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Abstract— Expression recognition remains challenging, pre-
dominantly due to (a) lack of sufficient data, (b) subtle emotion
intensity, (c) subjective and inconsistent annotation, as well
as due to (d) in-the-wild data containing variations in pose,
intensity, and occlusion. To address such challenges in a unified
framework, we propose a self-training based semi-supervised
convolutional neural network (CNN) framework, which directly
addresses the problem of (a) limited data by leveraging infor-
mation from unannotated samples. Our method uses ‘successive
label smoothing’ to adapt to the subtle expressions and improve
the model performance for (b) low-intensity expression samples.
Further, we address (c) inconsistent annotations by assigning
sample weights during loss computation, thereby ignoring
the effect of incorrect ground-truth. We observe significant
performance improvement in in-the-wild datasets by leveraging
the information from the in-the-lab datasets, related to challenge
(d). Associated to that, experiments on four publicly available
datasets demonstrate large performance gains in cross-database
performance, as well as show that the proposed method achieves
to learn different expression intensities, even when trained with
categorical samples.

I. INTRODUCTION

Facial expression recognition aims at inferring emotions
based on visual cues from face images. In spite of recent
advancements in this field, following set of challenges remain
open. (a) Lack of sufficient annotated data is a major
limitation in emotion recognition. At the same time, we have
that manual annotation is subjective (e.g., intra and inter-
individual variation), as well as time-consuming. (b) Often
large affective datasets are created by crowdsourcing [1],
which results in noisy and inconsistent annotation due to
inexperienced annotators. Utilizing wrongly labeled samples
often negatively affects the model performance. Contrarily,
(c) the in-the-lab datasets are created under constraint envi-
ronments with proper annotation by experts. However, such
datasets predominantly contain only peak expression images
posed by actors, which is far from realistic. Consequently,
a model trained with such data often fails when applied
to real-world applications mainly due to low sample size
and lack of expression intensity variation in the training
data. Further, unlike ‘object classification’, multiple emotions
may coexist in real-life data, raising false alarms in blended
or mixed emotions [2], [3]. Given that emotion classes
are not mutually exclusive but collectively exhaustive, it is
important for the model to learn accurate emotion intensities
for all emotion-classes. Finally, (d) in contrast to in-the-
lab data, real-world data (in-the-wild) contains images with
different illumination, facial pose, occlusion, stemming from
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various sensor-types, and other undesired factors, such as low
resolution and blurred images.
Over the past years, convolutional neural networks (CNNs)

have achieved outstanding performances in many domains of
application, including facial expression recognition [4], [5],
[6], [7], due to their powerful capacity for modeling complex
input patterns. Transfer learning addresses the limited data
problem in emotion recognition [6], [8] by using a pretrained
network trained with large face data in the context of face
recognition. Some works exploit the ample unlabeled face
data along with the labeled data in a weakly or semi-
supervised approach. CNN models based on semi-supervised
learning (SSL) [9], [10] have been explored, demonstrating
the effectiveness of emotion classification frameworks by
leveraging information from unlabeled data. In self-training
[11], an initial model selects the high confidence samples
from unlabeled data, which is further utilized to update the
model. In this work, we address the limited data problem
using both transfer learning and self-training, thereby maxi-
mally exploiting the information in unlabeled data.
Training with one-hot vectors forces CNNs to predict one

of the classes with high confidence. The presence of noisy
or inadequate data overfits the model with one-hot encoding.
Label smoothing [12] renders models less confident about
their associated predictions and acts as a natural regularizer.
We here use successive label smoothing, in order to allow the
model to automatically adapt to different emotion intensities.
In other words, we use label smoothing on the model
predictions for the labeled data and utilize them for further
parameter update. Thus, our model output is consistent with
the emotion intensity, by adapting to subtle and mixed
emotion intensities.
Towards adapting the model to noisy and inconsistent

annotated samples, the literature suggests eliminating hard
samples [13], [14] or assigning weights to samples [15] for
further parameter tuning. In our SSL approach, we assume
that the labeled data contains noisy annotations, whereas the
selected unlabeled data used in training process is clean.
Thus, we assign weight to each labeled sample based on
its training loss, which indicates the sample importance.
Our model allows the sample weight values to grow or
shrink dynamically based on model parameters at every
iteration. By decreasing the weight of hard examples, the
model becomes robust to inconsistent and noisy labeled data
during model training.
We firstly train an initial model to achieve sufficient

