
Chapter 3
Incremental Learning on Trajectory Clustering

Luis Patino, François Bremond, and Monique Thonnat

Abstract. Scene understanding corresponds to the real time process of perceiving,
analysing and elaborating an interpretation of a 3D dynamic scene observed through
a network of cameras. The whole challenge consists in managing this huge amount
of information and in structuring all the knowledge. On-line Clustering is an effi-
cient manner to process such huge amounts of data. On-line processing is indeed
an important capability required to perform monitoring and behaviour analysis on
a long-term basis. In this paper we show how a simple clustering algorithm can be
tuned to perform on-line. The system works by finding the main trajectory patterns
of people in the video. We present results obtained on real videos corresponding to
the monitoring of the Toulouse airport in France.

3.1 Introduction

Scene understanding corresponds to the real time process of perceiving, analysing
and elaborating an interpretation of a 3D dynamic scene observed through a net-
work of sensors (including cameras and microphones). This process consists mainly
in matching signal information coming from sensors observing the scene with a
large variety of models which humans are using to understand the scene. This scene
can contain a number of physical objects of various types (e.g. people, vehicle)
interacting with each other or with their environment (e.g. equipment) more or
less structured. The scene can last a few instants (e.g. the fall of a person) or a
few months (e.g. the depression of a person), can be limited to a laboratory slide
observed through a microscope or go beyond the size of a city. Sensors include
usually cameras (e.g. omnidirectional, infrared), but also may include microphones
and other sensors (e.g. optical cells, contact sensors, physiological sensors, smoke
detectors, GNSS).
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Despite few success stories, such as traffic monitoring (e.g. Citilog), swimming
pool monitoring (e.g. Poseidon) and intrusion detection (e.g. ObjectVideo, Keeneo),
scene understanding systems remain erratic and can function only under restrictive
conditions (e.g. during day rather than night, diffuse lighting conditions, no shad-
ows). Having poor performance over time, they are hardly modifiable, containing
little a priori knowledge on their environment. Moreover, these systems are very
specific and need to be redeveloped from scratch for new applications. To answer
these issues, most researchers have tried to develop original vision algorithms with
focused functionalities, robust enough to handle real life conditions. Up to now no
vision algorithms were able to address the large varieties of conditions characteris-
ing real world scenes, in terms of sensor conditions, hardware requirements, lighting
conditions, physical object varieties, application objectives...

Here we state that the scene understanding process relies on the maintenance of
the coherency of the representation of the global 3D scene throughout time. This
approach which can be called 4D semantic interpretation is driven by models and
invariants characterising the scene and its dynamics. The invariants (called also reg-
ularities) are general rules characterising the scene dynamics. For instance, the in-
tensity of a pixel can change significantly mostly in two cases: change of lighting
conditions (e.g. shadow) or change due to a physical object (e.g. occlusion). Another
rule verifies that physical objects cannot disappear in the middle of the scene. There
is still an open issue which consists in determining whether these models and invari-
ants are given a priori or are learned. The whole challenge consists in managing this
huge amount of information and in structuring all this knowledge in order to capi-
talise experiences, to share them with other computer vision systems and to update
them along experimentations. To face this challenge several knowledge engineering
tools are needed:

Tools for scene perception. A first category of tools contains vision algorithms to
handle all the varieties of real world conditions. The goal of all these algorithms is to
detect and classify the physical objects which are defined as interesting by the users.
A first set of algorithms consists of robust segmentation algorithms for detecting
the physical objects of interest. These segmentation algorithms are based on the
hypothesis that the objects of interest are related to what is moving in the video,
which can be inferred by detecting signal changes. Specific algorithms to separate
physical objects from different categories of noise (e.g. due to light change, ghost,
moving contextual object), and algorithms to extract meaningful features (e.g. 3D
HOG, wavelet based descriptors, colour histograms) characterising the objects of
interest belong to this category.

Tools for verification of the 3D coherency throughout time (physical world)
A second category of tools are the ones combining all the features coming from
the detection of the physical objects observed by different sensors and in tracking
these objects throughout time. Algorithms for tracking multiple objects in 2D or 3D
with one camera or a network of cameras belong here; for instance, algorithms that
take advantage of contextual information and of a graph of tracked moving regions
where an object trajectory can be seen as the most probable path in the graph. This
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property enables to process long video sequences and to ensure the trajectory coher-
ence. Moreover, these tracking algorithms compute the uncertainty of the tracking
process by estimating the matching probability of two objects at successive instants.
A second example is to fuse the information coming from several sensors at dif-
ferent levels depending on the environment configuration. Information fusion at the
signal level can provide more precise information, but information fusion at higher
levels is more reliable and easier to accomplish. In particular, we are using three
types of fusion algorithms: (1) multiple cameras with overlapping field of view, (2)
a video camera with pressure sensors and sensors to measure the consumption of
water and electrical appliances, and (3) video cameras coupled with other sensors
(contact sensors and optical cells).

Tools for Event recognition (semantic world). At the event level, the computa-
tion of relationships between physical objects constitutes a third category of tools.
Here, the real challenge is to explore efficiently all the possible spatio-temporal
relationships of these objects that may correspond to events (called also actions,
situations, activities, behaviours, scenarios, scripts and chronicles). The varieties of
these events are huge and depend on their spatial and temporal granularities, on the
number of the physical objects involved in the events, and on the event complexity
(number of components constituting the event and the type of temporal relation-
ship). Different types of formalism can be used: HMM and Bayesian networks,
temporal scenarios [28].

