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Abstract. Current vision-language foundation models, such as CLIP,
have recently shown significant improvement in performance across various
downstream tasks. However, whether such foundation models significantly
improve more complex fine-grained action recognition tasks is still an
open question. To answer this question and better find out the future
research direction on human behavior analysis in-the-wild, this paper
provides a large-scale study and insight on current state-of-the-art vision
foundation models by comparing their transfer ability onto zero-shot and
frame-wise action recognition tasks. Extensive experiments are conducted
on recent fine-grained, human-centric action recognition datasets (e.g.,
Toyota Smarthome, Penn Action, UAV-Human, TSU, Charades) including
action classification and segmentation.

Keywords: Video understanding · video foundation model · action
recognition · multi-modal learning

1 Introduction

Recent vision-language foundation models [2, 11, 15, 18, 20, 25–27,30, 34, 35], with
a large-scale pre-training, have achieved promising results on many downstream
vision tasks due to their impressive generalizability. Among these, the models
with visual-language pre-training like CLIP [20] and its successors for video
tasks [17,21,31] have revolutionized a myriad of downstream tasks, demonstrating
unprecedented versatility and performance.

Despite these successes, the evaluations are primarily focused on general
video understanding tasks such as video captioning, video-text retrieval, etc. The
capability of these visual-language models to handle more complex and fine-
grained action understanding tasks remains under-explored, such as zero-shot
action classification and multi-label action segmentation. As these tasks are critical
for many applications (e.g., healthcare monitoring and robotic learning), it is
essential to understand the current challenges of visual-language models targeting
fine-grained human action recognition. Hence, in this paper, we evaluate and
compare current state-of-the-art (SoTA) visual-language models, with a particular
focus on their performance in zero-shot classification and action segmentation
tasks.
* Equal contribution.
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To further understand how to take good advantage of video-language model
for zero-shot action recognition, we firstly compare different kinds of action
descriptions obtained from raw action labels and LLMs (e.g., ChatGPT) for
action classification to find out which kind of prompt is more appropriate for
visual-language models. Secondly, for zero-shot action segmentation in untrimmed
video, we apply current video question answering (VQA) models [13, 23] with
post-processing for generating frame-level action predictions. We conduct a
comparative study on such methods and classical action segmentation methods
on more challenging multi-label dataset [8] to fully understand the advantages
and limitations of each current approach.

In summary, the contributions of this paper are the following. (i) We perform
a large-scale study on evaluating current vision-language foundation models
focusing on transfer-learning onto in-the-wild action recognition tasks. (ii) We
further provide insight and comparisons on different action description generation
strategies for zero-shot action classification, and on different frame-wise action
prediction strategies using video question answering (VQA) models for zero-shot
action segmentation. (iii) Extensive experiments are conducted using a good
number of in-the-wild benchmarks.

2 SoTA Multi-modal Video Foundation Models

Recently, many methods have used language features [20] for video understand-
ing [15,18,25,26,30,34], video captioning [35] and visual question answering [2,27].
However, these methods are designed to handle short temporal videos, and the
challenge of handling actions over a long range of time for solving the task of
action detection still persists. These models, especially InternVideo [32], aim to
understand and generate descriptions of video content, facilitating a multi-modal
understanding of visual data.

In this study, we select the most recent and widely used models [17,20,21,23,31]
(see Tab. 1) for comparisons and discussions.

CLIP [20] is the first well known vision foundation model via visual-language
pre-training. The key idea is to pre-train a transferable vision encoder using
natural language supervision. The vision encoder is trained on a large number
of image-text pairs by contrastive learning. CLIP successfully demonstrates
that semantic information can significantly improve the representation ability
of visual encoder for many downstream vision tasks, e.g., image classification,
object detection. However, as the visual encoder of CLIP is trained based on
images but not videos, CLIP is still limited on performance when transferred
onto video-based tasks highly relying on temporal reasoning. In this study, we
evaluate CLIP for video-based action recognition tasks as baseline model.

