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Abstract

We propose in this paper a tracking algorithm which is able to
adapt itself to different scene contexts. A feature pool is used
to compute the matching score between two detected objects.
This feature pool includes 2D, 3D displacement distances, 2D
sizes, color histogram, histogram of oriented gradient (HOG),
color covariance and dominant color. An offline learning pro-
cess is proposed to search for useful features and to estimate
their weights for each context. In the online tracking process, a
temporal window is defined to establish the links between de-
tected objects. This enables to find the object trajectories even
if the objects are misdetected in some frames. A trajectory
filter is proposed to remove trajectories considered as noise.
Experimentation on different contexts is shown. The proposed
tracker has been tested in seven videos (in which five sequences
belong to the ETISEO [2] and Caviar [1] datasets). The exper-
imental results prove the effect of the proposed feature weight
learning, and the robustness of the proposed tracker compared
to some methods in the state of the art. The contributions of
our approach over the state of the art trackers are: (i) a robust
tracking algorithm based on a feature pool, (ii) a supervised
learning scheme to learn feature weights for each context, (iii)
a new method to quantify the reliability of HOG descriptor, (iv)
a combination of color covariance and dominant color features
with spatial pyramid distance to manage the case of object oc-
clusion.

1 Introduction

Many approaches have been proposed to track mobile objects
in a scene [5]. The problem is to know whether these ap-
proaches can perform well in different scene conditions (e.g.
different people density levels, different illumination condi-
tions). And in those cases, how can the user tune parameters to
get the best possible tracking result?

The ideas about an automatic control system have been
studied to adapt the algorithm to the context variations [15, 8,
12]. In [15], the authors have presented a framework which
is able to integrate knowledge and uses it to control the image
processing programs. However, the construction of a knowl-
edge base for this system requires a lot of time and data. Also,
their study is restricted to static image processing (no video).
In [8], the authors have presented an architecture for a self-

adaptive perceptual system in which the ”auto-criticism“ stage
plays the role of an online evaluation process. To do that, the
system computes trajectory goodness score based on clusters
of typical trajectories. Therefore, this method can be only ap-
plied for the scenes where mobile objects move on well defined
paths, roads... In [12], the authors have presented a tracking
framework which is able to control a set of different trackers
to get the best possible performance. The approach is interest-
ing but the authors do not mention how to evaluate online the
tracker quality. Also, the execution of three trackers in parallel
is very expensive in terms of processing time.

In order to overcome these limitations, we propose a track-
ing algorithm that is able to adapt itself to different contexts.
The notion of context mentioned in this paper includes a set of
scene properties: density of mobile objects, frequence of oc-
clusion occurrences, illumination intensity, contrast level and
the depth of the scene. These properties have a strong effect on
the tracking quality. In order to be able to track object move-
ments in different contexts, we define firstly a feature pool in
which each weighted feature combination can help the system
to outperform its performance in each context. However, the
determination of feature weight values is a hard task because
the user has to quantify correctly the importance of each feature
in the considered context. To facilitate this task, we propose an
offline learning algorithm based on Adaboost [7] to compute
feature weight values for each context.

The paper rest is organized as follows: The next section
presents the feature pool and explains how to use it to compute
link similarity between detected objects. Section 3 describes
the offline learning process to tune the feature weights for each
scene context. Section 4 shows in detail the different stages of
the tracking process. The results of the experimentation and
validation can be found in section 5. A conclusion as well as
future work are given in the last section.

2 Feature pool and link similarity

2.1 Feature pool

The principle of the proposed tracking algorithm is based on
the coherence of mobile object features throughout time. In
this paper, we define a set of 8 different features to compute
a link similarity between two mobile objects l and m within a
temporal window (see figure 1).



2.1.1 2D and 3D displacement distance similarity

Depending on the object type (e.g. car, bicycle, walker), the
object speed cannot exceed a fixed threshold. Let Dmax be
the possible maximal 3D displacement of a mobile object for
1 frame in a video and d be the 3D distance of two considered
objects, we define a similarity LS1 between these two objects
using the 3D displacement distance feature as follows:

LS1 = max(0, 1− d/(Dmax ∗ n)) (1)

where n is the temporal difference (frame unity) of the two
considered objects.

