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Abstract—Most action recognition models treat human activi-
ties as unitary events. However, human activities often follow a
certain hierarchy. In fact, many human activities are composi-
tional. Also, these actions are mostly human-object interactions.
In this paper we propose to recognize human action by leveraging
the set of interactions that define an action. In this work,
we present an end-to-end network: THORN, that can leverage
important human-object and object-object interactions to predict
actions. This model is built on top of a 3D backbone network. The
key components of our model are: 1) An object representation
filter for modeling object. 2) An object relation reasoning module
to capture object relations. 3) A classification layer to predict the
action labels. To show the robustness of THORN, we evaluate
it on EPIC-Kitchen55 and EGTEA Gaze+, two of the largest
and most challenging first-person and human-object interaction
datasets. THORN achieves state-of-the-art performance on both
datasets.

I. INTRODUCTION

Human activity recognition in video is a fundamental
problem in computer vision, due to its large field of ap-
plications, such as human-computer interaction [1] or video
surveillance [2]. Machine learning and computer vision models
have achieved interesting results in this field. Unfortunately,
most of the State-of-the-art methods focus on simple activities
such as walking or drinking, while the recognition of longe-
term, complex, and composite activities such as assembling
furniture or food preparation has been rarely addressed. These
methods make use of end-to-end models that produce a video
level label, and do not explicitly decompose the action into
a hierarchical set of sub-actions or interactions. Moreover,
neuroscience [3], [4] has shown that the human perception
of action is actually based on decomposing an action into
different groups of interactions which enables him/her to
understand other human behaviors. In this paper we decide
to visit this composite actions, that we refer to as actions of
Human-Object Interaction (HOI). Not only that we also focus
on first-person view HOI action recognition.

first-person action recognition also comes with its chal-
lenges, one of which is the narrow field of view that makes
actions sometimes happen outside the video viewing range.
Also, the huge ego-motion caused by the sharp movements of
the camera can make it harder to recognize actions. Finally, in
ego-vision, the field of view usually covers the human hands
and an ensemble of objects. In this case, actions are generally
involving interactions between the human and objects. Hence
the challenge is also to recognize which of these objects are
relevant to the action and which are distractors.

Fig. 1. An example of the Human-Object Interactions of wash plate in an
first-view video. Green arrows represent interactions at the same time step
(i.e., spatial relation) while black arrows represent interactions across time.
In practice, the model captures all the objects detected. For simplicity, here
we highlight only the relevant objects to wash plate.

A HOI action can be seen as combination of verbs and
nouns, for instance the action cutting bread with knife is the
combination of the verb cut and the nouns knife and bread.
Hence recognizing an action of HOI, is a class of visual
relationship detection, where the task is to not only recognize
the objects (the noun), but also to infer the relation and motion
(the verb) between different objects and the human. Fig. 1
represents an example of an object-based action: wash plate.
Such action requires highlighting objects like the hand, the
plate and the tap while giving less attention to other objects
that are not important to the action.

Previous works such as two-stream CNNs [5],[6],[7] or
3D CNNs [8] [9] [10] have achieved very good results on
third view and video level label datasets [11] [12] [13] [14].
However, when it comes to HOI actions they still lack in
performance. That is due mainly to the fact that CNNs capture
shareable local features in the image/videos, and they can not
handle complex or fine-grained actions. Another major chal-
lenge is the fact that such activities can often be performed in
a wide variety, making it harder for CNNs to learn significant
patterns.

Thus, our intuition is to build a model that can, extract
detailed and object specific semantics in the videos, as well
as explore the cross-object relation at different time-steps. By
doing so we can firstly, improve object recognition in actions
of HOI (the noun). Moreover, we can refine the motion recog-
nition (the verb) by having a clearer idea about the interaction



of these objects and their roles in the action. Finally, by
encoding the scenes into a graph of objects interactions, we
make it easier to learn patterns for actions even if they have
many variations, since the interactions are usually the same.