Tools for knowledge management. To be able to improve scene understanding
systems, we need at one point to evaluate their performance. Therefore we have
proposed a complete framework for performance evaluation which consists of a
video data set associated with ground-truth, a set of metrics for all the tasks of the
understanding process, an automatic evaluation software and a graphical tool to vi-
sualise the algorithm performance results (i.e. to highlight algorithm limitations and
to perform comparative studies). Scene understanding systems can be optimised
using machine learning techniques in order to find the best set of program param-
eters and to obtain an efficient and effective real-time process. It is also possible
to improve system performance by adding a higher reasoning stage and a feed-
back process towards lower processing layers. Scene understanding is essentially a
bottom-up approach consisting in abstracting information coming from signal (i.e.
approach guided by data). However, in some cases, a top-down approach (i.e. ap-
proach guided by models) can improve lower process performance by providing a
more global knowledge of the observed scene or by optimising available resources.
In particular, the global coherency of the 4D world can help to decide whether some
moving regions correspond to noise or to physical objects of interest.

Tools for Communication, Visualisation Knowledge Acquisition and learning
Even when the correct interpretation of the scene has been performed, a scene un-
derstanding system still has to communicate its understanding to the users or to
adapt its processing to user needs. A specific tool can be designed for acquiring a
priori knowledge and the scenarios to be recognised through end-user interactions.



50 L. Patino, F. Bremond, and M. Thonnat

3D animations can help end-users to define and to visualize these scenarios. Thus,
these tools aim at learning the scenarios of interest for users. These scenarios can be
often seen as the complex frequent events or as frequent combinations of primitive
events called also event patterns.

The present work belongs to the latter category. We aim at designing an unsu-
pervised system for the extraction of structured knowledge from large video record-
ings. By employing clustering techniques, we define the invariants (as mentioned
above) characterising the scene dynamics. However, not all clustering techniques
are well adapted to perform on-line. On-line learning is indeed an important capa-
bility required to perform scene analysis on long-term basis. In this work we show
how meaningful scene activity characterisation can be achieved through trajectory
analysis. To handle the difficulty of processing large amounts of video, we employ
a clustering algorithm that has been tuned to perform on-line. The approach has
been validated on video data from the Toulouse airport in France (European project
COFRIEND [1]).

The reminder of the paper is organised as follows. We review some relevant work
for scene interpretation from trajectory analysis in the following subsection (section
3.1.1 Related Work). We present the general structure of our approach in section
3.2 (General structure of the proposed approach). A brief description of the object
detection and tracking employed in our system is given in section 3.3 (On-line
processing: Real-time Object detection). The detailed description of the trajectory
analysis undertaken in this work is given in section 4 (Trajectory analysis), including
the algorithm to tune the clustering parameters. The evaluation of the trajectory
analysis work is given in the following section. The results obtained after processing
the video data from the Toulouse airport are presented in section 6. Our general
remarks and conclusions are given at the end of the paper.

3.1.1 Related Work

Extraction of the activities contained in the video by applying data-mining tech-
niques represents a field that has only started to be addressed. Recently it has been
shown that the analysis of motion from mobile objects detected in videos can give
meaningful activity information. Trajectory analysis has become a popular approach
due to its effectiveness in detecting normal/abnormal behaviours. For example, Pi-
ciarelli et al. [22] employ a splitting algorithm applied on very structured scenes
(such as roads) represented as a zone hierarchy. Foresti et al. [11] employ an adap-
tive neural tree to classify an event occurring on a parking lot (again a highly struc-
tured scene) as normal/suspicious/dangerous. Anjum et al. [2] employ PCA to seek
for trajectory outliers. In these cases the drawback of the approach is that the anal-
ysis is only adapted to highly structured scenes. Similarly, Naftel et al. [20] first
reduce the dimensionality of the trajectory data employing Discrete Fourier Trans-
form (DFT) coefficients and then apply a self-organizing map (SOM) clustering
algorithm to find normal behaviour. Antonini et al. [3] transform the trajectory
data employing Independent Component Analysis (ICA), while the final clusters
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are found employing an agglomerative hierarchical algorithm. In these approaches
it is however delicate to select the number of coefficients that will represent the data
after dimensionality reduction. Data mining of trajectories has also been applied
with statistical methods. Gaffney et al. [13] have employed mixtures of regression
models to cluster hand movements, although the trajectories were constrained to
have the same length. Hidden Markov Models (HMM) have also been employed
[5, 21, 24]. In addition to activity clustering, so as to enable dynamic adaptation to
unexpected event processing or newly observed data, we need a system able to learn
the activity clusters in an on-line way. On-line learning is indeed an important capa-
bility required to perform behaviour analysis on long-term basis and to anticipate the
human interaction evolutions. An on-line learning algorithm gives a system the abil-
ity to incrementally learn new information from datasets that consecutively become
available, even if the new data introduce additional classes that were not formerly
seen. This kind of algorithm does not require access to previously used datasets, yet
it is capable of largely retaining the previously acquired knowledge and has no prob-
lem of accommodating any new classes that are introduced in the new data [23].
Some various restrictions, such as whether the learner has partial or no access to
previous data [26, 17, 15], or whether new classes or new features are introduced
with additional data [30], have also been proposed [19]. Many popular classifiers,
however, are not structurally suitable for incremental learning; either because they
are stable [such as the multilayer perceptron (MLP), radial basis function (RBF)
networks, or support vector machines (SVM)], or because they have high plastic-
ity and cannot retain previously acquired knowledge, without having access to old
data (such as -nearest neighbor) [19]. Specific algorithms have been developed to
perform on-line incremental learning, such as Leader [14], Adaptive Resonance
Theory modules (ARTMAP) [8, 7], Evolved Incremental Learning for Neural Net-
works [25], leaders-subleaders [29], and BIRCH [18]. Among them, the Hartigan
algorithm [14], also known as Leader algorithm, is probably the most employed in
the literature. The Leader algorithm, computes the distance between new data and
already built clusters to decide to associate these new data with the clusters or to
generate new ones better characterising the data. However, all these approaches rely
on a manually-selected threshold to decide whether the data is too far away from
the clusters. To improve this approach we propose to control the learning rate with
coefficients indicating how flexible the cluster can be updated with new data.