Similarly, we also define a similarity LS2 between two ob-
jects using displacement distance feature in the 2D image co-
ordinate system.

2.1.2 2D shape ratio and area similarity

Let Wl and Hl be the width and height of the 2D bounding
box of object l. The 2D shape ratio and area of this object
are respectively defined as Wl/Hl and WlHl. If no occlusions
occur and mobile objects are well detected, shape ratio and area
of a mobile object within a temporal window does not vary
much even if the lighting and contrast conditions are not good.
A similarity LS3 between two 2D shape ratios of objects l and
m is defined as follows:

LS3 = min(Wl/Hl, Wm/Hm)/max(Wl/Hl, Wm/Hm)
(2)

Also we define the similarity LS4 between two 2D areas of
objects l and m as follows:

LS4 = min(WlHl, WmHm)/max(WlHl, WmHm) (3)

2.1.3 Color histogram similarity

In this work, the color histogram of a mobile object is defined
as a normalized RGB color histogram of moving pixels inside
its bounding box. We define a link similarity LS5 between two
objects l and m for color histogram feature as follows:

LS5 =
∑3×R
k=1 min(Hl(k),Hm(k))

3 (4)

where R is a parameter representing the number of histogram
bins for each color channel (R = 1..256), Hl(k) and Hm(k)
are respectively the histogram values of object l, m at bin k.

2.1.4 HOG similarity

In case of occlusion, the system may fail to detect the full ap-
pearance of mobile objects. The above features are then unreli-
able. In order to address this issue, we propose to use the HOG
descriptor to track locally interest points on mobile objects and
to compute the trajectory of these points. The HOG similarity
between two objects is defined as a value proportional to the
number of pairs of tracked points belonging to both objects.
In [11], the authors propose a method to track FAST points

based on their HOG descriptors. However the authors do not
compute the reliability level of the obtained point trajectories.
In this work, we define a method to quantify the reliability of
the trajectory of each interest point by considering the coher-
ence of the Frame-to-Frame (F2F) distance, the direction and
the HOG similarity of the points belonging to a same trajec-
tory. We assume that the variation of these features follows a
Gaussian distribution.

Let (p1, p2, ..., pi) be the trajectory of a point. Point pi is
on the current tracked object and point pi−1 is on an object
previously detected. We define a coherence score Sdisti of F2F
distance of point pi as follows:

Sdisti = 1√
2πσ2

i

e
− (di−µi)2

2σ2
i (5)

where di is the 2D distance between pi and pi−1, µi and σi
are respectively the mean and standard deviation of the F2F
distance distribution formed by the set of points (p1, p2, ..., pi).

In the same way, we compute the direction coherence score
Sdiri and the similarity coherence score Sdesci of each interest
point. Finally for each interest point pi on the tracked object l,
we define a coherence score Sli as the mean value of these three
coherence scores.

Let P be the set of interest point pairs which trajectories
pass through two considered objects ol and om; Sli (Smj re-
spectively) be the coherence score of point i (j respectively)
on object l (m respectively) belonging to set P . We defne the
similarity of HOG between these two objects as follows:

LS6 = min(
∑|P |
i=1 S

l
i

Ml
,

∑|P |
j=1 S

m
j

Mm
) (6)

where Ml and Mm are the total number of interest points de-
tected on objects l and m.

2.1.5 Color covariance similarity

Color covariance is a very useful feature to characterize the ap-
pearance model of an image region. The covariance matrix
of any region with the same feature set will have the same
matrix size, thus it enables the comparison of regions with
different sizes. The covariance is invariant to the changes
of the feature mean such as identical shifting of color val-
ues. This becomes an advantageous property when objects
are tracked under varying illumination conditions. In [13], for
a feature point i in a given image region R, the authors de-
fine a covariance matrix Ci corresponding to 11 following fea-
tures: {x, y,Rxy, Gxy, Bxy,MR

xy, O
R
xy,M

G
xy, O

G
xy,M

B
xy, O

B
xy}

where (x, y) is pixel location, Rxy, Gxy, and Bxy are RGB
channel values, and M , O correspond to gradient magnitude
and orientation in each channel at position (x, y).