To step-up to the aforementioned challenges, we propose
a new module built on top of 3D-CNNs, this module is
divided into two sub parts. Firstly, we design an Object
Representation filter. This first sub-module acts as a
filter that retrieves specific and object-related semantics
from the overall and mixed representation (extracted from
the 3D-CNN). Secondly, we add an Object Relation
Reasoning module that uses the detailed representations
to explore cross-objects relations (interactions). Finally, we
obtain an object-centric model that can predict actions of
HOI by exploring human-object and object-object interactions.

To summarize, our main contributions are:
1. A model that can find and extract detailed semantics of
specific objects;
2- A graph-based module capable of exploring interactions
between different objects.

II. RELATED WORK

Human-object interaction action recognition became the
focus of many research subjects lately, especially with the
development of important datasets such as [15], [16], [17].
Several approaches have been proposed to tackle this problem-
atic. In the following, we review some of these approaches.

A. 3D-CNNs

3D-CNNs methods focus on getting the overall appearance
of the videos without considering the objects interactions.
Since these methods cannot capture specific or detailed se-
mantics, they are still limited in case of actions of HOI.
Making this architectures more adequate to video level labels.
We cite as an example I3D [9]. Although it achieves good
results on many action recognition datasets, its performance
is still poor on actions of HOI. To improve the performances
on these 3D-CNNs, Long Features Bank [18] for instance,
tries to capture HOI actions by extracting and fusing features
from local clips as well as globally from the whole video.
This method uses object detection and ROI-Align to capture
detected object features. And though they successfully capture
richer features and more temporal information, they fail to do
any object interaction modeling. Hence, they cannot improve
much on HOI actions. In the same direction, Temporal Binding
Networks (TBN) [19] proposes to capture local clip features
from different clips and fuse them for later prediction. In
addition to that, TBN uses multi-modalities as they capture
audio-visual features using audio, RGB, and optical flow.
However, we believe that this multi-modality will not always
bring much information about the objects. sounds can be
very noisy and very similar which can confuse the prediction.
Moreover, fusing multi-modalities can be hard and requires
lot of efforts the may not lead to significant improvements.

Finally, other works such as [20] use also multi-modality
reasoning. However, we argue that HOI actions recognition
requires more focus on objects and their interactions.

B. Graph’s Convolutions

Recently, graphs have also been considered a way for
solving action recognition [21], [22], [23], [24].

As for human-object interaction, videos as a space-time
region graph [21] propose to model the interaction between
objects and humans in two steps as they build two different
graphs. This allows to correlate objects across space-time.
Similarly, in [25], the authors construct the nodes of the graph
with consideration to the node class. For instance, the node
for the scene is computed using the aforementioned I3D.
While for objects, they use the Faster-RCNN network [26]
trained on MS COCO. All these methods mentioned above
try to define their nodes by using ROI-Align. However, this
is not optimal as,in most cases, multiple objects are present
at the scene and some of them are too close to each other.
In this case, the projected coordinates of different objects
tend to be in the same set of pixels. Therefore, extracting an
object’s specific feature from a feature map with low resolution
becomes difficult. Not only that these methods rely on pre-
trained object detetctors, hence they can not leverage only
objects relevant to the action. Whereas in our work, we learn
to filter only relevant objects and learn specific representation
to different object-classes in an end-to-end way.

In the domain of semantic modelling, Class Temporal
Relational Network (CTRN) [24] is proposed for the action
detection tasks. However, CTRN is a two steps method,
which is built on top of pre-extracted flattened 1-dimensional
features. The dissociation between the visual encoder and
temporal module makes the model overlook the appearance
and spatial information in the video, while such information
is critical to the HOI action recognition. In this work, we
propose a one-step method THORN for HOI action recogni-
tion. Different from CTRN, our method leverages the object
detector to extract the object semantics directly from the
spatio-temporal features. After that, graph reasoning is applied
to refine the object representation and to jointly model inter-
object relations. This design allows the model to capture the
latent relations among the objects in the videos, which results
in higher accuracy in HOI action recognition.