accuracy in predicting emotion classes. This model is further
employed for the purpose of classifying unlabeled data
and including a fraction of high confidence samples in the



training process in the subsequent iteration. This allows us
to leverage information from ample unlabeled data towards
addressing the low sample size problem. The combination
of successive label smoothing and the use of predicted class
probability of unlabeled data as the true distribution, enables
the model to automatically adapt to different emotion inten-
sities. Thus, prediction scores from our model resemble the
emotion class probabilities, allowing the recognition of low
intensity and blended emotions. Further, we assign sample
weights based on the training loss and the model is updated
considering the importance of each sample. Thus, noisy and
inconsistent labeled data is ignored in the training process,
due to their low sample importance. The combined effect
of SSL, successive label smoothing, and sample importance
assignment learns a robust model, which inherently tackles
the issues raised by the in-the-wild data.
Contribution In summary, our main contributions are the
following.

• We propose a self-training based SSL approach to
improve emotion recognition performance by leveraging
information from the unlabeled data. As opposed to us-
ing the predicted class of unlabeled samples as ground-
truth [16], we use the predicted class distribution as the
true distribution in our model.

• We use successive label smoothing to adapt to expres-
sion images with different intensities. We demonstrate
that our model adapts to expression intensity from the
data, annotated with discrete expression categories.

• We incorporate insights from sample weighting [15],
[14], in order to make our model robust against noisy
and inconsistent annotation. Contrarily to former ap-
proaches [15], [14], our model initially assigns equal
weight to each sample, which can further increase or
decrease based on the training and validation loss.

• We report performances, outperforming state-of-the-art
results on four datasets. We show that the performance
of in-the-wild datasets improve largely from using the
in-the-lab datasets as unlabeled data. The proposed
method also achieves a significant improvement in
cross-database experiments.

II. RELATED WORK

A. Deep Learning-based Facial Expression Recognition

Given the powerful ability to model complex class rep-
resentation, CNNs have outperformed and replaced hand-
crafted feature extraction methods in many applications,
including facial expression recognition [5], [17], [18], [19].
Most CNN methods attempted to resolve emotion recog-
nition challenges inspired by methods, proposed in early
literature. For example, CNN based models have been
proposed for improving emotion recognition by encoding
temporal appearance and geometry features [4], by jointly
learning feature representation-selection-classification [17],
by embedding facial representation of both peak – non-
peak intensity samples [5], by jointly learning expression
and identity related features [7], etc.
To address the limited data-size problem, Oquab et al.

[20] proposed the transfer of mid-level image representa-
tion for related source and target domains. The network

parameters learned on large-scale data generalizes the input
space and transferring such parameters could significantly
improve the performance of a task with a limited amount of
training data. To improve emotion recognition performance
with limited data, Ng et al. [8] used the network weights
trained on ImageNet. Similarly, FaceNet2ExpNet [6] fine-
tuned FaceNet in order to capture high level expression
semantics. In our framework, VGG-Face model [21] is used
to achieve knowledge transfer. VGG-Face uses a VGG-16
architecture and was trained with 2.6 million face images
for face recognition applications and is a popular network
choice for face related applications [6].

B. Semi-Supervised Learning (SSL)
SSL methods use both labeled and unlabeled data to

overcome the limited data problem. Coates et al. [22] pro-
vided an intuition that data distribution from unlabeled data
can be leveraged towards improving model performance.
The performance of stacked auto-encoders was improved by
initially training with unlabeled data followed by fine-tuning
the model using labeled data [23]. Moreover, the use of
adversarial networks, which learns from abundant unlabeled
data [24], has been very well accepted.

Self-training or incremental SSL method [11], [16] is pop-
ular in deep learning classification tasks where the unlabeled
data augment the limited annotated data. Self-training starts
with optimizing model parameters with labeled data followed
by classifying and selecting unlabeled data with high confi-
dence scores for further training of the model. Co-training
is a similar process, where multiple classifiers are trained
to iteratively learn and generate additional training labels.
Zhang et al. [10] proposed an enhanced multi-modal co-
training algorithm for semi-supervised emotion recognition.
With similar motivation, our work implements self-

training to leverage information from unlabeled data. How-
ever, instead of using the predicted class of unlabeled sam-
ples as ground-truth, we use the predicted class distribution
as the true distribution in our model. This allows the model to
partially adapt to the expression data of different intensities.