3.2 General Structure of the Proposed Approach

The monitoring system is mainly composed of two different processing components
(shown in Figure 3.1). The first one is a video analysis subsystem for the detection
and tracking of objects. This is a processing that goes on a frame-by-frame basis.
The second subsystem achieves the extraction of trajectory patterns from the video.
This subsystem is composed of two modules: The trajectory analysis module and the
statistical analysis module. In the first module we perform the analysis of trajectories
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by clustering and obtain behavioural patterns of interaction. In the second module
we compute meaningful descriptive measures on the scene dynamics.

For the storage of video streams and the trajectories obtained from the video pro-
cessing module, a relational database has been setup. The trajectory analysis mod-
ules read the trajectories from the database and return the identified trajectory types;
the discovered activities on the video; and resulting statistics calculated from the ac-
tivities. Streams of video are acquired at a speed of 10 frames per second. The video
analysis subsystem takes its input directly from the data acquisition component; the
video is stored into the DB parallel to the analysis process.

The whole system helps the manager or designer who wants to get global and
long-term information from the monitored site. The user can specify a period of
time where he/she wishes to retrieve and analyse stored information. In particular
the user can access the whole database to visualize specific events, streams of video
and off-line information.

Fig. 3.1 General architecture of the system.

3.3 On-Line Processing: Real-Time Object Detection

Tracking objects in video is not the main contribution of this paper and therefore
only a general description is made here. Detecting objects in an image is a difficult
and challenging task. One solution widely employed consists in performing a thresh-
olding operation between the pixel intensity of each frame with the pixel intensity
of a background reference image. The latter can be a captured image of the same
scene having no foreground objects, or no moving objects in front of the camera.
The result of the thresholding operation is a binary mask of foreground pixels. The
neighbouring foreground pixels are grouped together to form regions often referred
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to as blobs which correspond to the moving regions in the image. If the moving ob-
ject projection in the image plane does not overlap with each other, i.e. no dynamic
occlusion, then each detected moving blob corresponds to a single moving object.
The detailed description of the background subtraction algorithm, which also es-
timates when the background reference image needs to be updated, can be found
in [12]. Having 3D information about the scene under view enables the calibration
of the camera. Point correspondences between selected 3D points in the scene and
their corresponding point in the 2D image plane allow us to generate the 3D loca-
tion of any points belonging to moving objects. Thus, the 3D (i.e. width and height)
of each detected moving blob can be measured as well as their 3D location on the
ground plane in the scene with respect to a chosen coordinate system. The 3D ob-
ject information is then compared against several 3D models provided by the user.
From this comparison, a detected object is linked to a semantic class. Detected and
classified 3D objects in a scene can be tracked within the scope of the camera using
the 3D information of their location on the ground as well as their 3D dimensions.
Tracking a few objects in a scene can be easy as far as they do not interact heavily
in front of the camera: i.e. occlusions are rare and short. However, the complexity
of tracking several mobile objects becomes a non-trivial and very difficult task to
achieve when several object projected images overlap with each other on the image
plane. Occluded objects have missing or wrong 3D locations, which can create inco-
herency in the temporal evolution of their 3D location. Our tracking algorithm [4]
builds a temporal graph of connected objects over time to cope with the problems
encountered during tracking. The detected objects are connected between each pair
of successive frames by a frame to frame (F2F) tracker. Links between objects are
associated with a weight (i.e. a matching likelihood) computed from three criteria:
the comparison between their semantic class, 3D dimensions, and their 3D distance
on the ground plane. The graph of linked objects provided by the F2F tracker is then
analysed by the tracking algorithm, also referred to as the Long Term tracker, which
builds paths of mobiles according to the link weights. The best path is then taken
out as the trajectory of the related mobiles.

The proposed tracking approach has the advantage of being simple to implement
and able to run at a ‘high’ frame rate. However, it is sensitive to noise and this could
prevent tracking correctly long trajectories.

3.4 Trajectory Analysis

The second layer of analysis in our approach is related to the knowledge discovery
of higher semantic information from analysis of activities recorded over a period of
time that can span, for instance, from minutes to a whole day (or several days of
recording). Patterns of activity are extracted from the analysis of trajectories.

3.4.1 Object Representation: Feature Analysis

For the trajectory pattern characterisation of the object, we have selected a compre-
hensive, compact, and flexible representation. It is suitable also for further analysis
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as opposed to many video systems, which actually store the sequence of object lo-
cations for each frame of the video building thus a cumbersome representation with
little semantic information. If the dataset is made up of N objects, the trajectory for
object O j in this dataset is defined as the set of points [x j(t),y j(t)] corresponding to
their position points; x and y are time series vectors whose length is not equal for
all objects as the time they spend in the scene is variable. Two key points defining
these time series are the beginning and the end, [x j(1),y j(1)] and [x j(end),y j(end)]
as they define where the object is coming from and where it is going to. We build
a feature vector from these two points. Additionally, we also include the directional
information given as [cos(θ ),sin(θ )], where θ is the angle which defines the vector
joining [x j(1),y j(1)] and [x j(end),y j(end)]. A mobile object seen in the scene is
thus represented by the feature vector:

v j = [x j(1),y j(1),x j(end),y j(end),cos(θ ),sin(θ )] (3.1)

This feature vector constitutes a set of simple descriptors that have proven exper-
imentally to be enough to describe activities in a large variety of domains (such
as traffic monitoring, subway control, monitoring smart environments), mainly be-
cause they are the most salient, but also they are appropriate for real world videos
depicting unstructured scenes where trajectories of different types have strong over-
lap and they are usually the ones used by end-users of different domains.