III. PROPOSED METHOD

In this section, we detail each sub-part of the proposed
model, THORN. The main components in this model are: a
3D Visual Encoder which encodes the video into a spatio-
temporal embedding. Then, the previously extracted embed-
dings are passed to the Object Representation Filter (ORF).
This filter extracts class-specific features. Finally, the Object
Relation Reasoning module computes the relation between
the different objects to predict the action. Fig. 2 provides an
overview of the model.



Fig. 2. THORN architecture contains three main components: (1) a Visual encoder (i.e., X3D) encodes the input RGB clip into a primary spatio-
temporal representation. (2) The obtained representation is fed to the Object Representation Filter, which maps the previous representation into object-class
representation. To ensure a discriminative object representation, an object classifier is added on top of the object-class representation. This classifier is trained
with the pseudo-object ground truth provided by an object detector. (3) The object-class representation is also sent to the Object Relation Reasoning module
to model the temporal-object relation in a dissociated manner. Finally, two classifiers are used to predict the verbs and nouns relevant to the action.

Fig. 3. Representation of our Object Representation Filter (ORF). The input
is the feature map from the 3D encoder reshaped to T × H′W ′D and the
duplicated Co times, where Co is the number of classes. Finally, we have a
representation specific to each object class.

A. Visual Encoder

We start by using a visual encoder to extract an embedding
that serves as a full understanding of the scene, and carries
the global information of the input frames. We choose X3D
[27] as our visual encoder. X3D has many advantages as it
does not do any temporal pooling and keeps the full temporal
information, providing richer temporal information. Moreover,
X3D is a lighter model compared to other architectures such
as I3D [9]. The input to the 3D encoder is a set of video-clip
frames. The output is a spatio-temporal representation F of
shape (T ×H ′ ×W ′ ×D1), where: H ′ = W ′ = 7, D1 = 432,
while T is the same as the input.
This embedding carries both spatial and temporal information.
The spatial information is important, as it provides object
related information, such as its appearance, shape and position
(e.g. drawers usually appear at the bottom of the image).
That is why instead of using the X3D final output of shape
(T × 2048) to construct our nodes, we use a finer spatial
representation of shape (T × 7 × 7 × 432), making nodes
of our graph contain more and finer information about the
objects. We provide more details on this in the ablation study,
by comparing both settings. Finally, as X3D is a light-weighted
model it is easier to train the Visual Encoder jointly with the
following modules.

B. Object Representation Filter

Our main objective through this work is to have object-
based reasoning. Hence the first step is to obtain object in
scene representations. Therefore, we developed the Object
Representation Filter module, capable of extracting semantic
representation specific to each object class from the previous
overall representation. This module serves as a filter to obtain
the object-specific representation from the output of visual
encoder. In practice, firstly, we reshape the representation F
from the visual encoder to shape (T ×H ′W ′D1). After that,
we duplicate the reshaped features F ′ for Co times, where Co

indicates the number of object classes in the dataset. For each
class, we use a channel-mixer MLP (i.e., linear transformation
layer), followed by non-linear activation and dropout. In Fig. 3,
we show an overview of the ORF module. We argue that each
MLP layer learns to filter features specific to a certain object
class. The equations in this module can be formulated as:

F ′
i = ReLU(MLP (F )) (1)

F ′ = DropOut([F ′
1, F

′
2, F

′
3...., F

′
Co

]) (2)

With F ′ ∈ RT×Co×D2 . Where D2 is smaller than D1 to
shallow the channel size. Finally, we add another MLP layer
on top of F ′ that would represent the object classifier in Fig. 2.