C. Methods with Noisy and Inconsistent Labels
Presence of noisy and inconsistent data can easily overfit a

CNN model. Expression annotations are very subjective and
datasets created from crowd-sourcing are often inconsistent
and noisy. To avoid the risk of learning from the noisy data,
a multi-task network is proposed in [25] to jointly learn the
cleaning of the noisy annotation and classifying to the correct
class. Li et al. [26] proposed a unified distillation framework
to learn from noisy labels by leveraging a knowledge graph.
Another way to address inconsistently labeled data is

dataset resampling, i.e., minimizing the weighted loss during
training using sample weights. Jiang et al. [15] proposed
MentorNet to learn the weights of the examples using long
short term memory based on the training loss. The effect
of each training points on the CNN model’s performance
was exploited in [27] by analyzing the change of model
parameters due to removal of a data point. Data dropout
[13] was proposed to optimize the training data by removing
the unfavorable or bad training samples. The idea behind
instance-based transfer learning [14] was to use a pre-trained



Fig. 1: Workflow of the proposed expression recognition method.

model to estimate the influence of target domain samples and
to optimize the training data by removing samples that will
lower the model performance.

Our approach assigns weight to each labeled sample which
reflects its importance during model update. In contrast
to other methods in the literature, the sample weight in
our approach is modified in each iteration based on the
training and validation losses. Our model allows both down-
weighting the hard examples with high loss (usually noisy
annotation) and up-weighting the easy examples with clean
annotation. Thus, our model is robust to outliers and noisy
data.

III. PROPOSED METHOD

The block diagram of the proposed work is shown in
Figure 1. The idea behind our work is to train an initial
model for expression classification, which is afterward used
to classify the unlabeled data. A few samples from unlabeled
data with high prediction scores are selected (with corre-
sponding predictions as ground truth) and treated as train data
for further model update. The predicted class probabilities for
the train data are considered to update the ground truth vector
of the train data. In addition, each training sample is assigned
with a weight according to its importance in updating the
model parameters. Thus, our framework has four main parts:
(1) initial model training: obtaining the model parameters
for fairly accurate expression classification, (2) exploiting
unlabeled data for model update: leveraging the unannotated
data to improve the model performance by self-training,
(3) ground-truth distribution correction for train data (label
update): allowing the model to adapt to different emotion
intensities while maintaining certain confidence in prediction,
and (4) assigning sample importance: computing the sample
weights and ignoring the inappropriate samples during model
update. We proceed to discuss the details of these steps in
this section.

A. Initial Model Training

The task of an expression recognition framework is to
correctly predict the emotion class or the emotion class
probabilities. Given the sample and label pair (xi, yi), the
classification network learns to accurately predict class prob-
abilities p(k|xi, θ), where θ are the network parameters and
k ∈ {1, 2, ...,K} represents K classes. For a soft-max

layer, we have p(k|xi, θ) = exp(zk)∑K
j=1 exp(zj)

, where zj are the

unnormalized log probabilities. In supervised learning, the

ground-truth distribution q(k|xi) is used to train the network
parameters (θ) by minimizing the cross-entropy loss function

L =
∑

xi∈Xl

fi(θ) = −
∑

xi∈Xl

K∑
k=1

log(p(k|xi, θ))q(k|xi). (1)

Here fi(θ) denotes the loss incurred by xi and Xl represents
the set of training samples. Usually, one-hot encoding is used
for classification models, which takes the form q(yi|xi) = 1
and q(k|xi) = 0 for all k �= yi. For clarity, we drop the
subscript and use x instead of xi to denote a sample.

The initial model (θ∗) is utilized to predict pseudo class
probabilities pertaining to unlabeled data during the self-
training process. Thus, the initial model needs to be fairly
accurate to avoid erroneous predictions, which in turn will re-
sult in a poorer model due to error accumulation. We trained
the initial model using the labeled data for sufficient epochs
depending upon the dataset until adequate performance is
achieved.