3.4.2 Incremental Learning

We need a system able to learn the activity clusters in an on-line way. On-line learn-
ing is indeed an important capability required to perform behaviour analysis on a
long-term basis. A first approach proposed in the state-of-the-art for on-line clus-
tering is the Leader algorithm [14]. In this method, it is assumed that a rule for
computing the distance D between any pair of objects, and a threshold T is given.
The algorithm constructs a partition of the input space (defining a set of clusters)
and a leading representative for each cluster, so that every object in a cluster is
within a distance T of the leading object. The threshold T is thus a measure of the
diameter of each cluster. The clusters CLi, are numbered CL1, CL2 , CL3, . . . , CLk.
The leading object representative associated with cluster CLj is denoted by Lj. The
algorithm makes one pass through the dataset, assigning each object to the cluster
whose leader is the closest and making a new cluster, and a new leader, for objects
that are not close enough to any existing leaders. The process is repeated until all
objects are assigned to a cluster. Leader-subleader [29], ARTMAP [8] and BIRCH
[18] algorithms are of this type. The strongest advantages of the Leader algorithm
are that it requires a single scan of the database, and only cluster representatives
need to be accessed during processing. However, the algorithm is extremely sensi-
tive to threshold parameter defining the minimum activation of a cluster CL. A new
input object defined by its feature vector v will be allocated to cluster CLj if v falls
into its input receptive field (hyper-sphere whose radio is given by r j = T ). Defining
T is application dependent. It can be supplied by an expert with a deep knowledge
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of the data or employing heuristics. In this work we propose to learn this parameter
employing a training set and a machine learning process.

Let each cluster CLi be defined by a radial basis function (RBF) centered at the
position given by its leader Li:

CLi(v) = φ(Li,v,T ) = exp(−‖v−Li‖2T 2) (3.2)

The RBF function has a maximum of 1 when its input is v = Li and thus acts as a
similarity detector with decreasing values outputted whenever v strides away from
Li. We can make the choice that an object element will be included into a cluster if
CLi(v) ≥ 0.5, which is a natural choice. The cluster receptive field (hyper-sphere) is
controlled by the parameter T.

Now, consider C = {CL1, . . . ,CLk} is a clustering structure of a dataset X =
{v1,v2, . . . ,vN}; {L1,L2, . . . ,Lk} are the leaders in this clustering structure and
P = {P1, . . . ,Ps} is the true partition of the data (Ground-truth) and {M1, . . . ,Ms}
are the main representatives (or Leaders) in the true partition. We can define an
error function given by

E =
1
N

N

∑
j=1

E j (3.3)

E j =

⎧
⎨

⎩

0 i f
{

L(v j) ,v j
} ∈CLi;

{
L(v j) ,v j

} ∈ Pi′
−1 i f v j ∈CLi; |CLi| = 1and L(v j) �= M (v j)
1 otherwise

(3.4)

and L(v j) is the Leader associated to v j in the clustering structure Ci and |Ci| is
the cluster cardinality. M(v j) is the Leader associated to v j in the true partition P.
In the above equation, the first case represents a good clustering when the cluster
prototype and the cluster elements match the ground truth partition P. The error is
zero and the cluster size is correct. The second case corresponds to a cluster made
of a singleton element. This element prototype does not correspond to any expected
cluster prototype in the ‘true’ partition P. In this case the cluster size has to grow
in order to enclose the singleton element. The remaining case is where an element
is wrongly included into a cluster; The cluster size has then to decrease to exclude
unwilling border elements.

Minimising this error is equivalent to refining the clustering structure C or is
equivalent to adjusting the parameter T that controls the cluster receptive field. A
straightforward way to adjust T and minimise the error is employing an iterative
gradient-descent method:

T (t + 1) = T (t)−η
∂E(t)

∂T
(3.5)

where the error gradient at time t is:

∂E(t)
∂T

=
1
N ∑

j
E j(t)

∂Φ̂
∂T

(3.6)
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and the cluster activation gradient is:

∂Φ̂
∂T

=
∂

∂T

[
exp

(
−∥

∥v j −L(v j)
∥
∥2

T 2
)]

(3.7)

∂Φ̂
∂T

= −∥
∥v j −L(v j)

∥
∥2(2T )

[
exp(−∥

∥v j −L(v j)
∥
∥2

T 2)
]

(3.8)

The threshold update can thus be written as:

T (t + 1) = T (t)−η
1
N ∑

j
E j(t)

[
−2T

∥
∥v j −L(v j)

∥
∥2

]
Φ̂ (3.9)

The final value is typically set when the error is sufficiently small or the pro-
cess reaches a given number of iterations. Convergence to an optimum value for
both, T and E is only guaranteed if data in the ‘true’ partition P is well structured
(having high intra-class homogeneity and high inter-class separation; see unsuper-
vised/supervised evaluation below).