X-CLIP [17] presents a novel multi-grained contrastive model for video-text
retrieval. To effectively aggregate fine-grained and cross-grained similarity matri-
ces to instance-level similarity, X-CLIP proposes the Attention Over Similarity
Matrix (AOSM) module to make the model focus on the contrast between es-
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Methods Training Data Backbone Training Strategy
CLIP [20] CLIP-400-M/LAION-2B ResNet/ ViT image-text CL
X-CLIP [17] CLIP-400M/Kinetics-400 Vit-B video-text CL
ViCLIP [31] InternVid-10M-FLT Vit-L video-text CL
ViFi-CLIP [21] CLIP-400M/Kinetics-400 ViT-B video-text CL
LanguageBind [38] VIDAL-10M Vit-L image/audio/video-text CL

Table 1: A survey of SoTA architectures, CL: Contrastive Learning.

sential frames and words, thus lowering the impact of unnecessary frames and
words on retrieval results. With multi-grained contrast and the proposed AOSM
module, X-CLIP achieves outstanding performance on video-text retrieval tasks.
In this work, we evaluate and compare X-CLIP focusing on fine-grained action
recognition tasks with other SoTA CLIP-based approaches.

ViCLIP [31] is a general video foundation model. It applies the Vision Trans-
former (ViT) [10] with spatio-temporal attention as the video encoder and uses a
Transformer-based text encoder following [20]. It develops its capabilities through
a mix of self-supervised methods, including masked modeling [29] and cross-modal
contrastive learning [19] for in-depth feature representation, allowing for efficient
learning of transferable video-language representation. As the video and text
encoders are well pre-trained on a web-scale video-language dataset [31] including
7 million videos, corresponding to 234 million clips each with the generated
captions, ViCLIP can be used for video and text feature extractions.

ViFi-CLIP [21] explores the capability of a simple baseline called ViFi-CLIP
(Video Fine-tuned CLIP) for adapting image pretrained CLIP to the video domain.
ViFi-CLIP tackles the challenge of missing temporal relationships of image-based
CLIP model, which can effectively improve the video-based downstream tasks.
In this paper, we further evaluate this method for more fine-grained tasks.

LanguageBind [38] is a multimodal model that primarily uses language to
connect different data types, like videos, infrared images, depth maps, and audio
using contrastive learning. It is trained on a large-scale dataset (VIDAL-10M)
which contains 10 million samples for all these data types and their corresponding
text descriptions. To enhance the model’s understanding and the language seman-
tic information, the text descriptions are improved by incorporating metadata,
spatial, and temporal information. Additionally, ChatGPT is used to refine the
language and create a better semantic representation for each data type.

TimeChat [23] is a time-sensitive multi-modal large language model specifically
designed for long video understanding. Timechat is trained on an instruction-
tuning dataset, encompassing 6 tasks and a total of 125K instances. This model
shows promising zero-shot results on video understanding tasks including dense
captioning, temporal grounding, and highlight detection. As this model can
directly provide action segmentation prediction by asking related questions
without additional training on downstream datasets, we compare this model
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to very challenging action segmentation tasks to understand its generalization
ability.

UniVTG [13] proposes to Unify the diverse Video Temporal Grounding (VTG)
labels and tasks. Thanks to the unified framework, the temporal grounding
pre-training is available from large-scale diverse labels and develops stronger
grounding abilities e.g., zero-shot grounding. Similar as TimeChat, the zero-shot
grounding can provide event boundaries related to action, hence, UniVTG can be
used for zero-shot action detection segmentation tasks. In this study, we are the
first to provide experimental results using UniVTG for more complex multi-label
and frame-wise action segmentation tasks.

All mentioned approaches achieve SoTA performance on many tasks including
video-text retrieval, temporal grounding, video captioning, etc. Most tasks are
based on web videos and highly relys on video-text alignment quality, while are
not focused on daily living action recognition scenarios. It is critical to understand
the performance and current challenges of SoTA foundation models for action
recognition tasks, so we provide an analysis on this topic to find out more future
directions based on the analysis.

3 Current Challenges on Action Recognition

In this work, we provide an analysis of the performance of current vision founda-
tion models with two challenging video-based tasks: zero-shot action classification
and frame-wise temporal action segmentation. The evaluation and comparisons
are performed on real-world datasets.