We use the distance defined by [6] to compare two covari-
ance matrices:

ρ(Ci, Cj) =

√√√√
F∑

k=1
ln2λk(Ci, Cj) (7)



where F is the number of considered features (F = 11 in this
case), λk(Ci, Cj) is the generalized eigenvalue of Ci and Cj .

In order to take into account the spatial coherence of the
color covariance distance and also to manage occlusion cases,
we propose to use the spatial pyramid distance defined in [9].
The main idea is to divide the image region of a considered
object by a set of sub-regions. For each level i (i ≥ 0), the
considered region is divided by a set of 2i x 2i sub-regions.
Then we compute the local color covariance distance for each
pair of corresponding sub-regions. The computation of each
sub-region pair helps to evaluate the spatial structure coherence
between two considered objects. In the case of occlusions, the
color covariance distance between two regions corresponding
to occluded parts will be very high. Therefore, we take only
a half of the lowest color covariance distances (i.e. highest
similarities) for each level to compute the final color covariance
distance.

The similarity of this feature is defined as a function of the
spatial pyramid distance:

LS7 = max(0, 1− dcov/Dcov max) (8)

where dcov is the spatial pyramid distance of the color co-
variance between two considered objects, and Dcov max is the
maximum distance for two color covariance matrices to be con-
sidered as similar.

2.1.6 Dominant color similarity

Dominant color descriptor (DCD) has been proposed by
MPEG-7 and is extensively used for image retrieval [10]. This
is a reliable color descriptor because it takes into account only
important colors of the considered image region. DCD of an
image region is defined as F = {{ci, pi}, i = 1..A} where
A is the total number of dominant colors in the considered im-
age region, ci is a 3D RGB color vector, pi is its occurrence
percentage, with

∑A
i=1 pi = 1.

Let F1 and F2 be the DCDs of two image regions of con-
sidered objects. The dominant color distance between these
two regions is defined using the similarity measure proposed
in [10]. Also, similar to the color covariance feature, in order
to take into account the spatial coherence and also occlusion
cases, we propose to use the spatial pyramid distance for the
dominant color feature. The similarity of this feature is defined
in the function of the spatial pyramid distance as follows:

LS8 = 1− dDC (9)

where dDC is the spatial pyramid distance of dominant colors
between two considered objects.

2.2 Link similarity

Using the eight features we have described above, a link simi-
larity LS(ol, om) is defined as a weighted combination of fea-
ture similarities LSi between objects ol and om:

LS(ol, om) =
∑8
k=1 wkLSk∑8
k=1 wk

(10)

wherewk is the feature weight (corresponding to its efficiency),
at least one weight is not null.

3 Learning feature weights

Each feature described above is efficient for some particular
context conditions. However, how can the user quantify cor-
rectly the feature significance for a given context? In order to
address this issue, we propose in this paper an offline super-
vised learning process using the Adaboost algorithm [7]. Each
feature is considered as a weak classifier. The expected out-
put of the learning phase is a strong classifier which combines
these 8 weak classifiers with their weights.

In the learning phase, we choose a video sequence whose
context is similar to the considered context. First, for each ob-
ject pair (ol, om) (called a training sample) denoted opi (i =
1..N ) in two consecutive frames, we classify it into two classes
{+1, -1}: yi = +1 if the pair belongs to the same tracked ob-
ject and yi = −1 otherwise. For each feature k (k = 1..8), we
define a classification mechanism for a pair opi as follows:

hk(opi) =
{

+1 if LSk(ol, om) ≥ Th1
−1 otherwise

(11)

where LSk(ol, om) is the similarity score of feature k (defined
in section 2.1) between two objects ol and om, Th1 is a pre-
defined threshold representing the minimum feature similarity
considered as similar.