With the purpose of tuning parameter T, and for this application, we have defined
a Training data set (with associated Ground-truth) containing sixty nine synthetic
trajectories. The ground-truth trajectories were manually drawn on a top view scene
image. Figure 3.2 shows the empty scene of the Toulouse airport with some drawn
trajectories. Semantic descriptions such as From Taxi parking area to Tow-tractor
waiting point were manually given. There are twenty three of such annotated seman-
tic descriptions, which are called in the following trajectory types. Each trajectory
type is associated with a main trajectory that best matches that description. Besides,
two complementary trajectories define the confidence limits within which we can
still associate that semantic description. In figure 3.2 the main trajectory of each
trajectory type is represented by a red continuous line while blue broken lines repre-
sent the complementary trajectories of the trajectory type. Thus, each ground-truth
trajectory is associated to a semantic descriptor or trajectory type. Each trajectory
type contains a triplet of trajectories.

The proposed gradient-descent methodology was applied to the ground-truth
dataset. The threshold T, in the leader algorithm, is initially set to a large value
(which causes a merge of most trajectory types). Figure 3.3 shows how this thresh-
old value evolves as the gradient algorithm iterates. The graph for the corresponding
error is shown in figure 3.4. Remark that for this application we have not encoun-
tered local minima problems. However, as gradient-descent algorithms are clearly
exposed to this problem, it could be envisaged to verify whether the minima found
is indeed the global optima. A multiresolution analysis would be of help for this.

It is also possible to evaluate, in an unsupervised or supervised manner, the qual-
ity of the resulting clustering structure:

Unsupervised evaluation: typical clustering validity indexes evaluating the intra-
cluster homogeneity and inter-cluster separation such as Silhouette [6, 16],
Dunn [10] and Davies-Bouldin [9] indexes (given in Annex 1) can be employed.



3 Incremental Learning on Trajectory Clustering 57

Fig. 3.2 Ground-truth for different semantic clusters.

Fig. 3.3 Evolution of the threshold T controlling the cluster receptive field.

Figure 3.5 shows the evolution of these three indexes on the clustering of trajecto-
ries as the gradient-descent algorithm evolves.

Supervised evaluation: supervised validity indexes, which in this case compare the
clustering results to the true data partition, such as the Jaccard index [27] (given in
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Fig. 3.4 Evolution of the gradient-descent error with the number of iterations. The error
gives an indication of how many elements of different trajectory types are merged together in
a single cluster.

Fig. 3.5 Validity indexes such as Silhouette (higher values are better), Dunn (higher values
are better) and Davies-Bouldin (lower values are better) at each iteration step of the gradient-
descent algorithm.

Annex 2) can also be employed. Figure 3.6 shows the evolution of this index on the
clustering of trajectories as the gradient-descent algorithm evolves.

For large values of the threshold T (above 1.5) it is possible to see that a large
number of trajectories are badly clustered (about 1/3 of the dataset). The unsuper-
vised indexes are also unstable (presenting some oscillatory changes over the differ-
ent iterations) and indicative of a bad clustering structure (meaning low inter-cluster
distance and high intra-cluster distance). The mapping with the true partition is also
poor (indicated by low values of the Jaccard index). For values of the threshold T
below 1.4 there is an almost monotonically improvement of the unsupervised and



3 Incremental Learning on Trajectory Clustering 59

Fig. 3.6 Supervised evaluation at each iteration step of the gradient-descent algorithm. The
Jaccard index compares the resulting clustering with the partition given by the trajectory
ground-truth.

supervised clustering indexes. The Jaccard index reaches its maximum value (mean-
ing a perfect matching with the true partition) for a threshold T=0.79, which is then
selected for our analysis. The unsupervised indexes are also indicative of a good
clustering structure. The Leaders defined from this process are selected as the initial
cluster centres that will guide the partition of new incoming data.

3.5 Trajectory Analysis Evaluation

In order to test the efficiency of the trajectory clustering algorithm we have analysed
a new set of synthetic trajectories, which we denote by ‘experimental set’. This new
set was composed of 230 trajectories, which have the same structure as the training
dataset; that is, each trajectory is associated with a semantic meaning. Moreover,
each trajectory in the test dataset was generated from the Ground-truth dataset in
the following form. Trajectories are generated by randomly selecting among points
uniformly distributed on each side between the main trajectory and the two adja-
cent trajectories. These points lie on segments linking the main trajectory to the two
adjacent trajectories. Each segment starts on a sample point of the main trajectory
and goes to the nearest sample point in the adjacent trajectory. Adjacent trajectories
are up-sampled for better point distribution. Ten points lie on each segment linking
the main trajectory and an adjacent trajectory. For this reason, the trajectories gener-
ated from the principal trajectory will convey the same semantic. Figure 3.7 below
shows a couple of examples.

The clustering algorithm is then run again without any knowledge of the semantic
description for each trajectory on the experimental data set. After the clustering pro-
cess is achieved, the resulting partition can be assessed by comparing with the one
initially defined by the Ground-truth; what the Jaccard index does. In this case, the
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Fig. 3.7 Four different sets of synthetic trajectories. Each set contains twenty trajectories dif-
ferent from the main and adjacent trajectories previously defined in the Ground-truth dataset
(Figure 3.2).

Jaccard index takes a value of 0.9119 (our baseline). Moreover, typical metrics re-
lated to the ROC space (Receiver operating characteristics) can be computed which
evaluate both the mapping between the clustering algorithm output and the Ground-
truth partition. These measures are the true positive rate (TPR) and false positive
rate (FPR), which in this case take the following values: TPR=0.9565, FPR=0.002.

In order to assess the robustness of the trajectory clustering algorithm, we have
evaluated our approach on more different sets of synthetic objects. Each set has the
particularity of containing groups of very similar trajectories (even with an overlap
in the most difficult cases), yet associated with different semantics. The evalua-
tion consists thus in assessing how much the clustering algorithm will be affected
by the different levels of complexity/noise introduced. To characterise the different
datasets, we have computed the unsupervised clustering indexes Silhouette, Dunn
and Davies-Bouldin. The table below (Table 3.1) summarises the results.