3.1 Zero-shot Action Classification

Zero-shot action classification is to pre-train an action classification model and
then transfer this model onto an unseen dataset. Unlike traditional methods that
rely on extensive action labels, zero-shot approaches aim to generalize knowledge
from known actions to unknown ones. Specifically, the semantic information,
such as textual descriptions of the action labels, and the videos in the dataset
are embedded using CLIP-based methods [17,21,31,33]. Subsequently, given a
video embedding, we search for its closest semantic information as the action
prediction. We select such tasks as it highly relys on video-text alignment but
has not been fully evaluated by current research.

In real-world video understanding applications, the ability to recognize actions
without the need for specific training data is invaluable. However, visual features
are often low-level, such as shapes, colors, and motions, while action descriptions
are more abstract, this makes the model difficult to accurately match the two
types of features. Additionally, current zero-shot learning models are still limited
to dealing with variations in camera angles, lighting conditions, etc. Hence, this
study aims to evaluate and compare the CLIP-based vision foundation models
on such tasks focusing on real-world scenarios.
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Dataset Real-world 2D 3D #Videos #Actions Fine-grained Type
NTU-RGB+D 60 [24] × ✓ ✓ 56,880 60 No Daily living
NTU-RGB+D 120 [14] × ✓ ✓ 114,480 120 No Daily living
Penn Action [37] ✓ ✓ × 2,326 15 No Sport
UAV-Human [12] ✓ ✓ × 21,224 155 No UAV
Toyota Smarthome [9] ✓ ✓ ✓ 16,115 31 Yes Daily living
Kinetics [4] ✓ × × 400,000 400 No General video
PKU-MMD [5] × ✓ ✓ 1,076 51 No Daily living
Charades [28] ✓ × × 2,300 151 Yes Daily living
TSU [8] ✓ ✓ ✓ 536 51 Yes Daily living

Table 2: A survey of recent datasets for in-the-wild human action classification (top),
action segmentation (bottom).

3.2 Frame-wise Action Segmentation in Untrimmed Videos

Temporal Action Segmentation focuses on per-frame activity classification in
untrimmed videos. The main challenge is how to model long-term relationships
among various activities at different time steps. Specifically, action segmentation
entails the automatic partitioning of untrimmed video sequences into distinct
segments, each corresponding to a coherent action. Current methods [6, 7] have
two steps, they firstly extract visual features on top of the temporal segments of
a long-term video using a strong video encoder. Secondly, they design temporal
modeling to process the features. Hence, the performance of the temporal modeling
highly relies on the video encoder from current video foundation models. In this
study, we compare SoTA vision foundation models [17,20,21,31] by evaluating
their features on temporal action segmentation tasks.

3.3 Evaluation Datasets

Tab. 2 summarizes the current challenging datasets targeting human behavior
analysis. In this paper, we focus on two current challenging tasks, zero-shot
classification and frame-wise segmentation tasks. Specifically, we perform the
study on real-world scenarios [8, 9, 12, 28, 37] and laboratory scenarios [14, 24]
for action understanding including both zero-shot classification and frame-wise
segmentation tasks.
Toyota Smarthome (Smarthome) [9] is a real-world human-centric daily living
action classification dataset. The dataset is challenging as the inter-class variance
is small and the activities are fine-grained. It contains 16,115 videos across
31 action classes, offering RGB and skeleton data. We utilize only RGB data,
following cross-subject (CS) and cross-view2 (CV2) protocols and we report
Top-1 accuracy in this work.
UAV-Human [12] features 22,476 UAV-captured human-centric videos, we use
the RGB data and follow Cross-subject evaluations (CS1).
Penn Action [37] comprises 2,326 sequences of 15 simple sport actions, we use
this dataset for action classification using standard train-test splits.
NTU-RGB+D 60 [24] includes 60 indoor daily living activities and consists
of 56,880 RGB-D video sequences with 3D skeletons, captured by the Microsoft
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Kinect v2 sensor. We only use RGB videos in this work and we follow the
cross-subject (CS) evaluation protocol.
NTU-RGB+D 120 [14] extends the number of action classes and videos of
NTU-RGB+D 60 to 120 classes 114,480 videos. We follow the cross-subject (CS)
evaluation protocols.