Label Smoothing: Unlike object classification, expression
categories are highly related, interconnected, as well as
can occur simultaneously. For instance, multiple expression
classes coexist during emotion transition or mixed emotions.
As the expression datasets contain expressive images of
various intensities, it would be best to train a classifier with
normalized emotion intensity vectors as the ground truth.
However, such datasets do not include the emotion intensity
information. Training a model with one-hot vector usually
results in overfitting the model. Therefore, the presence or
absence of multiple objects can be formulated with one-hot
vectors, whereas the expression recognition model should
consider soft class assignment vectors.

Strong supervision with one-hot encoding over-fits the
model on the training data and fails to generalize for the
unseen data. Label smoothing [12] provides a solution to this
situation by replacing the one-hot encoding with a smooth
distribution. Though it renders low confidence prediction, the
model becomes more regularized and adaptable to unseen
data. We implemented the label smoothing as,

q′(k|x) =
{
1− ε, k = y

ε
K−1 , k �= y,

(2)

where ε ∈ [0, 1] is the label smoothing hyperparameter.
While setting ε = 0 refers to one-hot encoding, setting ε a
large value might result in learning a poor performing model.



B. Exploiting Unlabeled Data for Model Update

The proposed semi-supervised method uses a fraction of
the unlabeled data along with the labeled samples to update
the network. We used a self-training procedure inspired
by [16], where the class labels of the unlabeled data are
estimated using the network predictions. Unlike in [16], we
use the predicted probability distribution as the ground-truth
distribution.
Suppose Xu denotes the unlabeled data, ql stands for

ground-truth distribution of labeled data, and pu denotes the
network prediction probabilities for unlabeled data. Note that
the initial model (θ∗) is trained with Xl and ql. Afterward,
we update the model parameters iteratively using a portion
of data from both Xl and Xu simultaneously. The unlabeled
samples are selected from the pool of unlabeled data pre-

dicted with high confidence scores (X̂u), as suggested in
[11]. Instead of using all the high confidence samples, we

select a few samples randomly from X̂u in each iteration to
avoid over-fitting the model.
Maintaining a proper balance between the number of

labeled and unlabeled data is crucial to avoid error accu-
mulation in self-training process. In our implementation, we
randomly replace a fraction of Xl (typically 1 − 10% of
number of labeled samples in Xl) with the unlabeled data

from X̂u in each epoch. After the t-th update, we obtain the
prediction scores using θt for both Xl and Xu, denoted by
ptl and ptu, respectively. We obtain the unlabeled data with
high prediction scores using a threshold value (τ ), given by

X̂t
u = {x|x ∈ Xu and max

k
ptu(k|x) > τ}; X̂t

u ⊂ Xu.

(3)

From the pool of samples in X̂t
u, we select a few randomly

and replace with the random samples fromXl. Thus, the train
data for (t+1)-th iteration becomes Xt+1 = {Xt+1

l , Xt+1
u },

whereXt+1
l ⊂ Xl andX

t+1
u ⊂ X̂t

u are selected randomly. In
our implementation, Xt+1

u consists of equal amount of data
from each class to avoid the trivial solution of predicting the
dominant class for unlabeled data in successive iterations. We
empirically found that τ in the range (0.7, 0.95) is suitable
for different datasets, as it promises dominant class structure
while adopting to moderate expression intensities.

C. Label update

The ground-truth distribution of the labeled data is cau-
tiously modified to make the model adapt to expression sam-
ples of different intensities. It is carried out by updating the
class distribution based on the model prediction. We apply
label smoothing on the model predictions for the labeled
data and utilize them for further parameter update, which
we call successive label smoothing. In contrast, the predicted
class probabilities for the unlabeled data are directly used for
model training.

1) Updating qtl : By performing successive label smooth-
ing on labeled data, the model adapts to the expression
samples of various intensities. However, incorrect predictions
on Xl can accumulate error and reduce model performance
in subsequent iterations. It is important to maintain the
prediction confidence of labeled data, while learning the
necessary information from the unlabeled data. In order to

achieve that, we scrutinize ptl after each iteration and force
the model to rectify its prediction errors on Xl. We maintain
the confidence of the model by forcing the model to correctly
predict the expression class with a prediction score greater
than certain threshold (α), which is given by,

qt+1
l (k|x) =

⎧⎪⎨⎪⎩
ptl(k|x), if { maxk p

t
l(k|x) > α

and argmaxk p
t
l(k|x) = y }

g(ptl(k|x)), otherwise

(4)

where g(ptl(k|x)) =
{
α, if k = y
1−α
K−1 , if k �= y.