The loss function for Adaboost algorithm at iteration z for
each feature k is defined as:

εk =
N∑

i=1
Dz(i)max(0,−yihk(opi)) (12)

where Dz(i) is the weight of training sample opi at iteration z.
At each iteration z, the goal is to find k whose loss function εk
is minimum. hk and εk (corresponding to value k found) are
denoted hz and εz . The weight of this weak classifier denoted
αz is computed as follows:

αz = 1
2 ln

1− εz
εz

(13)

We then update the weight of samples:

Dz+1(i) =





1/N , if z = 0

Dz(i)exp(−αzyihz(opi))
Az

, otherwise
(14)

where Az is a normalization factor so that
∑N

i
Dz+1(i) = 1.

At the end of the Adaboost algorithm, the feature weights
are determined for the considered context and allow to compute
the link similarity defined in formula 10.

4 The proposed tracking algorithm

The proposed tracking algorithm needs a list of detected ob-
jects in a temporal window as input. The size of this tempo-
ral window (denoted T2) is a parameter. The proposed tracker



is composed of three stages. First, the system computes the
link similarity between any two detected objects appearing in
a given temporal window to establish possible links. Second,
the trajectories that include a set of consecutive links resulting
from the previous stage, are then computed as the system gets
the highest possible total of global similarities (see section 4.3).
Finally, a filter is applied to remove noisy trajectories.

4.1 Establishment of object links

For each detected object pair in a given temporal window of
size T2, the system computes the link similarity (i.e. instanta-
neous similarity) defined in formula 10. A temporal link is es-
tablished between these two objects when their link similarity
is greater or equal to Th1 (presented in equation 11). At the end
of this stage, we obtain a weighted graph whose vertices are the
detected objects in the considered temporal window and whose
edges are the temporally established links associated with the
object similarities (see figure 1).

Figure 1. The graph representing the established links of the
detected objects in a temporal window of size T2 frames.

4.2 Long term similarity

In this section, we study similarity score between an object
ol detected at t and the trajectory of om detected previously,
called long term similarity (to distinguish with the link similar-
ity score between two objects). By assuming that the variations
of the 2D area, shape ratio, color histogram, color covariance
and dominant color features of a mobile object follow a Gaus-
sian distribution, we can use the Gaussian probability density
function (PDF) to compute this score. Also, longer the trajec-
tory of om is, more reliable this similarity is. Therefore, for
each feature k in these features, we define a long term similar-
ity score between object ol and trajectory of om as follows:

LTk(ol, om) = 1√
2πσ2

m

e
− (sl−µm)2

2σ2
m min(T

Q
, 1) (15)

where sl is the value of feature k for object l, µm and σm are
respectively mean and standard deviation values of feature k of
last Q-objects belonging to the trajectory of om (Q is a prede-
fined parameter), T is time length (number of frames) of om
trajectory. Thanks to the selection of the last Q-objects, the

long term similarity can take into account the latest variations
of the om trajectory.

For the left features (2D, 3D displacement distance and
HOG), the long term similarity are set to the same values of
link similarity.

4.3 Trajectory determination

The goal of this stage is to determine the trajectories of the
mobile objects. For each detected object ol at instant t, we
consider all its matched objects om (i.e. objects with temporal
established links) in previous frames that do not have yet offi-
cial links (i.e. trajectories) to any objects detected at t. For such
an object pair (ol, om), we define a global score GS(ol, om)
as follows:

GS(ol, om) =
∑8
k=1 wkGSk(ol, om)∑8

k=1 wk
(16)

where wk is the weight of feature k (resulting from learning
phase, see section 3), GSk(ol, om) is the global score of fea-
ture k between ol and om, defined as a function of link similar-
ity and long term similarity of feature k:

GSk(ol, om) = (1− β)LSk(ol, om) + βLTk(ol, om) (17)

where LSk(ol, om) is the link similarity of feature k between
the two objects ol and om, LTk(ol, om) is their long term sim-
ilarity defined in section 4.2, β is the weight of long term sim-
ilarity and is defined as follows:

β = min(T
Q
, Th4) (18)

where T , Q are presented in section 4.2, and Th4 is the maxi-
mum expected weight for the long term similarity.