Toyota Smarthome Untrimmed (TSU) [8] extends the action classes and
video counts of Smarthome, focusing on frame-wise segmentation tasks. The
dataset is very challenging, as each action can be performed multiple times in a
video and multiple actions can be performed at the same time. We use TSU for
evaluating the generalizability of SoTA models and we report per-frame mAP
following Cross-Subject (CS) and Cross-View (CV) evaluation protocols.
Charades [28] focuses on fine-grained activities segmentation. It contains many
object-oriented activities and variant light conditions. The current methods are
still limited to dealing with this dataset, hence, we use this dataset for our study
and we report per-frame mAP.

The mentioned datasets are different from the datasets of web videos used for
training video foundation models. Our selected evaluated datasets can further
reflect the generalization ability of video foundation models on daily living
scenarios.

4 Experimental Analysis and Discussion

We conduct extensive experiments to evaluate the mentioned foundation mod-
els [17, 20, 21, 31] on both action classification and segmentation tasks. We study
their generalization ability by quantifying the performance improvement obtained
by zero-shot learning on real-world action classification (see Sec. 4.1) and action
segmentation (see Sec. 4.2) datasets after visual-text pre-training. Subsequently,
we evaluate the generalization ability of [17,20,21,31] by providing more analysis.

4.1 Comparisons on Zero-shot Action Classification

One of the advantages of visual-language model [20] compared to classical model [1,
4] is the application for zero-shot classification on unseen datasets. As zero-shot
classification can effectively evaluate the alignment of visual and textual features,
in this section, we compare the feature quality of various SoTA models [17,20,
21, 31, 38] which are trained via visual-language alignment for real-world zero-
shot action classification tasks. Specifically, given a video embedding, we search
its closest textual embedding (extracted using raw action labels) as the action
prediction in a close-world setting.

The results reported in Tab. 3 suggest that the original image-based CLIP [20]
model struggles with video-based tasks due to a lack of temporal consistency in the
features. X-CLIP [17] and ViCLIP [31] extend the CLIP model by incorporating
video encoder and trained on video tasks, such as video-text retrieval [17] and
video classification [31] with very general video data, bring improvements but
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Methods Smarthome Penn UAV NTU-10 NTU-20
CS (%) CV2 (%) Top-1 (%) CS (%) CS (%) CS (%)

CLIP [20] 10.1 13.6 63.1 1.6 13.8 5.1
X-CLIP [17] 16.5 14.8 72.7 4.8 27.6 18.8
ViCLIP [31] 14.1 14.2 74.3 1.2 18.9 15.5
ViFi-CLIP [21] 19.6 15.3 87.1 5.9 33.4 23.1
LanguageBind [38] 16.9 15.1 90.4 3.7 24.1 15.3

Table 3: Zero-shot transfer results (Top-1 accuracy) without re-training on 2D action
classification benchmarks of Smarthome, Penn Action, UAV-Human, NTU-RGB+D 60
(only 10 classes in the test set are used) and NTU-RGB+D 120 (only 20 classes in the
test set are used).

remain limited to handle fine-grained tasks (e.g., on Smarthome and UAV-
Human). In contrast, ViFi-CLIP benefits from specific fine-tuning on Kinetics [3],
which includes many actions found in the evaluation datasets, and can enhance
the performance in fine-grained action classification. However, the performance
is still far away from satisfactory. The variability in viewpoints, subjects, and
environmental conditions can affect the quality of visual features.

We also observe that performances are better with laboratory datasets, and
are even better with the Penn-action dataset, as this is a small dataset with very
few action labels. So, these results suggest that Vision Language Foundation
models are good with basic actions (similar to the web action classes), but
struggle with fine-grained actions, as it is difficult to distinguish between two
similar actions, just based on their labels. It will be also interesting to perform
experiments in open-world settings to verify whether performances are still good
on the Penn-action dataset.

To go deeply analyze the models, in Tab. 6, we list the Smarthome classes
that benefit the most and the least from the evaluated models. We find that
for the actions that have very similar motions (e.g., Uselaptop vs. Readbook,
Walk vs. Enter), compositional motions (e.g., Cook.Stir), and large viewpoints
variations (e.g., for cross-view evaluation), the SoTA models are still limited.
We can deduce from the results that more modalities (e.g., skeleton data that
represents human motion) and more pre-training data are needed to further
improve action recognition performance.