Each experimental set mentioned in the table above contains an increasing com-
plexity. For instance, some groups of trajectories defined in the ‘experimental set 2’,
which contain some overlap between them, are also present in the next experimental
sets (experimental set 3, 4 , 5., . . . ). For each experimental set, some new groups of
trajectories are added, which in turn induce more overlapping situations and will
also be present in the following experimental sets. The figure below (Figure 3.8)
presents some examples of such trajectories in the different experimental sets. The
structuring indexes ‘Silhouette’, ‘Dunn’ and ‘Davies-Bouldin’ reflect the less dis-
tinct separation induced between trajectories with different semantic meanings (Sil-
houette and Dunn indexes decrease, while the Davies-Bouldin index increases).
The different experimental datasets cover situations presenting a very strong sep-
aration between groups of trajectories with different semantic meanings (structur-
ing indexes Silhouette=0.85 Dunn=0.79 Davies-Bouldin=0.22), partial confusion
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Table 3.1 Clustering results on different synthetic datasets.

Input Output

Name
Nb.
Trj.

Nb.
GT’s

Structure
characteristics

Nb.
Clusters

Structure
characteristics

Jaccard
Index

ROC measures

Sil Dunn DB Sil Dunn DB TPR FPR

ExpSet 230 23 0.85 0.79 0.22 22 0.82 0.79 0.30 0.91 0.95 0.0020
ExpSet2 280 28 0.82 0.59 0.24 27 0.80 0.80 0.33 0.92 0.96 0.0013
ExpSet3 340 34 0.80 0.58 0.26 32 0.76 0.03 0.41 0.87 0.94 0.0018
ExpSet4 440 44 0.76 0.47 0.33 42 0.73 0.06 0.47 0.85 0.92 0.0016
ExpSet5 520 52 0.75 0.46 0.33 51 0.74 0.30 0.42 0.91 0.95 0.00075
ExpSet6 590 59 0.73 0.47 0.37 55 0.70 0.14 0.49 0.86 0.93 0.0012
ExpSet7 650 65 0.72 0.39 0.39 59 0.67 0.08 0.57 0.79 0.88 0.0017
ExpSet8 710 71 0.70 0.37 0.40 65 0.67 0.05 0.54 0.82 0.91 0.0012
ExpSet9 750 75 0.70 0.39 0.41 62 0.57 0.03 0.62 0.61 0.80 0.0025
ExpSet10 840 84 0.67 0.25 0.45 71 0.58 0.03 0.65 0.66 0.82 0.0020
ExpSet11 890 89 0.66 0.13 0.48 72 0.55 0.04 0.66 0.60 0.77 0.0024
ExpSet12 920 92 0.65 0.21 0.50 77 0.54 0.02 0.68 0.62 0.79 0.0022
ExpSet13 990 99 0.64 0.22 0.52 86 0.53 0.04 0.66 0.62 0.77 0.0019
ExpSet14 1070 107 0.60 0.04 0.61 77 0.45 0.02 0.74 0.45 0.66 0.0030

(Silhouette=0.7588 Dunn=0.4690 Davies-Bouldin=0.3331), high confusion (Sil-
houette=0.6517 Dunn=0.2131 Davies-Bouldin=0.5031) and very high confusion
(Silhouette=0.6098 Dunn=0.0463 Davies-Bouldin=0.6157). The trajectory cluster-
ing algorithm performs accordingly, having more difficulty to retrieve all initial se-
mantic groups when the confusion increases (thus the internal structure of the input
data decreases); at the same time, the mapping between the trajectory clustering
results and the semantic groups (GT) also worsens as exposed by the Jaccard In-
dex. However, the overall behaviour shown by the true positive rate (TPR) and false
positive rate (FPR) remains globally correct with TPR values near or above 0.77
for all studied cases except for the worst case experimental set 14 where the TPR
is below 0.7.

In order to assess the generalisation capability of the trajectory cluster-
ing algorithm, we have carried out new experiments employing the CAVIAR
dataset (http://www-prima.inrialpes.fr/PETS04/caviar data.html). The dataset con-
tains people observed at the lobby entrance of a building. The annotated ground-
truth includes for each person its bounding box (id, centre coordinates, width,
height) with a description of his/her movement type (inactive, active, walking, run-
ning) for a given situation (moving, inactive, browsing) and most importantly gives
contextual information for the acted scenarios (browsing, immobile, left object,
walking, drop down). In Figure 3.9 below, some examples of the acted scenarios in
the CAVIAR dataset and the involved contextual objects are shown.

From the CAVIAR dataset we have kept only the representative trajectory of
the acted scenario (which we further call principal trajectory). Other non-related
trajectories like supplementary movements or non-actor trajectories, which are thus
not related to the acted scenario, are filtered out. In total, forty different activities can
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Fig. 3.8 Different examples of trajectories added to a given experimental data set under study.
Different colours in an experimental data set correspond to different semantics attributed to
the trajectories (each trajectory is associated with only one semantic meaning). Although the
semantics between trajectories may be different, their spatial similarity can be very close.