F ′′ = ReLU(MLP (F ′)) (3)

Here F ′′ ∈ RT×Co×1. To ensure the object-specific
representation, we add a frame-level object classifier on F ′′.
As the frame-level object label is not provided by the dataset,
the object classifier is trained with the pseudo label provided
by an object detector (i.e. Fast-RCNN [26]). In the video,
multiple objects can appear in a frame, thus, we train the
object classifier with binary cross-entropy loss: Lclip−objects.
Finally the ORF module outputs a representation for each
object-class. However, we still need to correlate and refine
these object representations to explore their interactions and
model the actions. To do so, we introduce the next module of
our pipeline in the next section.



C. Object Relation Reasoning Module

To correlate between the aforementioned representations
in the previous section, we introduce the Object Relation
Reasoning Module.
In order to extract the relations between the filtered object
classes, we propose to make use of graph convolutions. In
the previous section, we transform the clip representation into
a class-specific representation. Then, we map it to a graph-
like structure, where each vertex of the graph represents an
object class at a time step; the vertex would be the previously
extracted embedding of a certain class. In total, the graph
consists of Co × T nodes whose topology is defined by its
vertex and an adjacency matrix A′

Co
. The adjacency matrix

represents the connectivity or relation between the different
nodes (objects) and its weights represent how strong their
relationship is at different time steps. Fig. 4 represents an
overview of this module.

1) Graph reasoning: The graph reasoning aims to do
cross-class reasoning on the previously constructed graph. The
objects relations are video dependent, and so multiple GCN
blocks are stacked to learn multiple levels of semantics. More-
over, the adjacency matrix is also parameterized so that it can
be learned and optimized with the pipeline during the training
phase. Moreover, it can learn to adapt to the data itself. We
also make use of self-attention mechanisms. Consequently, our
adjacency matrix learns better to differentiate class relations
owing to different videos. Fig. 4 represents a block of the
graph convolution reasoning.

As the object relations are complex, it is hard to prede-
fine the inter-object relations for each video. Therefore, by
leveraging the self-attention mechanism [28], [22], our graph
adjacency matrix is learnable and can vary with the videos.
In practice, the adjacency matrix ACo

is initialized with a
fully connected matrix. Finally, the full topology of our graph
is ACo

∈ RCo×Co and the vertexes representation Gin ∈
RD2×T×Co . First, we embed the input Gin using bottleneck
convolutional layer (i.e. 1 × 1), then the output feature maps
are rearranged into RD2×T×Co and RCo×D2×T followed by a
matrix multiplication. The value of the resultant matrix is then
normalized by a softmax activation. Now, the superimposed
adjacency matrix A′

Co
can be formulated as:

A′
Co

= ACo + softmax(WT
1 GT

inW2Gin) (4)

Where W1 and W2 are learnable weights of the bottleneck
convolutions, and Gin being F ′ the stacked class representa-
tions in section B. Gout, the output of the graph layer is passed
to the next graph layer and follows the same equations. In this
work, we use 5 blocks of graph convolutions. As for the A′

Co
,

each value represents an edge between two nodes (objects).
We learn a graph that is shared across different time-steps but
depends on each layer and for each video, as we said earlier
we learn different semantics at each level.
After bottleneck convolutions, we do the graph convolution
operation with the formulation in [29]:

Gout = A′
Co

GinW3 (5)

Fig. 4. Overview of one layer of the Object Relation Reasoning module, using
a graph architecture [22]. As we can see, the input is a graph representation
between different classes and the output is an updated representation of the
graph. The × Nblock stands for the number of blocks used in total, while the
× 3 at the bottom in blue stands for the number of used multi-head attentions.

W3 is a learnable parameter where W3 ∈ RD2×D2 . The
equation 5 represents the message passing and node feature
updating, and finally Gout is rearranged to RD2×T×Co .
From equation 5, we can understand how graph convolutions
work. The graph convolutional layer represents each node as
an aggregate of its neighborhood, hence each node gathers
information from its neighborhood and adapts itself accord-
ingly. In other words, at each graph block, each object collects
information about other objects and finally finds to which it
is most correlated, and thus whether there is an interaction or
not. That is why we judge that the use of graphs is a promising
idea in this domain.