4.2 Comparisons on Action Segmentation

In this section, we compare the performance of the visual-language models in
action segmentation tasks. As current methods for action segmentation tasks
adopt a temporal model to process the continuous pre-extracted visual features
on top of the untrimmed video, this experiment is to compare the representation
ability of a single visual encoder of SoTA models [20, 21, 31] using their visual
features with two recent temporal models [6,7] respectively. The results in Tab. 4
show that similar to zero-shot action classification, the visual representation of
ViFi-CLIP is more effective than other models for segmentation tasks. We also
observe that the performances of Vision Language Foundation models are still
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Fig. 1: Statistics of the results on different datasets.

Methods TSU Charades
CS(%) CV(%) mAP(%)

PDAN [7] w/ CLIP [20] 16.3 10.0 15.9
PDAN [7] w/ ViCLIP [31] 21.5 13.4 16.2
PDAN [7] w/ ViFi-CLIP [21] 28.6 15.9 16.4
MS-TCT [6] w/ CLIP [20] 5.3 5.7 12.7
MS-TCT [6] w/ ViCLIP [31] 15.8 8.2 16.3
MS-TCT [6] w/ ViFi-CLIP [21] 21.3 17.3 16.4
MS-TCT [6] w/ I3D [4] (SoTA) 33.7 - 25.4

Table 4: Frame-level mAP on TSU and Charades for comparison of SoTA vision
foundation models with SoTA temporal modeling methods for action segmentation.

not at the level of State-of-the-art action detection methods [6]. This can be
explained by the fact that these Foundation models have been trained on web
videos, which are quite different from Activity of Daily Living (ADL) Videos,
such as TSU or Charades.

4.3 More Study

In this section, we provide further analysis based on the main results.

Can Augmenting Action Labels Improve Zero-shot Results? As raw
action labels are too simple to fully express video content and have insufficient
semantic information, we manually enrich the expression of the action labels
in two levels, the augmented label and action description. Then we re-evaluate
the zero-shot action classification on Smarthome and a subset of NTU-RGB+D,
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Fig. 2: Comparisons of text information using raw action labels, augmented action
labels (Aug.) and full action description (Des.) on NTU and Smarthome.

Methods
Smarthome NTU-10

CS(%) CV(%) Top-1(%)
Label Aug. Des. Label Aug. Des. Label Aug. Des.

CLIP [20] 10.1 9.3 9.1 13.6 13.7 10.2 13.8 15.0 12.8
X-CLIP [17] 16.5 15.7 15.9 14.8 14.1 10.3 27.6 29.3 34.9
ViCLIP [31] 14.2 13.1 13.7 14.1 13.8 14.0 18.9 20.9 23.1
ViFi-CLIP [21] 19.6 19.9 18.9 15.3 14.6 12.3 33.4 38.2 42.9

Table 5: Ablation study on zero-shot action classification benchmarks of Smarthome
and NTU-10 with different text embeddings: original label (Label), augmented label
(Aug.), and action description (Des.).

named NTU-10 [14] with 10 selected actions. The results in Tab. 5 and Fig. 2
suggest that the CLIP-based models are sensitive to the text embedding on NTU-
10 and action description can improve the text features for zero-shot classification.
However, a dataset like Smarthome, where the original labels include most
information (e.g., people make coffee on the table), does not benefit from the
augmentation of action labels.

Few-shot Learning for Action Segmentation. Few-shot transfer-learning is
commendable and enables obtaining good accuracy with limited labeled data.
This highlights the model practicality in real-world applications where data
scarcity is prevalent. The few-shot transfer ability of our evaluated CLIP-based
models on top of temporal modeling [6] is shown in Tab. 7. The results are
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Actions
Smarthome

CS(%) CV(%)
CLIP XCLIP ViCLIP ViFiCLIP L-Bind CLIP XCLIP ViCLIP ViFiCLIP L-Bind

Eat.Attable 96.4 91.3 100.0 80.2 99.2 100.0 97.3 100.0 83.7 100
WatchTV 100.0 55.7 98.7 70.0 86.9 - - - - -
Cleandishes 6.8 68.4 51.2 50.4 48.1 - - - - -
Uselaptop 0.0 44.4 53.9 47.2 28.7 2.0 50.0 30.8 40.4 40.4
Readbook 0.0 54.2 0.0 47.0 31.1 0.0 0.0 0.0 4.2 0.0
Cook.Stir 0.0 0.0 19.1 27.6 40.7 - - - - -
Sitdown 0.0 5.9 0.0 16.4 5.3 0.0 0.0 0.0 0.5 2.1
Drink.Fromcup 0.3 0.1 0.7 5.2 0.7 0.0 0.0 0.0 0.9 0.0
Walk 0.08 1.2 58 4.7 0.5 0.0 0.0 0.0 0.7 0.0
Enter 0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0

Table 6: Analysis on different actions of Smarthome using SoTA foundation models.

