. 753

In our data set, doctor trajectory is cut several times because 754

of occlusions. Sometimes, he appears in one camera and some- 755

times in the other. The merged trajectory keeps the information 756

of both cameras making a good manage of occlusions. 757

In this video, the mono-camera tracking has bad results 758

for the doctor in the right camera and even worst for the 759

patient in the left camera. But it can be seen that with 760

multicamera approach, we combine the best results for each 761

camera into a global one, and so finally, we have the two 762

tracked objects that appear in the scene with good tracking 763

results. Our multicamera results improve the mono-camera 764

trajectory significantly as shown in Table II. 765

These experiments reveal that our framework is robust 766

in rectifying the challenges of conventional mono camera 767

tracking and produces consistent trajectories with no IDS. 768
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Our approach had the results benchmarked based on a view769

(which actually resembles real world) purposefully ignored by770

all other methods and also produced improvements to the state771

of the art while being a real-time approach.772

System Implementation773

As shown in Fig. 1, our system is implemented with parallel774

programming to handle multiple cameras in a network as775

multithreads. Time efficiency of multicamera master thread is776

appreciable as it takes the same time as the turnaround time777

of individual worker threads. All individual worker node’s778

local geometric information is projected on to the reference779

camera’s world. Local feature extraction, association, and780

fusion are all done in the reconstructed reference world, and781

then projected back to reference camera’s image plane for782

evaluation and visualization. Therefore, theoretically, there are783

no bounds for number of cameras to run in our framework,784

as the model is very elastic and extensible. But hardware785

capability might be a bottleneck.786

X. CONCLUSION787

We introduced a multicamera multitarget multimodality788

online tracking framework that associates and fuses trajectories789

on the grounds of an online learned consistent and discriminant790

global–local feature ensemble. Our approach’s backbone has791

been feature engineering, and its performance on the data792

sets demonstrated the importance of dynamically selecting793

and ranking features that capture and wholly represent the794

video properties and contents. As a result of our work, we795

were able to build optimally long complete trajectories by796

linking and fusing data based on confidence and reliabil-797

ity scores calculated at individual camera level. Using this798

framework, we achieve highly parallel and effective real-time799

performance, which is absent in the state-of-the-art methods.800

Our approach outperforms some existing multicamera tracking801

and is comparable with state-of-the-art benchmark data sets.802

Even when coupled with in-complex optimizations to fasten803

the algorithm, final results show the impact of engineering804

feature embeddings and their selection on accuracy and real-805

time performance.806
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