2) TCN: stands for Temporal Convolution Network. The
graph reasoning is capable of extracting the relation between
objects. However, in our study, we aim at modelling the spatio-
temporal interaction in a large time span. To do so, we add
a 1D convolution layer on top of the previous output of
the graph reasoning (i.e., Gout). As shown in Fig. 4, each
Object Relation Reasoning Module contains a TCN. This 1D-
convolution layer is used to aggregate the information across
time. While stacking multiple object relation reasoning blocks,
each block is used to model the object relation in a specific
temporal scale. Finally, the output of the Object Relation
Reasoning Module is:

Gout = Conv1D(Gout) +Gin (6)

As mentioned earlier, the output of each block Gout is the
input Gin to the next block.

D. Predictions

Predictions are based on the learned nodes and adjacency
matrix. However, since in our case our actions are composed
of verbs and nouns, we show that using the adjacency matrix
for predicting the verb and the object feature representation
for noun prediction is more effective. This makes sense since
the adjacency carries more information about how different
objects interact with each others, while the nodes carry a
refined object representations, after been processed through
the different graph convolutions blocks. Our final layers are
two fully-connected layers one projecting Gout from RD2×Co



TABLE I
ABLATION STUDY ON DIFFERENT SETTINGS. THIS EVALUATION IS ON EPIC-KITCHEN DATASET. TEMPORAL NODES MEANS USING THE FINAL OUTPUT

OF X3D OF SIZE T × 2048 TO CREATE NODES, WHILE SPATIO-TEMPORAL NODES MEANS USING A MID LAYER OF SIZE T × 7× 7× 432 WITH MORE
SPATIAL INFORMATION. FINALLY ADJ-MATRIX STANDS FOR USING THE ADJACENCY MATRIX FOR PREDICTING THE VERBS INSTEAD OF USING ONLY

NODES FOR NOUNS AND VERBS.

verbs nouns actions
top1 top5 top1 top5 top1 top5

X3D 46.5 79.8 34.3 65.3 21.0 38.7
THORN/temporal nodes 55.8 82.86 39.9 66.37 26.8 44.0

THORN/temporal nodes + ADJ-matrix 60.3 86.0 41.1 66.9 30.1 47.3
THORN/spatio-temporal nodes + ADJ-matrix 61.0 85.9 42.9 67.9 30.5 47.5

to R1×Co , and the other fully-connected layer projecting A′
Co

from RCo×Co into R1×Cv , where Co and Cv stand for the
number of object classes and verb classes respectively.
Since we have 3 outputs, our loss is a sum of three losses and
can be formulated as :

L = Lverbs + Lnouns + Lclip−objects (7)

Where Lverbs and Lnouns are the negative log-likelihood
losses (since each action is composed of one verb and one
noun). As described earlier, the Lclip−objects is the loss to
ensure the semantic of the object representation.

IV. EXPERIMENTS

Dataset. We have evaluated our model on two of the largest
and challenging datasets for first-view and human-object in-
teraction action recognition. Epic-Kitchen55 [30] contains 55
hours of recording of 32 different kitchens in 4 cities. This
dataset has a total of 125 verbs and 352 nouns. EGTEA
Gaze+ [31] contains 28 hours of cooking activities from 86
unique sessions of 32 subjects, with over 10k video clips of
106 fine-grained egocentric activities. In both datasets, each
action is a combination of a verb and a noun. Actions are
relevant to different steps of preparing food (e.g. cleaning the
kitchen, cutting vegetables, preparing table).
Implementation. We implement our method using X3D as
the visual encoder where D1 = 432, H ′= W ′= 7 and D2 is
128. We input a clip of 16 RGB frames for Epic-Kitchen and
25 frames for EGTEA Gaze+. We use a dropout probability
of 0.3. For the object relation reasoning module, NBlock is 5
blocks.