Methods Label TSU Charades
CS(%) CV(%) mAP(%)

CLIP [20] 5% 6.2 4.3 8.7
ViCLIP [31] 5% 3.5 3.3 10.1
ViFi-CLIP [21] 5% 5.6 5.7 11.1
CLIP [20] 10% 4.4 4.7 11.1
ViCLIP [31] 10% 4.0 3.5 11.6
ViFi-CLIP [21] 10% 6.1 5.8 11.3

Table 7: Transfer learning results by on Toyota Smarthome Untrimmed (TSU) and
Charades with randomly selected 5% (top) and 10% (bottom) of labeled training
data after pre-training on different foundation models.

consistent with previous evaluation, ViFi-CLIP [21] has mostly the best visual
representation ability.

Can Visual-language Model Used for Zero-shot Action Segmentation?
For zero-shot frame-wise action segmentation, one of the solutions is to apply
the zero-shot action classification on each frame, which is much more complex.
In this section, we propose to leverage current VQA methods [13, 23] to directly
generate predictions of the action boundary for a given video by asking the specific
questions about the actions. We compare TimeChat [23] and UniVTG [13] on
Charades with event-level IoU accuracy (see Tab. 9) and we find that UniVTG [13]
is more effective. To further compare the performance of VQA model to the
temporal modeling methods using CLIP-based features like PDAN [7] w/ ViFi-
CLIP [21], we convert the action boundary to frame-level prediction and use
mAP for fair comparison. The results in Tab. 8 demonstrate the UniVTG, even
without the need for re-training, can achieve better accuracy than ViFi-CLIP for
Charades. However, for more complex scenarios like TSU, where multiple actions
can be performed in the same video and they can be overlapped, the UniVTG
model is still challenging to deal with, the two stage approaches using ViFi-CLIP
features.
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Methods TSU Charades
CS(%) CV(%) mAP(%)

TimeChat [23] 2.5 3.4 14.7
UniVTG [13] 2.4 3.2 17.7
PDAN w/ ViFi-CLIP [21] 28.6 15.9 16.4

Table 8: Frame-level mAP on TSU and Charades for comparison of VQA methods
with zero-shot action segmentation.

Methods Charades
R@0.3 R@0.5 R@0.7 mIoU

TimeChat [23] 42.4 23.1 9.4 25.0
UniVTG [13] 55.8 29.2 10.6 31.8

Table 9: R1@IOU on Charades for comparison of VQA methods with zero-shot action
segmentation.

4.4 Discussions and Novel Direction

From our study, we find that current SoTA visual-language foundation model still
has challenge for action recognition, the semantic gap between visual features
and action descriptions makes it difficult to capture fine-grained details. To
solve the problem, we suggest to use more modalities (e.g., audio [22] and
geometry [36]) to complement visual information, and to design more effective
temporal modeling to capture long-term temporal reasoning to improve action
segmentation. Additionally, we can also take the advantage of Large Language
Models to enhance the understanding of action descriptions and to improve
zero-shot classification. Finally, we believe that more comprehensive datasets
from real-world and video generative model [16] can cover a broader range of
actions.

5 Conclusion

In this study, we evaluate state-of-the-art visual-language models for fine-grained
action recognition, focusing on zero-shot action classification and action seg-
mentation. While models like ViFi-CLIP, fine-tuned on the Kinetics dataset,
demonstrated the best performance, and the VQA model UniVTG, show attracted
results for zero-shot action segmentation. Our results highlight current challenges
in handling complex actions and long-term temporal consistency. The findings
suggest that incorporating additional modalities, such as skeleton data, could
enhance model accuracy and robustness. Future research should explore integrat-
ing multi-modal data and fine-tuning strategies to improve action recognition
performance.
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