(5)

Essentially, this means that we use the prediction proba-
bilities as true distribution if the model predicts the correct
expression class (y) with a probability above threshold α.
The failure cases are assigned with ground-truth distribution
with label smoothing (as shown in equation (5)). Thus, α
determines the minimum probability that can be assigned to
the correct class.

2) Updating qtu: The ground-truth distribution of unla-
beled data is updated to its predicted probabilities, i.e.,
qt+1
u (k|x) = ptu(k|x). Thus, the model sees the unlabeled
data with corresponding updated ground-truth distribution
after each update.
The model is updated from θt to θt+1 in a supervised

manner using {Xt+1
l , Xt+1

u } and the corresponding up-

dated ground-truth probabilities {qt+1
l , qt+1

u }. This forces the
model to generate closely similar probabilities every time it
accepts a particular sample as input. Intuitively, the model
will train itself to correctly classify the supervised data,
while incorporating the variations from the unlabeled data
into the model. Here the parameter α controls the prediction
confidence of labeled data. Choosing the value of α ≈ 1
restricts the model to learn for definite dominant expressions.
However, as discussed before, data of different expression-
intensities might have a similar label and the value of α
should be in the range 0.6 to 0.9, in order to allow the model
to adapt to different intensities.

D. Assigning Sample Importance

The presence of wrongly annotated or inappropriate train-
ing data hinders the model from obtaining optimal param-
eters and negatively affects the model performance. Such
samples are assigned with low sample importance or sample
weight, thereby avoiding their effect on the model update.
This is carried out by penalizing the loss incurred by the
labeled training samples (Xl) by the corresponding sample
weight (0 ≤ wi ≤ 1).

The loss function used at tth iteration is given by

L =
∑

xi∈Xt
l

wt
ifi(θ

t) +
∑

xi∈Xt
u

fi(θ
t). (6)

Comparing with equation (1), here we minimize the
weighted loss, where the sample weights are learned using
the training loss. As we assume the selected unlabeled data
is clean, the corresponding loss is not penalized. Further, we
assume that all the labeled samples are equally important



initially, i.e., w0
i = 1, ∀xi ∈ Xl. After training the initial

model θ∗, the sample weights are updated in every iteration
t based on the loss values incurred by individual sample.
Further, we use the overall loss obtained for the validation
set, Lt

val =
∑

xi∈Xval
fi(θ

t), to decide the worthiness of the
sample weights. Notice that the validation loss is computed
without the sample weights.
We update wt

i if the trend of average validation loss

starts increasing, i.e., Lt
val > Lt−1

val , where Lt
val =

1
T

∑t
t=t−T+1 Lt

val is the average validation loss over pre-
vious T iterations. We used T = 3 in all experiments. The
weight update is carried out by

wt+1
i ← wt

i −Δwt
i ; where (7)

Δwt
i = c. tanh

(fi(θt)− favg(θ
t)

σ

)
. (8)

Here favg(θ
t) is the average training loss at tth iteration,

whereas 0 ≤ c ≤ 1 and σ > 0 are scalars that control
the weight update in consecutive iterations. Note that Δwt

i

can take both positive and negative values, subsequently
decreasing or increasing the sample weights. Δwt

i takes
positive values if the loss incurred due to a sample is
higher than the average loss, and vice versa. We further clip
the sample weights in the range [0, 1] to avoid unpleasant
computations.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details
Datasets
Both in-the-lab (CK+ [28], RaFD [29]) and in-the-wild