The object om having the highest global similarity will be
considered as a temporal father of object ol. After consider-
ing all objects at instant t, if more than one object get om as a
father, the pair (ol, om) which GS(ol, om) value is the high-
est will be kept and the link between this pair is official (i.e.
become officially a trajectory segment). An object is no longer
tracked if it cannot establish any official links in T2 consecutive
frames.

4.4 Trajectory filtering

Noise usually appears when wrong detection or misclassifica-
tion (e.g. due to low image quality) occurs. Hence a static
object (e.g. a chair, a machine) or some image regions (e.g.
window shadow) can be detected as a mobile object. How-
ever, noise usually only appears in few frames or has no real
motion. We thus use temporal and spatial filters to remove po-
tential noises. A trajectory is considered as a noise if one of the
following conditions is satisfied:

T < Th5
dmax < Th6

where T is time length of the considered trajectory; dmax is
the maximum spatial length of this trajectory; Th5, Th6 are
the predefined thresholds.



5 Experimentation and Validation

The objective of this experimentation is to prove the effect of
feature weight learning, also to compare the performance of the
proposed tracker with some other trackers in the state of the art.
To this end, in the first part, we test the proposed tracker with
two complex videos (many moving people, high occlusion oc-
currence frequency) in both cases: without and with the feature
weight learning. In the second part, five videos belonging to
two public datasets ETISEO and Caviar are experimented, and
the tracking result (with the feature learning) is compared with
some other approaches in the state of the art.

In order to evaluate the tracking performance, in this work
we use the three tracking evaluation metrics defined in the
ETISEO project [4]. The first tracking evaluation metric M1
measures the percentage of time during which a reference ob-
ject (ground truth data) is correctly tracked. The second met-
ric M2 computes throughout time how many tracked objects
are associated with one reference object. The third metric M3
computes the number of reference object IDs per tracked ob-
ject. These metrics must be used together to obtain a complete
performance evaluation. Therefore, we also define a tracking
metric M taking the average value of these three tracking met-
rics. All of the four metric values are defined in the interval
[0, 1]. The higher the metric value is, the better the tracking
algorithm performance gets.

In this experimentation, we use the people detection algo-
rithm based on the HOG descriptor of the OpenCV library.
Therefore we focus the experimentation on the sequences con-
taining people movements. However the principle of the pro-
posed tracking algorithm is not dependent on tracked object
type. For learning feature weights, we use video sequences
that are different from the tested videos but which have a simi-
lar context.

The first tested video depicts people moving in a subway
station (hidden for anonymity reason). The frame rate of this
sequence is 5 fps (frames/second) and the length is 5 min
(see image 2a). We have learnt feature weights on a sequence
of 2000 frames. The learning algorithm selectsw5 = 0.5 (color
histogram feature) and w6 = 0.5 (HOG feature).

The second tested sequence depicts the movements of peo-
ple in an airport and is provided by TRECVid [3] (see image
2b). It contains 5000 frames and lasts 3 min 20 sec. We have
learnt feature weights on a sequence of 5000 frames. The learn-
ing algorithm selects w1 = 0.24 (3D distance displacement),
w4 = 1 (2D area) and w5 = 0.76 (color histogram).

Table 1 presents the tracking results in two cases: without
and with feature weight learning. We can find that with the
proposed learning scheme, the tracker performance increases
in both tested videos. Also, the processing time of the tracker
also decreases significantly because many features are not used.
The two following tested videos belong to ETISEO dataset.
The first tested ETISEO video shows a building entrance, de-
noted ETI-VS1-BE-18-C4. It contains 1108 frames and frame
rate is 25 fps. In this sequence, there is only one person mov-
ing (see image 2c). We have learnt feature weights on a se-
quence of 950 frames. The learning algorithm has selected

the 3D displacement distance feature as the unique feature for
tracking in this context. The result of the learning phase is rea-
sonable since there is only one moving person.