Fig. 3.9 Two different people trajectory types while going to look for information (Browsing)
at two different places.

be distinguished. They include Browsing at different places of the scene, Walking
(going through the hall) from different locations, and leaving or dropping an object
at different locations of the hall. We have created the new evaluation set applying
the following formulae:

x′i = N (αrx,x1)+ N (β rx,xi) (3.10)

y′i = N (αry,y1)+ N (β ry,yi) (3.11)

Where N (σu,u) is a random number from a normal distribution with mean u and
standard deviation σu; rx = |max(xi)−min(xi)| is the range function on x; and α,β
are two different constants to control the spread of the random functions. For each
principal trajectory, we have generated 30 new synthetic trajectories by adding ran-
dom noise as explained above. In total, the synthetic CAVIAR dataset contained
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Fig. 3.10 Synthetic trajectories in the CAVIAR dataset generated from the activities shown
in the previous figure. The trajectories are plotted employing their 3D coordinates on the
ground.

1200 trajectories. Figure 3.10 shows the synthetic trajectories generated from the
principal trajectories of the activities shown before.

The CAVIAR synthetic evaluation data set was further divided into a Learning set
(containing 1/3 of the trajectories in the synthetic evaluation data set, plus all of the
principal trajectories) and Test set (containing the remaining 2/3 from the trajecto-
ries in the synthetic evaluation data set). The Learning set was employed to tune the
‘T’ threshold, which is critical to the clustering algorithm as indicated before. In this
case, the tuning algorithm has fetched a ‘T’ value of T=1.05 and for which, the best
clustering partition matches the ‘true’ data partition. When evaluating the algorithm
in the Test set, the supervised Jaccard index used to compare the resulting parti-
tion with that ‘true’ expected partition gives a value of: Jaccard index=0.99. One
supplementary evaluation set was created by adding more trajectories but which
contain some spatial overlap to those already defined, yet they convey a different
semantic (same procedure carried out in the first synthetic dataset). The structur-
ing indexes ‘Silhouette’, ‘Dunn’ and ‘Davies-Bouldin’ reflect again the less distinct
separation induced between trajectories with different semantic meanings. Table 3.2
summarises the results on both CAVIAR experimental datasets.

Again, the same trend as for the synthetic COFRIEND dataset appears. When
the confusion between semantics increases (thus the internal structure of the input
data decreases), retrieving all initial semantic groups is more difficult and the map-
ping between the trajectory clustering results and the semantic groups also worsens
(Jaccard index decreases).

Table 3.2 Clustering results on CAVIAR synthetic datasets.

Input Output

Name
Nb.
Trj.

Nb.
GT’s

Structure
Nb.
Clusters

Structure
Jaccard
Index

ROC measures

Sil Sil TPR FPR

ExpSet1 440 22 0.79 22 0.79 0.99 0.99 0.0001
ExpSet2 740 37 0.65 26 0.60 0.56 0.69 0.008
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3.6 Results

We have processed in total five video datasets corresponding to different monitoring
instances of an aircraft in the airport docking area (in the following, these video
datasets are to be named: cof1, cof2, cof3, cof4 and cof8). These correspond to about
five hours of video which corresponds to about 8000 trajectories. The system was
first tuned and initialised as previously described (i.e. employing a learning dataset
with 230 trajectories distributed into 23 trajectory types). Figure 3.11 shows the
online system learning as the different video sequences (datasets) are processed.

Fig. 3.11 Number of processed trajectories (blue curve) and number of trajectory clusters
created by the online system as the different datasets are sequentially processed. Remark
that the number of trajectory clusters does not increase much in relation to the number of
trajectories analysed after the processing of the‘cof2’ dataset.

The structure of the resulting clustering after the processing of a given dataset can
be measured again with unsupervised evaluation indexes (i.e. the intra-cluster ho-
mogeneity and inter-cluster separation) as in section 3.4 ‘Trajectory analysis’. We
calculated the Silhouette index for the clustering partition induced on each analysed
dataset. Table 3.3 below gives such results. When comparing these Silhouette values
with those obtained in section ‘Trajectory analysis’ for the evaluation of the cluster-
ing algorithm, we can deduce that the analysed datasets contain still high levels of
complexity/noise.

Table 3.3 Clustering structure evaluated by the Silhouette index on the processed datasets.

dataset Silhouette Index

cof1 0.45
cof2 0.24
cof3 0.43
cof4 0.39
cof8 0.39
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We employed the trajectory clusters to measure the similarity between the dif-
ferent datasets. For this purpose a histogram was built for each dataset where each
bin of the histogram represents the number of mobile objects being associated with
that particular trajectory cluster. The similarity between datasets comes down to
measuring the similarity between the established histograms. For this purpose we
employ the Kullback-Leibler divergence measure given next for any two different
histograms h1 and h2:

KL(h1,h2) = ∑
r

ph1 (r) log
ph1 (r)
ph2 (r)

+∑
r

ph2 (r) log
ph2 (r)
ph1 (r)

(3.12)

and r is a given bin on the histogram of trajectories.
Because the Kullback-Leibler divergence measure is a non-bounded measure,

which equals to zero when h1=h2, we actually calculate the correlation (corr) be-
tween the different datasets by adding a normalisation factor and a unit offset:

corr (h1,h2) = 1 +
KL(h1,h2)

∑r ph1 (r) log(ph1 (r))+ ∑r ph2 (r) log(ph2 (r))
(3.13)

The correlation between the different datasets is then given in the table below.

Table 3.4 Trajectory-based correlation between the different analysed datasets.

cof1 cof2 cof3 cof4 cof8
cof1 1 0.77 0.75 0.79 0.76
cof2 0.77 1 0.78 0.80 0.78
cof3 0.75 0.78 1 0.76 0.71
cof4 0.79 0.80 0.76 1 0.81
cof8 0.76 0.78 0.71 0.81 1

From the trajectory-based correlation table it can then be observed that sequences
cof2, cof4 and cof8 are the most similar, although in general all five sequences do
contain a large number of common trajectories as their minimum correlation value
is above 0.75.