(RAF [1], AffectNet [30]) datasets are used in our ex-
periments. The in-the-wild datasets contain data collected
from uncontrolled environments and thus cover real-world
expressions with various facial poses, illuminations, emotion
intensity, occlusion, and other factors. Whereas the in-the-lab
datasets are mostly posed in a controlled environment and
contain exaggerated expressions of frontal faces.
All these datasets (except CK+) contain annotation for

seven expressions, namely: anger, disgust, fear, happy, neu-
tral, sad, and surprise. CK+ [28] contains 327 sequences
annotated with 7 expression labels (six basic emotions and
contempt). The contempt class is excluded in our experi-
ments as we aim for cross-database evaluation and compari-
son purposes [17]. Following the literature [17], [6], [7], we
use the 10-fold cross-validation while using the first frame as
neutral and the last three frames of each sequence of CK+ as
the corresponding expression label. The frontal faces (1407
samples) are used from RaFD dataset for our experiments.
We conduct five-fold cross-validation for RaFD evaluation.
AffectNet and RAF are collected from the internet by

using certain emotional terms in various search engines. RAF
[1] contains manually annotated images, out of which 12271
are listed in RAF-train and 3068 samples in RAF-test. Affect-
Net [30] has around 400000 labeled data in AffectNet-train
and 5000 samples in AffectNet-test. The agreement between
two annotators in AffectNet is found to be 60%, which
explains the complexity and subtlety of the expressions in
this dataset. Following the experimental settings of [31] and
[32], we only use the seven classes for these datasets.

TABLE I: Comparison of average classification accuracy
for different combinations of self-training (ST) and sample
weight assignment (SW). Here the unlabeled samples come
from the test-split of the same dataset. The best accuracy is
reported in bold.

Datasets
without

ST and SW
with

ST only
with

SW only
with both
ST and SW

CK+ 99.19 99.19 99.27 99.43
RaFD 99.29 99.5 99.49 99.71
RAF 83.44 83.6 83.83 84.61
AffectNet 55.48 56.62 57.31 57.37

TABLE II: Performance improvement on RAF and AffectNet
datasets by using in-the-lab datasets as unlabeled data source.
(using both ST and SW)

(a) RAF dataset

Unlabeled data source Accuracy
RAF-test 84.61
CK+ 84.81
RaFD 84.94

(b) AffectNet dataset

Unlabeled data source Accuracy
AffectNet-test 57.37
CK+ 61.54
RaFD 62.25

Preprocessing
Preprocessing steps involve face detection (using MTCNN

[33]) and face alignment, in order to position both eyes at a
fixed distance parallel to the horizontal axis. The training set
is augmented using slight zooming, horizontal flipping, less
than 10% vertical and horizontal shifting, as well as rotating
the images randomly in the range of ±10 degrees. For
both these in-the-wild datasets, we use the aligned images
provided by the dataset developers. We normalize the training
data to zero mean and unit variance in all experiments.

Network
We use the pre-trained VGG-Face model proposed by

Parkhi et al. [21] initially introduced for face recognition.
It consists of thirteen convolutional layers followed by two
fully connected layers. The aligned faces are re-sized to
224 × 224 resolution and feed to the CNN models. We set
the softmax layer to the number of expression classes (in our
case seven: anger, disgust, fear, happy, neutral, sadness, and
surprise). The initial model weights are obtained from the
pretrained VGG-Face model, achieving knowledge transfer.
We use Adam optimizer with the suggested weights β1 =
0.9, β2 = 0.999 and a learning rate of 1e–4 in our model. All
models are trained using a batch size of 32. The experiments
are carried out using NVIDIA 1080 GPU with CUDA to
improve the speed.

Parameter Settings
We conduct several experiments by varying ε from 0.05−

0.2, and varying both τ and α in the range 0.6−0.9 to select
the suitable values of corresponding parameters. Empirically
we find ε = 0.05, τ = 0.9 and α = 0.7 to be adequate for all
the experiments, irrespective of the database type and mode
of evaluation. The weight update parameters are also set
empirically to c = 0.3 and σ = 2. In all our experiments, we
replace 2% of training data with high confidence unlabeled
samples. We use 10% of the train data as the validation data
in all experiments.



TABLE III: Cross-dataset accuracy for seven expression
classes. Note that we utilized the test dataset as the unlabeled
data.