The second tested ETISEO video shows an underground
station denoted ETI-VS1-MO-7-C1 with occlusions. The dif-
ficulty of this sequence consists in the low contrast and bad
illumination. The scene depth is quite important (see image
2d). This video sequence contains 2282 frames and frame rate
is 25 fps. We have learnt feature weights on a sequence of 500
frames. The color covariance feature is selected as the unique
feature for tracking in this context. It is a good solution because
the dominant color and HOG feature do not seem to be effec-
tive due to bad illumination. Also, the size and displacement
distance features are not reliable because their measurements
do not seem to be discriminative for far away moving people
from the camera.

In these two experiments, tracker results from seven dif-
ferent teams (denoted by numbers) in ETISEO have been pre-
sented: 1, 8, 11, 12, 17, 22, 23. Because names of these teams
are hidden, we cannot determine their tracking approaches. Ta-
ble 2 presents performance results of the considered trackers.
The tracking evaluation metrics of the proposed tracker get the
highest values in most cases compared to other teams.

The last three tested videos belong to the Caviar dataset [1]
(see image 2e). In this dataset, we have selected the same se-
quences experimented in [14] to be able to compare each other:
OneStopEnter2cor, OneStopMoveNoEnter1cor and OneStop-
MoveNoEnter2cor. In these three sequences, there are totally
9 peoples walking in a corridor. The proposed approach can
track all of them. However there are three noisy trajectories in
the last sequence because of wrong detection occurred in a long
period. Table 3 presents the result summary for these videos.
TP (True Positive) refers to the number of correct tracked tra-
jectories. FN (False Negative) is the number of lost trajectories.
FP (False Positive) represents the number of noisy trajectories.
Compared to [14], our proposed tracker have better values in
all of these three indexes.

6 Conclusion and Future work

We have presented in this paper an approach which can com-
bine a large set of appearance features and learn tracking pa-
rameters. The quantification of HOG descriptor reliability and
the combination of color covariance, dominant color with spa-
tial pyramid distance help to increase the robustness of the
tracker for managing occlusion cases. The learning of feature
significances for different video contexts also helps the tracking

Without learning With learning
M1 M2 M3 M M1 M2 M3 M

Subway video 0.62 0.16 0.99 0.59 0.47 0.83 0.80 0.70
Trecvid video 0.60 0.82 0.90 0.77 0.70 0.93 0.84 0.82

Table 1. Summary of tracking results in both cases: without
and with feature weight learning.



Figure 2. Illustration of some tested video sequences: a. Subway b. Trecvid c. ETI-VS1-BE-8-C4 d. ETI-VS1-MO-7-C1 e.
Caviar

Our tracker Team 1 Team 8 Team 11
BE MO BE MO BE MO BE MO

M1 0.50 0.79 0.48 0.77 0.49 0.58 0.56 0.75
M2 1.00 1.00 0.80 0.78 0.80 0.39 0.71 0.61
M3 1.00 1.00 0.83 1.00 0.77 1.00 0.77 0.75
M 0.83 0.93 0.70 0.85 0.69 0.66 0.68 0.70

Team 12 Team 17 Team 22 Team 23
BE MO BE MO BE MO BE MO

M1 0.19 0.58 0.17 0.80 0.26 0.78 0.05 0.05
M2 1.00 0.39 0.61 0.57 0.35 0.36 0.46 0.61
M3 0.33 1.00 0.80 0.57 0.33 0.54 0.39 0.42
M 0.51 0.91 0.53 0.65 0.31 0.56 0.30 0.36

Table 2. Summary of tracking results for two ETISEO videos.
BE denotes ETI-VS1-BE-18-C4 sequence, MO denotes ETI-
VS1-MO-7-C1 sequence. The highest values are printed bold.

Number of tra-
jectories

TP FN FP

Proposed tracker 9 9 0 3
Approach of [14] 9 8 1 7

Table 3. Summary of tracking results for three Caviar videos

algorithm to adapt itself to the context variation problem. The
experimentation proves the effect of the feature weight learn-
ing, also the robustness of the proposed tracker compared to
some other approaches in the state of the art. We propose in fu-
ture work an automatic context detection to increase the auto-
control capacity of the system.
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