3.7 Conclusions

Activity clustering is one of the new trends in video understanding. Here we have
presented an on-line learning approach for trajectory and activity learning. Previous
state of the art has mainly focused on the recognition of activities mostly with the
aim to label them as normal/suspicious/dangerous. However, the adaptation/update
of the activity model with the analysis of long term periods has only been partially
adressed. Moreover, most state of the art on activity analysis has been designed for
the case of structured motions such as those observed in traffic monitoring (vehicle
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going straight on the road, vehicle turning on a round-about, ...) or specific iso-
lated body motions like walking, running, jumping. In this paper, we have adressed
the problem of incremental learning of unstructured spatial motion patterns. The
proposed algorithm allows monitoring and processing large periods of time (large
amounts of data), and thus perform analysis on a long-term basis. The proposed
approach employs a simple, yet advantageous incremental algorithm: The Leader
algorithm. The strongest advantage is that it requires only a single scan of the data,
and only cluster representatives need to be stored in the main memory. Generally,
incremental approaches rely on a manually-selected threshold to decide whether the
data is too far away from the clusters. To improve this approach we propose to con-
trol the learning rate with coefficients indicating when the cluster can be updated
with new data. We solve the difficulty of tuning the system by employing a training
set and machine learning. The system respects the main principles of incremental
learning: The system learns new information from datasets that consecutively be-
come available. The algorithm does not require access to previously used datasets,
yet it is capable of largely retaining the previously acquired knowledge and has no
problem of accommodating any new classes that are introduced in the new data.
In terms of the studied application, the system has thus the capacity to create new
clusters for new trajectories whose type had not been previously observed. Exhaus-
tive evaluation is made on synthetic and real datasets employing unsupervised and
supervised evaluation indexes. Results show the ability of trajectory clusters to char-
acterise the scene activities. In this work we have adressed only the recognition of
single mobiles appearing in the scene. In a future work, we will adress group-related
activity such as ‘Meeting’ (trajectory merging) and ‘Splitting’. Our future work will
also include more exhaustive analysis with temporal information, extracted from
trajectories, to achieve more precise behaviour characterisation and to distinguish
between mobiles moving at ‘walking’ speed or higher speed. We will also include
normal/abnormal behaviour analysis from trajectory clustering.
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Appendix 1

Silhouette Index

The Silhouette index is defined as follows: Consider a data object v j, j ∈
{1,2, · · · ,N}, belonging to cluster cli, i ∈ {1,2, · · · ,c}. This means that object v j

is closer to the prototype of cluster cli than to any other prototype. Let the average
distance of this object to all objects belonging to cluster cli be denoted by ai j. Also,
let the average distance of this object to all objects belonging to another cluster
i′ i �= i′ be called di′ j. Finally let bi j be the minimum di′ j computed over i′ = 1, · · · ,c
which represents the dissimilarity of object j to its closest neighbouring cluster. The
Silhouette index is then

S =
1
N

N

∑
j=1

s j and s j =
bi j −ai j

max(ai j,bi j)

Larger values of S correspond to a good clustering partition.

Dunn Index

The Dunn index is defined as follows: Let cli and cli be two different clusters of the
input dataset. Then, the diameter Δ of cli is defined as

Δ (cli) = max
vj ,v j′ ∈cli

{
d

(
v j′ ,v j

)}
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Let δ be the distance between cli and cli Then δ is defined as

δ (cli,cli′) = max
vj∈cli,v j′ ∈cli′

{
d

(
v j′ ,v j

)}

and, d (x,y) indicates the distance between points x and y. For any partition, the
Dunn index is

D = min
i

⎧
⎨

⎩
min

i′

⎧
⎨

⎩

δ (cli,cli′)
max

i
(Δ (cli))

⎫
⎬

⎭

⎫
⎬

⎭
and i, i′ ∈ {1, · · · ,N} , i′ �= i

Larger values of D correspond to a good clustering partition.

Davies-Bouldin Index

The Davies-Bouldin index is defined as follows: This index is a function of the ratio
of the sum of within-cluster scatter to between-cluster separation. The scatter within
cluster, cli, is computed as

Si =
1

|cli| ∑
v j∈cli

{∥
∥v j −mi

∥
∥
}

mi is the prototype for cluster cli . The distance δ between clusters cli and cli is
defined as

δ (cli,cli′) = ‖mi′ −mi‖
The Davies-Bouldin (DB) index is then defined as

DB =
1
N

N

∑
i=1

Ri withRi = max
i,i′

Rii′ ; i, i′ ∈ {1, · · · ,N} , i′ �= iand Rii′ =
Si + Si′

δ (cli,cli′)

Low values of the DB index are associated with a proper clustering.

Appendix 2

Jaccard Index

Consider C = CL1, · · · ,CLm is a clustering structure of a data set X =
{v1,v2, · · · ,vn}; and P = {P1, · · · ,Ps} is a defined partition of the data .

We refer to a pair of points (vi,v j) from the data set using the following terms:

• SS: if both points belong to the same cluster of the clustering structure C and to
the same group of partition P.

• SD: if points belong to the same cluster of C and to different groups of P.
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• DS: if points belong to different clusters of C and to the same group of P.
• DD: if both points belong to different clusters of C and to different groups of P.

Assuming now that a, b, c and d are the number of SS, SD, DS and DD pairs respec-
tively, then a+b+ c+d = M which is the maximum number of all pairs in the data
set (meaning, M = N (N −1)/2 where N is the total number of points in the data
set). Now we can define the Jaccard index (J) measuring the degree of similarity
between C and P:

J =
a

a + b + c
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