(a) without ST and SW

�������Train
Test

CK+ RaFD RAF AffectNet

CK+ - 75.83 46.15 38.56
RaFD 80.9 - 48.34 39.75
RAF 72.49 70.5 - 42.2
AffectNet 82.92 84.79 63.03 -

(b) with ST only

�������Train
Test

CK+ RaFD RAF AffectNet

CK+ - 76.04 45.79 38.82
RaFD 82.76 - 48.96 40.58
RAF 71.35 84.86 - 43.17
AffectNet 86.48 92.18 64.73 -

(c) with ST and SW

�������Train
Test

CK+ RaFD RAF AffectNet

CK+ - 86.56 48.45 39.87
RaFD 87.54 - 49.54 41.63
RAF 73.26 91.61 - 44.08
AffectNet 87.37 94.02 64.65 -

B. Performance on Different Datasets
Using samples from test set as unlabeled data
The average accuracy obtained for different datasets by the

proposed method for self-training (ST) and/or sample weight
assignment (SW) is presented in Table I. We report the
accuracy for four different conditions based on the utilization
of ST and SW.
As can be seen from Table I, the accuracy of the frame-

work without ST and SW is the lowest for all datasets.
Importantly, one can notice performance improvements by
using either of ST or SW alone. This clearly demonstrates
the effectiveness of ST and SW in emotion recognition.
When ST and SW are applied together, we obtained the best
performance in all datasets. This proves the effectiveness of
combining the two approaches. As can be observed from
Table I, we obtain close to perfect performances in both the
in-the-lab datasets. However, the accuracy for the in-the-wild
datasets is comparatively very poor. We obtain an accuracy
of 57.37% only in AffectNet dataset.
Using in-the-lab datasets as unlabeled data
We conduct experiments to improve the performance of in-

the-wild datasets by leveraging the information from in-the-
lab datasets. Therefore, we report the performance of RAF
and AffectNet in two conditions: (1) the test split of the same
dataset is used as the source for unlabeled data, and (2) one of
the in-the-lab dataset is utilized as the unlabeled data source.
For example, to evaluate the performance of AffectNet, we
use AffectNet-train for training the model while evaluating
with AffectNet-test. However, the unlabeled data used during
model training can come from either (1) AffectNet-test or (2)
CK+ or RaFD. Both cases are reported in Table II. Here all
the results are obtained using both ST and SW.
From Table II, we observe performance improvement in

both RAF and AffectNet by using the in-the-lab datasets as
the source of unlabeled data. We obtain 84.94% and 62.25%
accuracy on RAF and AffectNet respectively. The model
performance is especially improved by 5% for AffectNet

by using unlabeled samples from RaFD. The presence peak
intensity samples in in-the-lab datasets might be the rea-
son behind this performance boost. Our model selects the
high confidence unlabeled samples with the corresponding
predictions as true distribution. This assumption is mostly
true for in-the-lab datasets as the chances of peak expressive
images getting classified into correct classes is high with a
fair performing model. Thus, the unlabeled samples selected
in the process drives the model to accurately present the
expression prototypes while learning the variations of the
in-the-wild labeled data.

The classification results on some AffectNet samples are
presented in Figure 2. One can observe that the predictions
for different correctly classified samples (see Figure 2a)
resemble the emotion intensities. The increase in prediction
scores for happy and sad classes are demonstrated in the top
row of Figure 2a. We believe that the ability of the model
to adapt to the sample intensity is due to two factors: (1)
successive label smoothing, and (2) using the predicted class
probabilities as true distribution for unlabeled samples.

Figure 2b and 2c displays the samples wrongly classified
by our model. However, the predicted classes in Figure 2b are
more appropriate than the ground-truth annotation. Similarly,
Figure 2c represents the images with blended emotions,
where the model predicts the second dominant class. The
presence of noisy annotation in test split (AffectNet-test
and RAF-test) makes the evaluation of such datasets more
difficult.

The effectiveness of the SW is demonstrated in Figure
3. Our model automatically assigns lower sample weights
to the noisy samples as shown in the top row in Figure 3.
The samples wrongly annotated with happy class are also
assigned with low sample weight. This demonstrates the
robust training of the model against inconsistently labeled
data. In addition to the noisy data, the model assigns low
weight to the difficult samples with lower emotion intensity.