For the temporal convolution network, we run our model
with different values of the kernel size. As there was no impact
on the results, we kept a kernel size of 9. In training phase,
we utilized Adam [32] to optimize the model with an initial
learning rate of 0.00005. We scaled the learning rate by a
factor of 0.1 with the patience of 5 epochs. The network was
trained on a 4-GPU machine for 30 epochs. We evaluated our
model using top1 and top5 accuracy on verbs and nouns for
Epic-Kitchen, while for EGTEA Gaze+ we evaluated directly
on actions using top 1 accuracy.

A. Ablation Study
In this section, we validate our model design for the modules

in the THORN. The evaluation is conducted on the EPIC-
Kitchen dataset. We propose different settings, and see how

each setting can improve the performance. In table I, we can
notice different results:

Firstly, we compare our baseline model X3D with THORN.
Note that, in THORN, the graph nodes can be constructed ei-
ther using the output of the last layer of X3D (temporal nodes)
or using its intermediate layer (spatio-temporal nodes). Here,
we first compared X3D with THORN (temporal nodes), i.e.,
we construct the nodes by the features in shape T × 2048. In
this setting, nodes would serve to predict both verbs and nouns.
In this scenario, we improve nouns prediction by +5.6%,
while, the verbs accuracy increased by +9.3% . Proving the
importance of the cross-object reasoning, compared to only
capturing visual information from 3D-CNNs.
Secondly, we study the importance of the adjacency matrix for
predicting the verbs. To do so, we use the adjacency matrix
(ADJ-matrix) to predict verbs, while keeping the nodes to
predict the nouns. In this setting, the verb prediction improves
by +4.5% compared to the previous setting and by +13.8%
to the baseline X3D. This is because the adjacency matrix
captures the object interaction, hence, it is more suitable for
verb prediction.
Thirdly, we study the effect of changing the temporal nodes
with the spatio-temporal nodes. Spatio-temporal nodes are the
nodes constructed by the middle layer of X3D which contains
the spatial information (T×7×7×432). With spatio-temporal
nodes, THORN improves +1.8% on nouns. This is because,
with spatial dimensions, the ORF can better capture the object
relative locations and the size of the object, then embed them
in the node representation. As a result, the noun accuracy
improves. This setting also brings +0.7% improvement on
verbs.
Our overall architecture obtains +13.8% more accuracy on
verbs and +8.6% on nouns w.r.t. vanilla X3D. This reflects
the importance of our proposed modules in THORN and how
an object-centric method can improve results on human-object
interaction actions.

We then study the components for predicting the nouns
in our model. In table II, we show that fusing scores of
object detection and the scores obtained by the THORN nodes
representation works better than using only one of them. We
also find that predictions using only our model are better than
the object detector itself. This shows that our model can refine
the objects represented by the other objects (nodes) using our
graph-based module.



TABLE II
ABLATION STUDY ON FUSING THE SCORES OF THORN WITH THE SCORES
FROM THE OBJECT DETECTOR (FASTER RCNN). THIS EVALUATION IS ON
EPIC-KITCHEN DATASET. FUSING BOTH SCORES BRINGS SIGNIFICANT
IMPROVEMENT ON TOP-1 ACCURACY. FOR THE OBJECT DETECTOR, WE
USE AN AVERAGE POOLING ON ALL THE VIDEO CLIP FRAMES OBJECT

DETECTION SCORES AND ADD A THRESH-HOLD OF 0.3

Faster-RCNN scores THORN Nouns
× 31.5

× 32.8
42.9

B. Comparison with the State-of-the-Art

We then compare our proposed method with the state-of-the-
art methods on EPIC-Kitchen and EGTEA Gaze+ in table III
and IV.

In Table III, we compare our results with the state-of-the-art
methods. Among these methods, Long Features Bank (LFB)
[18] proposes to use global as well as local features for action
recognition. To do so, they extract features on both clip and
video levels, and combine them to have a better understanding
of the scene. Nevertheless, this method still lacks accuracy for
the objects. Moreover, LFB is a two step method which trains
separately an object and verb recognizer modules. For our
THORN, we train a single model for predicting both entities.
As a result, we have a +8.5% improvement on top 1 nouns
and a +4.9% w.r.t. LFB on action recognition.