C. Cross-Database Evaluation

Table III reports the performance of seven class classi-
fication for cross-dataset evaluation. We present the results
in the ascending order of dataset size (CK+ <RaFD <RAF
<AffectNet). One interesting trend that can be observed
from Table III is that the models trained with large datasets
perform well on small ones. This has also been observed in
[17] and [18], where this trend is considered as the effect
of fewer variations in training data due to low sample size.
Furthermore, the occlusion, pose and illumination variations
are absent in-the-lab datasets; thus, it is difficult to train
the complex model architecture without causing significant
overfitting.

The effect of ST and SW is also validated by the cross-
database performance as shown in Table III. As can be
observed, the performance of the model improves by using
ST, which further improves by using both ST and SW.
For instance, the AffectNet → RaFD model performance
is improved from 84% to 94% when both ST and SW are
implemented. In the same way, RaFD → CK+, RAF →
RaFD, and RAF → AffectNet sees an performance gain of
7%, 20%, and 2% respectively among others.



(a) Correctly recognized samples from AffectNet dataset. Prediction scores are provided below the images
which closely resemble the emotion intensities.

(b) Samples for which model predication is more appropriate than the ground-truth.

(c) Mis-classified samples. The predicted class is the second dominant emotion for the blended expression samples.

Fig. 2: Classification examples from AffectNet dataset.

Fig. 3: Training samples from RAF data. The value below
the images depicts the sample importance learned by our
framework. (Top row: Noisy annotations for happy class.
Low sample importance neglects the effect of noisy incon-
sistent samples on model learning. Middle and Bottom row:
The assigned sample weights for happy and sad class in
ascending order.)

D. Comparison with Other Methods

We compare our results with recent CNN-based methods
and state-of-the-art results. All the results reported here
are average classification accuracy for the seven expression
classes. Our results outperform the state-of-the-art in both the

TABLE IV: Comparison of classification accuracy on CK+.

Methods
Validation
settings

Accuracy

LOMo [34] 7 class 95.1
IACNN [7] 7 class 95.37

BDBN[17] 6 class 1 96.7
DTAGN [4] 7 class 97.25
PPDN [5] 6 class 97.3
Facenet2expnet [6] 6 class 98.6
PPDN [5] 7 class 99.3
Proposed 7 class 99.43

in-the-lab datasets. As these datasets contain frontal faces
with peak expressions, the performance of the framework
is close to perfect. However, the accuracy drops drastically
when in-the-wild datasets are considered. The proposed
method outperforms the state-of-the-art (in Table VIb) at a
margin of 4% for AffectNet dataset. However, the perfor-
mance achieved in IPA2LT [19] is better than the proposed
method for RAF dataset (see Table VIa). Note that samples
from both AffectNet and RAF are combined during the
training process in [19], which might provide the model an
upper hand.

1Eight-fold cross-validation is performed.
2Trained with both AffectNet and RAF train set



TABLE V: Comparison of classification accuracy on RaFD.

Methods Accuracy
BAE-BNN-3[35] 96.93
TLCNN+FOS[36] 97.75
Carcagni et al.[37] 98.5
Proposed 99.71

TABLE VI: Performance comparison on RAF and AffectNet.

(a) RAF dataset

Methods Accuracy
CAKE [32] 68.9
DLP-CNN [1] 74.2
Vielzeuf et al. [38] 80
PG-CNN [31] 83.27

IPA2LT [19]2 86.77
Proposed 84.94

(b) AffectNet dataset

Methods Accuracy
PG-CNN [31] 55.33

IPA2LT [19]2 57.31
CAKE [32] 58.1
AlexNet [30] 58
Proposed 62.25

V. CONCLUSIONS

In this paper, we proposed a unified semi-supervised
learning model for expression recognition which uses (a)
self-training, exploiting information from abundant unlabeled
data, (b) successive label smoothing, allowing the model to
adapt to the emotion intensities and perform well on low
intensity data, as well as (c) sample weight assignment, in
order to avoid learning from noisy and inconsistent data. We
experimentally validated the performance improvement with
self-training and sample weight assignment. Experiments
conducted on four public datasets indicate (i) excellent
model performance out-performing state-of-the-art for most
datasets, (ii) ability to learn different expression intensities,
even when trained with categorical samples, (iii) ability to
learn from inconsistent and noisy data, (iv) significant per-
formance improvement on in-the-wild datasets by leveraging
the information from the in-the-lab datasets, and (v) large
performance gains in cross-database performance.
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