Our method achieves the overall best performance. We
claim that AssembleNet++ utilizes additional modality such as
optical flow in both training and inference time. Even though,
we still have the lead in top 1 accuracy for the verbs, nouns
and actions, which proves again that having an object-centric
and specific reasoning on object interactions is a key solution
for having a better action recognition on HOI datasets. Finally,
our results prove that using only RGB with an object-centric
model achieves better or similar results compared to methods
relying on heavy multi-modality reasoning.

In table IV, we compare our method with the state-of-the-art
on EGTEA Gaze+ dataset. We have the best accuracy w.r.t. the
others methods, which shows the generalization and robustness
of our model on actions of HOI.

To sum up, compared to other methods, ours is lightly
weighted as we use X3D, while other methods rely on heavy
3D-CNNs such as I3D. THORN is trained jointly on nouns
and verbs as opposed to other methods such as LFB [18], and
we only need RGB frames and object classes per-frame.

C. Qualitative Study

In this section, we conduct a qualitative study of THORN.
In Fig. 5, we show the impact on some classes after adding
our proposed module w.r.t. vanilla X3D. In EPIC-Kitchen,
we significantly improve accuracy on 28 verb classes. Only
the accuracy of 3 out of 125 verbs decreases, while the
decrease is negligible. This improvement on verbs shows

TABLE III
COMPARING THORN MODEL WITH OTHER STATE-OF-THE-ART METHODS
ON THE VALIDATION SET. EVEN THOUGH SOME OF THESE COMPARISONS
ARE NOT FAIR SINCE THESE MODELS ARE USING MULTI-MODALITIES, WE

STILL HOLD THE BEST ACCURACY ON ACTIONS AND NOUNS, WHICH
SHOWS THE STRENGTH OF OUR MODEL

Model Obj RGB Flow Audio Verbs Nouns Actions
top1 top1 top1

Baradel[33] × × 40.9 - -
3D-CNN × × × 49.8 26.1 19.0
STO[18] × × 51.0 26.6 19.5
LFB[18] × × 52.6 31.5 22.8

AssembleNET++ ODF+SDF[20] × 60.0 37.1 25.2
THORN × × 61.0 42.9 30.5

TABLE IV
COMPARING THORN MODEL WITH OTHER STATE-OF-THE-ART METHODS
ON EGTEA GAZE+ SPLIT1. WE HOLD THE BEST ACCURACY ON ACTIONS

Two-stream I3D [9] TSN [34] ego-rnn [35] LSTA [36] SAP [37] THORN
ACC % 43.8 54.2 58.0 62.1 62.0 64.1 67.5

Fig. 5. Accuracy improvement on nouns (right) and verbs (left) w.r.t X3D.

that understanding the inter-relation of different objects is
important for HOI.

For noun recognition, it is interesting to find that THORN
can now predict some classes such as water and wall. These
classes are barely detected with the object detector. This is a
result of the reasoning process on cross object classes, which
refines the nodes and can finally predict overlooked object
classes.

We provide more interesting qualitative studies in the sup-
plementary materials.

V. CONCLUSION

First-view action recognition relies on capturing the visual
relationships between different objects and the human. In this
work, we propose an object-centric model, which projects the
standard CNN features into object class-specific features. After
that, we compute the inter-object relations in graph reasoning,
where each node corresponds to an object class and each edge
represents the relation between two different objects. We eval-
uate our model on two large and challenging datasets. THORN
achieves state-of-the-art performance on both datasets, which
shows the effectiveness and robustness of our method. As our
method relies on object detection precision, our future work
aims at developing an architecture that can combine object
detection and action recognition tasks. We also want to extend
our model for first-view action detection for untrimmed video.
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